1
|
Bertolini MS, Cline SE, Chiurillo MA, Mantilla BS, Eidex A, Crowe LP, Qiu D, Jessen HJ, Saiardi A, Docampo R. Generation of inositol polyphosphates through a phospholipase C-independent pathway involving carbohydrate and sphingolipid metabolism in Trypanosoma cruzi. mBio 2025; 16:e0331824. [PMID: 40172212 PMCID: PMC12077091 DOI: 10.1128/mbio.03318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Inositol phosphates are involved in a myriad of biological roles and activities such as Ca2+ signaling, phosphate homeostasis, energy metabolism, and disease pathogenicity. In Saccharomyces cerevisiae, synthesis of inositol phosphates occurs through the phosphoinositide phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol and further IP3 phosphorylation by additional kinases that leads to the formation of highly phosphorylated inositol derivatives, known as inositol pyrophosphates. Inositol-tetrakisphosphate 1-kinase (ITPK1) is an enzyme that mediates a PLC-independent inositol polyphosphate synthesis through phosphorylation of inositol monophosphates and other intermediates in the cytosol. In this work, we identified and characterized a Trypanosoma cruzi ITPK1 (TcITPK1) homolog. The ability of TcITPK1 to act as the mediator for this alternative pathway was established through plc1Δ and plc1Δ isc1Δ yeast complementation assays and SAX-HPLC analyses of radioactively labeled inositol. TcITPK1 localizes to the cytosol, and knockout attempts of TcITPK1 revealed that only one allele was replaced by the DNA donor cassette at the specific locus, suggesting that null alleles may have lethal effects in epimastigotes. Ablation of T. cruzi phosphoinositide phospholipase C 1 (TcPI-PLC1) affected the synthesis of IP3 from glucose 6-phosphate but did not affect the synthesis of inositol polyphosphates, while ablation of inositol phosphosphingolipid phospholipase (TcISC1) affected the synthesis of inositol polyphosphates, thus revealing that the PLC-independent pathway using either glucose 6-phosphate or inositol phosphoceramide is involved in the synthesis of inositol polyphosphates, while the PLC-dependent pathway is involved in IP3 formation needed for Ca2+ signaling. IMPORTANCE Millions of people are infected with Trypanosoma cruzi, and the current treatment is not satisfactory. Inositol pyrophosphates have been established as important signaling molecules. Our work demonstrates the presence of a phospholipase C-independent pathway for the synthesis of inositol pyrophosphates in T. cruzi. Furthermore, we demonstrate that this pathway starts with the synthesis of inositol monophosphates from glucose 6-phosphate or from inositol phosphoceramide, linking it to carbohydrate and sphingolipid metabolism. The essentiality of the pathway for the survival of T. cruzi infective stages makes it an ideal drug target for treating American trypanosomiasis.
Collapse
Affiliation(s)
- Mayara S. Bertolini
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Sabrina E. Cline
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Miguel A. Chiurillo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Brian S. Mantilla
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- School of Chemistry, University of Leeds, Leeds, England, United Kingdom
| | - Aharon Eidex
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Logan P. Crowe
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Danye Qiu
- Institute of Organic Chemistry & CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry & CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Cell Biology, University College London, London, England, United Kingdom
| | - Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Huang G, Bertolini MS, Wiedeman J, Etheridge RD, Cruz-Bustos T, Docampo R. Lysosome and plasma membrane Piezo channels of Trypanosoma cruzi are essential for proliferation, differentiation and infectivity. PLoS Pathog 2025; 21:e1013105. [PMID: 40267157 DOI: 10.1371/journal.ppat.1013105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a parasitic protist that affects millions of people worldwide. Currently there are no fully effective drugs or vaccines available. Contact of T. cruzi infective forms with their host cells or with the extracellular matrix increases their intracellular Ca2+ concentration suggesting a mechano-transduction process. We report here that T. cruzi possesses two distinct mechanosensitive Piezo channels, named TcPiezo1 and TcPiezo2, with different subcellular localizations but similarly essential for normal proliferation, differentiation, and infectivity. While TcPiezo1 localizes to the plasma membrane, TcPiezo2 localizes to the lysosomes. Downregulation of TcPiezo1 expression by a novel ligand-regulated hammerhead ribozyme (HHR) significantly inhibited Ca2+ entry in cells expressing a genetically encoded Ca2+ indicator while downregulation of TcPiezo2 expression inhibited Ca2+ release from lysosomes, which are now identified as novel acidic Ca2+ stores in trypanosomes. The channels are activated by contact with extracellular matrix and by hypoosmotic stress. The results establish the essentiality of Piezo channels for the life cycle and Ca2+ homeostasis of T. cruzi and a novel lysosomal localization for a Piezo channel in eukaryotes.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Mayara S Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Justin Wiedeman
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Ronald D Etheridge
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Teresa Cruz-Bustos
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
3
|
Calcium signaling in intracellular protist parasites. Curr Opin Microbiol 2021; 64:33-40. [PMID: 34571430 DOI: 10.1016/j.mib.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
Calcium ion (Ca2+) signaling is one of the most frequently employed mechanisms of signal transduction by eukaryotic cells, and starts with either Ca2+ release from intracellular stores or Ca2+ entry through the plasma membrane. In intracellular protist parasites Ca2+ signaling initiates a sequence of events that may facilitate their invasion of host cells, respond to environmental changes within the host, or regulate the function of their intracellular organelles. In this review we examine recent findings in Ca2+ signaling in two groups of intracellular protist parasites that have been studied in more detail, the apicomplexan and the trypanosomatid parasites.
Collapse
|
4
|
Mantilla BS, Do Amaral LD, Jessen HJ, Docampo R. The Inositol Pyrophosphate Biosynthetic Pathway of Trypanosoma cruzi. ACS Chem Biol 2021; 16:283-292. [PMID: 33411501 PMCID: PMC10466500 DOI: 10.1021/acschembio.0c00759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inositol phosphates (IPs) are phosphorylated derivatives of myo-inositol involved in the regulation of several cellular processes through their interaction with specific proteins. Their synthesis relies on the activity of specific kinases that use ATP as phosphate donor. Here, we combined reverse genetics and liquid chromatography coupled to mass spectrometry (LC-MS) to dissect the inositol phosphate biosynthetic pathway and its metabolic intermediates in the main life cycle stages (epimastigotes, cell-derived trypomastigotes, and amastigotes) of Trypanosoma cruzi, the etiologic agent of Chagas disease. We found evidence of the presence of highly phosphorylated IPs, like inositol hexakisphosphate (IP6), inositol heptakisphosphate (IP7), and inositol octakisphosphate (IP8), that were not detected before by HPLC analyses of the products of radiolabeled exogenous inositol. The kinases involved in their synthesis (inositol polyphosphate multikinase (TcIPMK), inositol 5-phosphate kinase (TcIP5K), and inositol 6-phosphate kinase (TcIP6K)) were also identified. TcIPMK is dispensable in epimastigotes, important for the synthesis of polyphosphate, and critical for the virulence of the infective stages. TcIP5K is essential for normal epimastigote growth, while TcIP6K mutants displayed defects in epimastigote motility and growth. Our results demonstrate the relevance of highly phosphorylated IPs in the life cycle of T. cruzi.
Collapse
Affiliation(s)
- Brian S. Mantilla
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Leticia D. Do Amaral
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
The IP 3 receptor and Ca 2+ signaling in trypanosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118947. [PMID: 33421534 DOI: 10.1016/j.bbamcr.2021.118947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
Trypanosoma cruzi, and the T. brucei group of parasites cause neglected diseases that affect millions of people around the world. These unicellular microorganisms have complex life cycles involving an insect vector and a mammalian host. Both groups of pathogens possess an inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) signaling pathway, and an IP3 receptor, but with lineage-specific adaptations that make them different from their mammalian counterparts. The phospholipase C (PLC), which hydrolyzes phosphatidyl inositol 4,5-bisphosphate (PIP2) to IP3 is N-terminally myristoylated and palmitoylated. Acidocalcisomes, which are lysosome-related organelles rich in polyphosphate, are the main intracellular Ca2+ stores. The inositol 1,4,5-trisphosphate receptor (IP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. The trypanosome IP3R is stimulated by luminal phosphate and pyrophosphate, which are hydrolysis products of polyphosphate (polyP), and inhibited by tripolyphosphate (polyP3), which is the most abundant polyP in acidocalcisomes. Ca2+ signaling is important for host cell invasion and differentiation and to maintain cellular bioenergetics.
Collapse
|
6
|
Chiurillo MA, Lander N, Vercesi AE, Docampo R. IP3 receptor-mediated Ca2+ release from acidocalcisomes regulates mitochondrial bioenergetics and prevents autophagy in Trypanosoma cruzi. Cell Calcium 2020; 92:102284. [DOI: 10.1016/j.ceca.2020.102284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
|
7
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
8
|
Cárdenas-Guerra RE, Moreno-Gutierrez DS, Vargas-Dorantes ODJ, Espinoza B, Hernandez-Garcia A. Delivery of Antisense DNA into Pathogenic Parasite Trypanosoma cruzi Using Virus-Like Protein-Based Nanoparticles. Nucleic Acid Ther 2020; 30:392-401. [PMID: 32907491 DOI: 10.1089/nat.2020.0870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi, which causes Chagas disease, is one of the most lacerating parasites in terms of health and social impacts. New approaches for its study and treatment are urgently needed since in more than 50 years only two drugs have been approved. Genetic approaches based on antisense oligonucleotides (AONs) are promising; however, to harness their full potential the development of effective carriers is paramount. Here, we report the use of an engineered virus-like protein C-BK12 to transfect AONs into T. cruzi. Using gel electrophoresis, Dynamic Light Scattering, and atomic force microscopy, we found that C-BK12 binds AONs and forms 10-25 nm nanoparticles (NPs), which are very stable when incubated in biological media, only releasing up to 25% of AON. Fluorescence microscopy and qPCR revealed that the NPs successfully delivered AONs into epimastigotes and reduced the expression of a target gene down to 68%. Importantly, the protein did not show cytotoxicity. The combination of high stability and capability to transfect and knock down gene expression without causing cell damage and death makes the protein C-BK12 a promising starting point for the further development of safe and effective carriers to deliver AONs into T. cruzi for biological studies.
Collapse
Affiliation(s)
- Rosa E Cárdenas-Guerra
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David S Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Oscar de J Vargas-Dorantes
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
9
|
Lucena ACR, Amorim JC, de Paula Lima CV, Batista M, Krieger MA, de Godoy LMF, Marchini FK. Quantitative phosphoproteome and proteome analyses emphasize the influence of phosphorylation events during the nutritional stress of Trypanosoma cruzi: the initial moments of in vitro metacyclogenesis. Cell Stress Chaperones 2019; 24:927-936. [PMID: 31368045 PMCID: PMC6717228 DOI: 10.1007/s12192-019-01018-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important event in cell signaling that is modulated by kinases and phosphatases. In Trypanosoma cruzi, the etiological agent of Chagas disease, approximately 2% of the protein-coding genes encode for protein kinases. This parasite has a heteroxenic life cycle with four different development stages. In the midgut of invertebrate vector, epimastigotes differentiate into metacyclic trypomastigotes in a process known as metacyclogenesis. This process can be reproduced in vitro by submitting parasites to nutritional stress (NS). Aiming to contribute to the elucidation of mechanisms that trigger metacyclogenesis, we applied super-SILAC (super-stable isotope labeling by amino acids in cell culture) and LC-MS/MS to analyze different points during NS. This analysis resulted in the identification of 4205 protein groups and 3643 phosphopeptides with the location of 4846 phosphorylation sites. Several phosphosites were considered modulated along NS and are present in proteins associated with various functions, such as fatty acid synthesis and the regulation of protein expression, reinforcing the importance of phosphorylation and signaling events to the parasite. These modulated sites may be triggers of metacyclogenesis.
Collapse
Affiliation(s)
- Aline Castro Rodrigues Lucena
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Juliana Carolina Amorim
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla Vanessa de Paula Lima
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco Aurelio Krieger
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio Klerynton Marchini
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
| |
Collapse
|
10
|
Salas-Sarduy E, Niemirowicz GT, José Cazzulo J, Alvarez VE. Target-based Screening of the Chagas Box: Setting Up Enzymatic Assays to Discover Specific Inhibitors Across Bioactive Compounds. Curr Med Chem 2019; 26:6672-6686. [PMID: 31284853 DOI: 10.2174/0929867326666190705160637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
Chagas disease is a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. The disease is endemic in Latin America with about 6 million people infected and many more being at risk. Only two drugs are available for treatment, Nifurtimox and Benznidazole, but they have a number of side effects and are not effective in all cases. This makes urgently necessary the development of new drugs, more efficient, less toxic and affordable to the poor people, who are most of the infected population. In this review we will summarize the current strategies used for drug discovery considering drug repositioning, phenotyping screenings and target-based approaches. In addition, we will describe in detail the considerations for setting up robust enzymatic assays aimed at identifying and validating small molecule inhibitors in high throughput screenings.
Collapse
Affiliation(s)
- Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| | - Gabriela T Niemirowicz
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| | - Vanina E Alvarez
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| |
Collapse
|
11
|
A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy. Parasitology 2018; 146:269-283. [PMID: 30210012 DOI: 10.1017/s0031182018001506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.
Collapse
|
12
|
Brown RWB, Sharma AI, Engman DM. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence. Crit Rev Biochem Mol Biol 2017; 52:145-162. [PMID: 28228066 PMCID: PMC5560270 DOI: 10.1080/10409238.2017.1287161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aabha I. Sharma
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| | - David M. Engman
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Staudt E, Ramasamy P, Plattner H, Simon M. Differential subcellular distribution of four phospholipase C isoforms and secretion of GPI-PLC activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3157-3168. [PMID: 27693913 DOI: 10.1016/j.bbamem.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface.
Collapse
Affiliation(s)
- Emanuel Staudt
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany; University of Kaiserslautern, Department of Biology, Erwin-Schrödinger Straße, Building Nr. 14, 67663 Kaiserslautern, Germany
| | - Pathmanaban Ramasamy
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany
| | - Helmut Plattner
- University of Konstanz, Senior Research Group for Cell Biology and Ultrastructure Research, Department of Biology, 78457 Konstanz, Germany
| | - Martin Simon
- Saarland University, Molecular Cell Dynamics, Centre for Human and Molecular Biology, Campus A2 4, 66123 Saarbrücken, Germany.
| |
Collapse
|
14
|
Watanabe Costa R, da Silveira JF, Bahia D. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways. Front Microbiol 2016; 7:388. [PMID: 27065960 PMCID: PMC4814445 DOI: 10.3389/fmicb.2016.00388] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6-7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jose F da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil
| |
Collapse
|
15
|
Hashimoto M, Nara T, Enomoto M, Kurebayashi N, Yoshida M, Sakurai T, Mita T, Mikoshiba K. A dominant negative form of inositol 1,4,5-trisphosphate receptor induces metacyclogenesis and increases mitochondrial density in Trypanosoma cruzi. Biochem Biophys Res Commun 2015; 466:475-80. [PMID: 26367178 DOI: 10.1016/j.bbrc.2015.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) is a key regulator of intracellular Ca(2+) concentration that release Ca(2+) from Ca(2+) stores in response to various external stimuli. IP3R also works as a signal hub which form a platform for interacting with various proteins involved in diverse cell signaling. Previously, we have identified an IP3R homolog in the parasitic protist, Trypanosoma cruzi (TcIP3R). Parasites expressing reduced or increased levels of TcIP3R displayed defects in growth, transformation, and infectivity. In the present study, we established parasitic strains expressing a dominant negative form of TcIP3R, named DN-TcIP3R, to further investigate the physiological role(s) of TcIP3R. We found that the growth of epimastigotes expressing DN-TcIP3R was significantly slower than that of parasites with TcIP3R expression levels that were approximately 65% of wild-type levels. The expression of DN-TcIP3R in epimastigotes induced metacyclogenesis even in the normal growth medium. Furthermore, these epimastigotes showed the presence of dense mitochondria under a transmission electron microscope. Our findings confirm that TcIP3R is crucial for epimastigote growth, as previously reported. They also suggest that a strong inhibition of the IP3R-mediated signaling induces metacyclogenesis and that mitochondrial integrity is closely associated with this signaling.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Masahiro Enomoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan; Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7, Toronto, Ontario, Canada.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Mitsutaka Yoshida
- Laboratoly of Morphology and Image Analysis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Toshihiro Mita
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan; Calcium Oscillation Project, International Cooperative Research Project and Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
16
|
Ca2+ Regulation of Trypanosoma brucei Phosphoinositide Phospholipase C. EUKARYOTIC CELL 2015; 14:486-94. [PMID: 25769297 DOI: 10.1128/ec.00019-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
We characterized a phosphoinositide phospholipase C (PI-PLC) from the procyclic form (PCF) of Trypanosoma brucei. The protein contains a domain organization characteristic of typical PI-PLCs, such as X and Y catalytic domains, an EF-hand calcium-binding motif, and a C2 domain, but it lacks a pleckstrin homology (PH) domain. In addition, the T. brucei PI-PLC (TbPI-PLC) contains an N-terminal myristoylation consensus sequence found only in trypanosomatid PI-PLCs. A peptide containing this N-terminal domain fused to green fluorescent protein (GFP) was targeted to the plasma membrane. TbPI-PLC enzymatic activity was stimulated by Ca(2+) concentrations below the cytosolic levels in the parasite, suggesting that the enzyme is constitutively active. TbPI-PLC hydrolyzes both phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2), with a higher affinity for PIP2. We found that modification of a single amino acid in the EF-hand motif greatly affected the protein's Ca(2+) sensitivity and substrate preference, demonstrating the role of this motif in Ca(2+) regulation of TbPI-PLC. Endogenous TbPI-PLC localizes to intracellular vesicles and might be using an intracellular source of PIP2. Knockdown of TbPI-PLC expression by RNA interference (RNAi) did not result in growth inhibition, although enzymatic activity was still present in parasites, resulting in hydrolysis of PIP2 and a contribution to the inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) pathway.
Collapse
|
17
|
Golgi UDP-GlcNAc:polypeptide O-α-N-Acetyl-d-glucosaminyltransferase 2 (TcOGNT2) regulates trypomastigote production and function in Trypanosoma cruzi. EUKARYOTIC CELL 2014; 13:1312-27. [PMID: 25084865 DOI: 10.1128/ec.00165-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All life cycle stages of the protozoan parasite Trypanosoma cruzi are enveloped by mucin-like glycoproteins which, despite major changes in their polypeptide cores, are extensively and similarly O-glycosylated. O-Glycan biosynthesis is initiated by the addition of αGlcNAc to Thr in a reaction catalyzed by Golgi UDP-GlcNAc:polypeptide O-α-N-acetyl-d-glucosaminyltransferases (ppαGlcNAcTs), which are encoded by TcOGNT1 and TcOGNT2. We now directly show that TcOGNT2 is associated with the Golgi apparatus of the epimastigote stage and is markedly downregulated in both differentiated metacyclic trypomastigotes (MCTs) and cell culture-derived trypomastigotes (TCTs). The significance of downregulation was examined by forced continued expression of TcOGNT2, which resulted in a substantial increase of TcOGNT2 protein levels but only modestly increased ppαGlcNAcT activity in extracts and altered cell surface glycosylation in TCTs. Constitutive TcOGNT2 overexpression had no discernible effect on proliferating epimastigotes but negatively affected production of both types of trypomastigotes. MCTs differentiated from epimastigotes at a low frequency, though they were apparently normal based on morphological and biochemical criteria. However, these MCTs exhibited an impaired ability to produce amastigotes and TCTs in cell culture monolayers, most likely due to a reduced infection frequency. Remarkably, inhibition of MCT production did not depend on TcOGNT2 catalytic activity, whereas TCT production was inhibited only by active TcOGNT2. These findings indicate that TcOGNT2 downregulation is important for proper differentiation of MCTs and functioning of TCTs and that TcOGNT2 regulates these functions by using both catalytic and noncatalytic mechanisms.
Collapse
|
18
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
19
|
Hashimoto M, Nara T, Hirawake H, Morales J, Enomoto M, Mikoshiba K. Antisense oligonucleotides targeting parasite inositol 1,4,5-trisphosphate receptor inhibits mammalian host cell invasion by Trypanosoma cruzi. Sci Rep 2014; 4:4231. [PMID: 24577136 PMCID: PMC3937783 DOI: 10.1038/srep04231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 02/06/2014] [Indexed: 11/17/2022] Open
Abstract
Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroko Hirawake
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jorge Morales
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masahiro Enomoto
- Division of Signaling Biology, Ontario Cancer Institute, Toronto, ON, Canada M5G 1L7
| | - Katsuhiko Mikoshiba
- 1] Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan [2] Calcium Oscillation Project, International Cooperative Research Project and Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
20
|
Orrego PR, Olivares H, Cordero EM, Bressan A, Cortez M, Sagua H, Neira I, González J, da Silveira JF, Yoshida N, Araya JE. A cytoplasmic new catalytic subunit of calcineurin in Trypanosoma cruzi and its molecular and functional characterization. PLoS Negl Trop Dis 2014; 8:e2676. [PMID: 24498455 PMCID: PMC3907409 DOI: 10.1371/journal.pntd.0002676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Parasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects. Thus, new chemotherapeutic targets are much sought after. Among T. cruzi components involved in key processes such as parasite proliferation and host cell invasion, Ca(2+)-dependent molecules play an important role. Calcineurin (CaN) is one such molecule. In this study, we cloned a new isoform of the gene coding for CL strain catalytic subunit CaNA (TcCaNA2) and characterized it molecularly and functionally. There is one copy of the TcCaNA2 gene per haploid genome. It is constitutively transcribed in all T. cruzi developmental forms and is localized predominantly in the cytosol. In the parasite, TcCaNA2 is associated with CaNB. The recombinant protein TcCaNA2 has phosphatase activity that is enhanced by Mn(2+)/Ni(2+). The participation of TcCaNA2 in target cell invasion by metacyclic trypomastigotes was also demonstrated. Metacyclic forms with reduced TcCaNA2 expression following treatment with morpholino antisense oligonucleotides targeted to TcCaNA2 invaded HeLa cells at a lower rate than control parasites treated with morpholino sense oligonucleotides. Similarly, the decreased expression of TcCaNA2 following treatment with antisense morpholino oligonucleotides partially affected the replication of epimastigotes, although to a lesser extent than the decrease in expression following treatment with calcineurin inhibitors. Our findings suggest that the calcineurin activities of TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations (the cytoplasm and the nucleus, respectively), may play a critical role at different stages of T. cruzi development, the former in host cell invasion and the latter in parasite multiplication.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Héctor Olivares
- Biomedical Department, University of Antofagasta, Antofagasta, Chile
| | - Esteban M. Cordero
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Albert Bressan
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Hernán Sagua
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Ivan Neira
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - Jorge González
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| | - José Franco da Silveira
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge E. Araya
- Department of Medical Technology, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
21
|
Abstract
Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.
Collapse
|
22
|
Hashimoto M, Enomoto M, Morales J, Kurebayashi N, Sakurai T, Hashimoto T, Nara T, Mikoshiba K. Inositol 1,4,5-trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi. Mol Microbiol 2013; 87:1133-50. [PMID: 23320762 DOI: 10.1111/mmi.12155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 11/26/2022]
Abstract
In animals, inositol 1,4,5-trisphosphate receptors (IP3 Rs) are ion channels that play a pivotal role in many biological processes by mediating Ca(2+) release from the endoplasmic reticulum. Here, we report the identification and characterization of a novel IP3 R in the parasitic protist, Trypanosoma cruzi, the pathogen responsible for Chagas disease. DT40 cells lacking endogenous IP3 R genes expressing T. cruzi IP3 R (TcIP3 R) exhibited IP3 -mediated Ca(2+) release from the ER, and demonstrated receptor binding to IP3 . TcIP3 R was expressed throughout the parasite life cycle but the expression level was much lower in bloodstream trypomastigotes than in intracellular amastigotes or epimastigotes. Disruption of two of the three TcIP3 R gene loci led to the death of the parasite, suggesting that IP3 R is essential for T. cruzi. Parasites expressing reduced or increased levels of TcIP3 R displayed defects in growth, transformation and infectivity, indicating that TcIP3 R is an important regulator of the parasite's life cycle. Furthermore, mice infected with T. cruzi expressing reduced levels of TcIP3 R exhibited a reduction of disease symptoms, indicating that TcIP3 R is an important virulence factor. Combined with the fact that the primary structure of TcIP3 R has low similarity to that of mammalian IP3 Rs, TcIP3 R is a promising drug target for Chagas disease.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Acidocalcisomes of Trypanosoma brucei have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. Proc Natl Acad Sci U S A 2013; 110:1887-92. [PMID: 23319604 DOI: 10.1073/pnas.1216955110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acidocalcisomes are acidic calcium stores rich in polyphosphate and found in a diverse range of organisms. The mechanism of Ca(2+) release from these organelles was unknown. Here we present evidence that Trypanosoma brucei acidocalcisomes possess an inositol 1,4,5-trisphosphate receptor (TbIP(3)R) for Ca(2+) release. Localization studies in cell lines expressing TbIP(3)R in its endogenous locus fused to an epitope tag revealed its partial colocalization with the vacuolar proton pyrophosphatase, a marker of acidocalcisomes. IP(3) was able to stimulate Ca(2+) release from a chicken B-lymphocyte cell line in which the genes for all three vertebrate IP(3)Rs have been stably ablated (DT40-3KO) and that were stably expressing TbIP(3)R, providing evidence of its function. IP(3) was also able to release Ca(2+) from permeabilized trypanosomes or isolated acidocalcisomes and photolytic release of IP(3) in intact trypanosomes loaded with Fluo-4 elicited a transient Ca(2+) increase in their cytosol. Ablation of TbIP(3)R by RNA interference caused a significant reduction of IP(3)-mediated Ca(2+) release in trypanosomes and resulted in defects in growth in culture and infectivity in mice. Taken together, the data provide evidence of the presence of a functional IP(3)R as a Ca(2+) release channel in acidocalcisomes of trypanosomes and suggest that a Ca(2+) signaling pathway that involves acidocalcisomes is required for growth and establishment of infection.
Collapse
|
24
|
Virulence factors of Trypanosoma cruzi: who is who? Microbes Infect 2012; 14:1390-402. [DOI: 10.1016/j.micinf.2012.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/21/2012] [Accepted: 09/02/2012] [Indexed: 01/10/2023]
|
25
|
Názer E, Verdún RE, Sánchez DO. Severe heat shock induces nucleolar accumulation of mRNAs in Trypanosoma cruzi. PLoS One 2012; 7:e43715. [PMID: 22952745 PMCID: PMC3428281 DOI: 10.1371/journal.pone.0043715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022] Open
Abstract
Several lines of evidence have shown that, besides its traditional function in ribosome biogenesis, the nucleolus is also involved in regulating other cellular processes such as mRNA metabolism, and that it also plays an important role as a sensor and coordinator of the stress response. We have recently shown that a subset of RNA Binding Proteins and the poly(A)+ RNA are accumulated into the Trypanosoma cruzi nucleolus after inducing transcription inhibition with Actinomycin D. In this study, we investigated the behaviour of the T. cruzi mRNA population in parasites subjected to severe heat shock, an environmental stress that also decreases the rate of RNA synthesis. We found that the bulk of poly(A)+ RNA is reversibly accumulated into the nucleolus when exposing T. cruzi epimastigote forms to severe heat shock. However, the Hsp70 mRNA was able to bypass such nucleolar accumulation. Together, these data reinforce the idea about the involvement of the T. cruzi nucleolus in mRNA metabolism during an environmental stress response. Interestingly, T. brucei procyclic forms did not induce nucleolar accumulation of poly(A)+ RNA under such stress condition, suggesting that different trypanosomatids have adopted different responses to deal with the same stress conditions.
Collapse
Affiliation(s)
- Ezequiel Názer
- Instituto de Investigaciones Biotecnológicas - UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Ramiro E. Verdún
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnológicas - UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE Cysteine residues of proteins participate in the catalysis of biochemical reactions, are crucial for redox reactions, and influence protein structure by the formation of disulfide bonds. Covalent posttranslational modifications (PTMs) of cysteine residues are important mediators of redox regulation and signaling by coupling protein activity to the cellular redox state, and moreover influence stability, function, and localization of proteins. A diverse group of protozoan and metazoan parasites are a major cause of diseases in humans, such as malaria, African trypanosomiasis, leishmaniasis, toxoplasmosis, filariasis, and schistosomiasis. RECENT ADVANCES Human parasites undergo dramatic morphological and metabolic changes while they pass complex life cycles and adapt to changing environments in host and vector. These processes are in part regulated by PTMs of parasitic proteins. In human parasites, posttranslational cysteine modifications are involved in crucial cellular events such as signal transduction (S-glutathionylation and S-nitrosylation), redox regulation of proteins (S-glutathionylation and S-nitrosylation), protein trafficking and subcellular localization (palmitoylation and prenylation), as well as invasion into and egress from host cells (palmitoylation). This review focuses on the occurrence and mechanisms of these cysteine modifications in parasites. CRITICAL ISSUES Studies on cysteine modifications in human parasites are so far largely based on in vitro experiments. FUTURE DIRECTIONS The in vivo regulation of cysteine modifications and their role in parasite development will be of great interest in order to understand redox signaling in parasites.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | |
Collapse
|
27
|
Reddy ASN, Rogers MF, Richardson DN, Hamilton M, Ben-Hur A. Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. FRONTIERS IN PLANT SCIENCE 2012; 3:18. [PMID: 22645572 PMCID: PMC3355732 DOI: 10.3389/fpls.2012.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/18/2012] [Indexed: 05/20/2023]
Abstract
Extensive alternative splicing (AS) of precursor mRNAs (pre-mRNAs) in multicellular eukaryotes increases the protein-coding capacity of a genome and allows novel ways to regulate gene expression. In flowering plants, up to 48% of intron-containing genes exhibit AS. However, the full extent of AS in plants is not yet known, as only a few high-throughput RNA-Seq studies have been performed. As the cost of obtaining RNA-Seq reads continues to fall, it is anticipated that huge amounts of plant sequence data will accumulate and help in obtaining a more complete picture of AS in plants. Although it is not an onerous task to obtain hundreds of millions of reads using high-throughput sequencing technologies, computational tools to accurately predict and visualize AS are still being developed and refined. This review will discuss the tools to predict and visualize transcriptome-wide AS in plants using short-reads and highlight their limitations. Comparative studies of AS events between plants and animals have revealed that there are major differences in the most prevalent types of AS events, suggesting that plants and animals differ in the way they recognize exons and introns. Extensive studies have been performed in animals to identify cis-elements involved in regulating AS, especially in exon skipping. However, few such studies have been carried out in plants. Here, we review the current state of research on splicing regulatory elements (SREs) and briefly discuss emerging experimental and computational tools to identify cis-elements involved in regulation of AS in plants. The availability of curated alternative splice forms in plants makes it possible to use computational tools to predict SREs involved in AS regulation, which can then be verified experimentally. Such studies will permit identification of plant-specific features involved in AS regulation and contribute to deciphering the splicing code in plants.
Collapse
Affiliation(s)
- Anireddy S. N. Reddy
- Program in Molecular Plant Biology, Department of Biology, Colorado State UniversityFort Collins, CO, USA
| | - Mark F. Rogers
- Department of Computer Science, Colorado State UniversityFort Collins, CO, USA
| | - Dale N. Richardson
- Centro de Investigação em Biodiversidade e Recursos Genéticos, University of PortoVairão, Portugal
| | - Michael Hamilton
- Department of Computer Science, Colorado State UniversityFort Collins, CO, USA
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State UniversityFort Collins, CO, USA
- Program in Molecular Plant Biology, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
28
|
Maric D, McGwire BS, Buchanan KT, Olson CL, Emmer BT, Epting CL, Engman DM. Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein. J Biol Chem 2011; 286:33109-17. [PMID: 21784841 DOI: 10.1074/jbc.m111.240895] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellar calcium-binding protein (FCaBP) of Trypanosoma cruzi is localized to the flagellar membrane in all life cycle stages of the parasite. Myristoylation and palmitoylation of the N terminus of FCaBP are necessary for flagellar membrane targeting. Not all dually acylated proteins in T. cruzi are flagellar, however. Other determinants of FCaBP therefore likely contribute to flagellar specificity. We generated T. cruzi transfectants expressing the N-terminal 24 or 12 amino acids of FCaBP fused to GFP. Analysis of these mutants revealed that although amino acids 1-12 are sufficient for dual acylation and membrane binding, amino acids 13-24 are required for flagellar specificity and lipid raft association. Mutagenesis of several conserved lysine residues in the latter peptide demonstrated that these residues are essential for flagellar targeting and lipid raft association. Finally, FCaBP was expressed in the protozoan Leishmania amazonensis, which lacks FCaBP. The flagellar localization and membrane association of FCaBP in L. amazonensis suggest that the mechanisms for flagellar targeting, including a specific palmitoyl acyltransferase, are conserved in this organism.
Collapse
Affiliation(s)
- Danijela Maric
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
De Lederkremer RM, Agusti R, Docampo R. Inositolphosphoceramide metabolism in Trypanosoma cruzi as compared with other trypanosomatids. J Eukaryot Microbiol 2011; 58:79-87. [PMID: 21332877 DOI: 10.1111/j.1550-7408.2011.00533.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chagas disease is caused by Trypanosoma cruzi and is endemic to North, Central and South American countries. Current therapy against this disease is only partially effective and produces adverse side effects. Studies on the metabolic pathways of T. cruzi, in particular those with no equivalent in mammalian cells, might identify targets for the development of new drugs. Ceramide is metabolized to inositolphosphoceramide (IPC) in T. cruzi and other kinetoplastid protists whereas in mammals it is mainly incorporated into sphingomyelin. In T. cruzi, in contrast to Trypanosoma brucei and Leishmania spp., IPC functions as lipid anchor constituent of glycoproteins and free glycosylinositolphospholipids (GIPLs). Inhibition of IPC and GIPLs biosynthesis impairs differentiation of trypomastigotes into the intracellular amastigote forms. The gene encoding IPC synthase in T. cruzi has been identified and the enzyme has been expressed in a cell-free system. The enzyme involved in IPC degradation and the remodelases responsible for the incorporation of ceramide into free GIPLs or into the glycosylphosphatidylinositols anchoring glycoproteins, and in fatty acid modifications of these molecules of T. cruzi have been understudied. Inositolphosphoceramide metabolism and remodeling could be exploited as targets for Chagas disease chemotherapy.
Collapse
Affiliation(s)
- Rosa M De Lederkremer
- CHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
30
|
Global analysis of protein palmitoylation in African trypanosomes. EUKARYOTIC CELL 2010; 10:455-63. [PMID: 21193548 DOI: 10.1128/ec.00248-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Collapse
|
31
|
de Paulo Martins V, Okura M, Maric D, Engman DM, Vieira M, Docampo R, Moreno SNJ. Acylation-dependent export of Trypanosoma cruzi phosphoinositide-specific phospholipase C to the outer surface of amastigotes. J Biol Chem 2010; 285:30906-17. [PMID: 20647312 DOI: 10.1074/jbc.m110.142190] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide phospholipase C (PI-PLC) plays an essential role in cell signaling. A unique Trypanosoma cruzi PI-PLC (TcPI-PLC) is lipid-modified in its N terminus and localizes to the plasma membrane of amastigotes. Here, we show that TcPI-PLC is located onto the extracellular phase of the plasma membrane of amastigotes and that its N-terminal 20 amino acids are necessary and sufficient to target the fused GFP to the outer surface of the parasite. Mutagenesis of the predicted acylated residues confirmed that myristoylation of a glycine residue in the 2nd position and acyl modification of a cysteine in the 4th but not in the 8th or 15th position of the coding sequence are required for correct plasma membrane localization in T. cruzi epimastigotes or amastigotes. Interestingly, mutagenesis of the cysteine at the 8th position increased its flagellar localization. When expressed as fusion constructs with GFP, the N-terminal 6 and 10 amino acids fused to GFP are predominantly located in the cytosol and concentrated in a compartment that co-localizes with a Golgi complex marker. The N-terminal 20 amino acids of TcPI-PLC associate with lipid rafts when dually acylated. Taken together, these results indicate that N-terminal acyl modifications serve as a molecular addressing system for sending TcPI-PLC to the outer surface of the cell.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Department of Cellular Biology, University of Georgia, Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Developmental expression of a Trypanosoma cruzi phosphoinositide-specific phospholipase C in amastigotes and stimulation of host phosphoinositide hydrolysis. Infect Immun 2010; 78:4206-12. [PMID: 20643853 DOI: 10.1128/iai.00473-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositide phospholipase C (PI-PLC) plays an essential role in cell signaling. A unique Trypanosoma cruzi PI-PLC (TcPI-PLC) is lipid modified in its N terminus and localizes to the outer surface of the plasma membrane of amastigotes. We show here that TcPI-PLC is developmentally regulated in amastigotes and shows two peaks of surface expression during the developmental cycle of T. cruzi, the first immediately after differentiation of trypomastigotes into amastigotes and the second before differentiation of amastigotes into trypomastigotes. Surface expression of TcPI-PLC coincides with phosphatidylinositol 4,5-bisphosphate (PIP(2)) depletion in the host cell membrane and with an increase in the levels of its product, inositol 1,4,5-trisphosphate. During extracellular differentiation, PI-PLC is secreted into the incubation medium. Maximal early expression of TcPI-PLC on the surface of amastigotes and PIP(2) depletion coincide with host cytoskeletal changes, Ca(2+) signaling, and transcriptional responses described previously. The presence of TcPI-PLC on the outer surface of the plasma membrane of the parasite and the capacity to be secreted and to alter host phospholipids are novel mechanisms of the host-parasite interaction.
Collapse
|
33
|
Liu W, Apagyi K, McLeavy L, Ersfeld K. Expression and cellular localisation of calpain-like proteins in Trypanosoma brucei. Mol Biochem Parasitol 2009; 169:20-6. [PMID: 19766148 DOI: 10.1016/j.molbiopara.2009.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 01/01/2023]
Abstract
Calpains are a ubiquitous family of calcium-dependent cysteine proteases involved in a wide range of cell regulatory and differentiation processes. In many protozoan organisms, atypical calpains have been discovered that lack the characteristic calcium-binding penta-EF-hand motif of typical vertebrate calpains and most of these novel calpain-like proteins are non-enzymatic homologues of typical calpains. The gene family is particularly expanded in ciliates and kinetoplastids, comprising 25 members in the parasite Trypanosoma brucei. Unique to kinetoplastids, some calpain-like proteins contain N-terminal dual myristoylation/palmitoylation signals, a protein modification involved in protein-membrane associations. We analyzed the expression of calpain-like proteins in the insect (procyclic) and bloodstream-stage of T. brucei using quantitative real time PCR and identified the differential expression of some of the calpain genes. We also present a comprehensive analysis of the subcellular localisation of selected members of this protein family in trypanosomes. Here, of particular interest is the role of protein acylation for targeting to the flagellum. We show that, although acylation is important for flagellar targeting, additional signals are required to specify the precise subcellular localisation.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological Sciences, University of Hull, UK
| | | | | | | |
Collapse
|
34
|
Tyler KM, Fridberg A, Toriello KM, Olson CL, Cieslak JA, Hazlett TL, Engman DM. Flagellar membrane localization via association with lipid rafts. J Cell Sci 2009; 122:859-66. [PMID: 19240119 DOI: 10.1242/jcs.037721] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic flagellar membrane has a distinct composition from other domains of the plasmalemma. Our work shows that the specialized composition of the trypanosome flagellar membrane reflects increased concentrations of sterols and saturated fatty acids, correlating with direct observation of high liquid order by laurdan fluorescence microscopy. These findings indicate that the trypanosome flagellar membrane possesses high concentrations of lipid rafts: discrete regions of lateral heterogeneity in plasma membranes that serve to sequester and organize specialized protein complexes. Consistent with this, a dually acylated Ca(2+) sensor that is concentrated in the flagellum is found in detergent-resistant membranes and mislocalizes if the lipid rafts are disrupted. Detergent-extracted cells have discrete membrane patches localized on the surface of the flagellar axoneme, suggestive of intraflagellar transport particles. Together, these results provide biophysical and biochemical evidence to indicate that lipid rafts are enriched in the trypanosome flagellar membrane, providing a unique mechanism for flagellar protein localization and illustrating a novel means by which specialized cellular functions may be partitioned to discrete membrane domains.
Collapse
Affiliation(s)
- Kevin M Tyler
- BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Emmer BT, Souther C, Toriello KM, Olson CL, Epting CL, Engman DM. Identification of a palmitoyl acyltransferase required for protein sorting to the flagellar membrane. J Cell Sci 2009; 122:867-74. [PMID: 19240115 DOI: 10.1242/jcs.041764] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein palmitoylation has diverse effects in regulating protein membrane affinity, localization, binding partner interactions, turnover and function. Here, we show that palmitoylation also contributes to the sorting of proteins to the eukaryotic flagellum. African trypanosomes are protozoan pathogens that express a family of unique Ca(2+)-binding proteins, the calflagins, which undergo N-terminal myristoylation and palmitoylation. The localization of calflagins depends on their acylation status. Myristoylation alone is sufficient for membrane association, but, in the absence of palmitoylation, the calflagins localize to the pellicular (cell body) membrane. Palmitoylation, which is mediated by a specific palmitoyl acyltransferase, is then required for subsequent trafficking of calflagin to the flagellar membrane. Coincident with the redistribution of calflagin from the pellicular to the flagellar membrane is their association with lipid rafts, which are highly enriched in the flagellar membrane. Screening of candidate palmitoyl acyltranferases identified a single enzyme, TbPAT7, that is necessary for calflagin palmitoylation and flagellar membrane targeting. Our results implicate protein palmitoylation in flagellar trafficking, and demonstrate the conservation and specificity of palmitoyl acyltransferase activity by DHHC-CRD proteins across kingdoms.
Collapse
Affiliation(s)
- Brian T Emmer
- Departments of Pathology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
36
|
Chayakulkeeree M, Sorrell TC, Siafakas AR, Wilson CF, Pantarat N, Gerik KJ, Boadle R, Djordjevic JT. Role and mechanism of phosphatidylinositol-specific phospholipase C in survival and virulence of Cryptococcus neoformans. Mol Microbiol 2008; 69:809-26. [PMID: 18532984 DOI: 10.1111/j.1365-2958.2008.06310.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phospholipase B1 (Plb1) is secreted after release from its glycosylphosphatidylinositol anchor and is implicated in initiation and dissemination of infection of the pathogenic fungus, Cryptococcus neoformans. To investigate the role of phosphatidylinositol-specific phospholipase C (PI-PLC) in Plb1 secretion, we identified two putative PI-PLC-encoding genes in C. neoformans var. grubii (PLC1 and PLC2), and created Deltaplc1 and Deltaplc2 deletion mutants. In Deltaplc1, which expressed less PI-PLC activity than wild type (WT), three major cryptococcal virulence traits, Plb1 secretion, melanin production and growth at host temperature (37 degrees C) were abolished and absence of Plb1 secretion coincided with Plb1 accumulation in plasma membranes. In addition, Deltaplc1 cell walls were defective, as indicated by cell clumping and irregular morphology, slower growth and an inability to activate mitogen-activated protein kinase (MAPK) in the presence of cell wall-perturbing agents. In contrast to Deltaplc2, which was as virulent as WT, Deltaplc1 was avirulent in mice and exhibited attenuated killing of Caenorhabditis elegans at 25 degrees C, demonstrating that mechanism(s) independent of the 37 degrees C growth defect contribute to the virulence composite. We conclude that Plc1 is a central regulator of cryptococcal virulence, acting through the protein kinase C/MAPK pathway, that it regulates release of Plb1 from the plasma membrane and is a candidate antifungal drug target.
Collapse
Affiliation(s)
- Methee Chayakulkeeree
- Centre for Infectious Diseases and Microbiology, ICPMR and Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Araya JE, Cornejo A, Orrego PR, Cordero EM, Cortéz M, Olivares H, Neira I, Sagua H, da Silveira JF, Yoshida N, González J. Calcineurin B of the human protozoan parasite Trypanosoma cruzi is involved in cell invasion. Microbes Infect 2008; 10:892-900. [PMID: 18657458 DOI: 10.1016/j.micinf.2008.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 11/25/2022]
Abstract
During Trypanosoma cruzi cell invasion, signal transduction pathways are triggered in parasite and host cells, leading to a rise in intracellular Ca2+ concentration. We posed the question whether calcineurin (CaN), in particular the functional regulatory subunit CaNB, a Ca2+-binding EF-hand protein, was expressed in T. cruzi and whether it played a role in cell invasion. Here we report the cloning and characterization of CL strain CaNB gene, as well as the participation of CaNB in cell invasion. Treatment of metacyclic trypomastigotes (MT) or tissue-culture trypomastigotes (TCT) with the CaN inhibitors cyclosporin or cypermethrin strongly inhibited (62-64%) their entry into HeLa cells. In assays using anti-phospho-serine/threonine antibodies, a few proteins of MT were found to be dephosphorylated in a manner inhibitable by cyclosporin upon exposure to HeLa cell extract. The phosphatase activity of CaN was detected by a biochemical approach in both MT and TCT. Treatment of parasites with antisense phosphorothioate oligonucleotides directed to TcCaNB-CL, which reduced the expression of TcCaNB and affected TcCaN activity, resulted in approximately 50% inhibition of HeLa cell entry by MT or TCT. Given that TcCaNB-CL may play a key role in cell invasion and differs considerably in its primary structure from the human CaNB, it might be considered as a potential chemotherapeutic target.
Collapse
Affiliation(s)
- Jorge E Araya
- Molecular Parasitology Unit, Department of Medical Technology, University of Antofagasta, P.O. Box 170, Antofagasta 1240000, Chile.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fang J, Marchesini N, Moreno S. A Toxoplasma gondii phosphoinositide phospholipase C (TgPI-PLC) with high affinity for phosphatidylinositol. Biochem J 2006; 394:417-25. [PMID: 16288600 PMCID: PMC1408672 DOI: 10.1042/bj20051393] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Toxoplasma gondii phosphoinositide-specific phospholipase C gene (TgPI-PLC) was cloned, sequenced and expressed in Escherichia coli and its enzymatic characteristics were investigated. TgPI-PLC is present in the genome as a single-copy gene consisting of 22 exons interrupted by 21 introns, and encodes a polypeptide of 1097 amino acids with a predicted molecular mass of 121 kDa. In addition to the conserved catalytic X and Y domains, TgPI-PLC contains an apparent N-terminal PH domain, an EF hand motif and a C-terminal C2 domain. When compared with mammalian delta-type PI-PLC, TgPI-PLC has an additional extended N-terminus and two insertions in the region between the X and Y domains, with a 31-35% identity over the whole sequence. Recombinant TgPI-PLC, as well as the native enzyme obtained from crude membrane extracts of the parasite, was more active with phosphatidylinositol than with phosphatidylinositol 4,5-bisphosphate as substrate. Indirect immunofluorescence analysis using an affinity-purified antibody against TgPI-PLC revealed that this enzyme localizes in the plasma membrane of the parasites.
Collapse
Affiliation(s)
- Jianmin Fang
- *Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, U.S.A
| | - Norma Marchesini
- †Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, IL 61802, U.S.A
| | - Silvia N. J. Moreno
- *Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, U.S.A
- †Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, IL 61802, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|