1
|
Minogue PJ, Gao J, Mathias RT, Williams JC, Bledsoe SB, Sommer AJ, Beyer EC, Berthoud VM. A crystallin mutant cataract with mineral deposits. J Biol Chem 2023; 299:104935. [PMID: 37331601 PMCID: PMC10407958 DOI: 10.1016/j.jbc.2023.104935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
Connexin mutant mice develop cataracts containing calcium precipitates. To test whether pathologic mineralization is a general mechanism contributing to the disease, we characterized the lenses from a nonconnexin mutant mouse cataract model. By cosegregation of the phenotype with a satellite marker and genomic sequencing, we identified the mutant as a 5-bp duplication in the γC-crystallin gene (Crygcdup). Homozygous mice developed severe cataracts early, and heterozygous animals developed small cataracts later in life. Immunoblotting studies showed that the mutant lenses contained decreased levels of crystallins, connexin46, and connexin50 but increased levels of resident proteins of the nucleus, endoplasmic reticulum, and mitochondria. The reductions in fiber cell connexins were associated with a scarcity of gap junction punctae as detected by immunofluorescence and significant reductions in gap junction-mediated coupling between fiber cells in Crygcdup lenses. Particles that stained with the calcium deposit dye, Alizarin red, were abundant in the insoluble fraction from homozygous lenses but nearly absent in wild-type and heterozygous lens preparations. Whole-mount homozygous lenses were stained with Alizarin red in the cataract region. Mineralized material with a regional distribution similar to the cataract was detected in homozygous lenses (but not wild-type lenses) by micro-computed tomography. Attenuated total internal reflection Fourier-transform infrared microspectroscopy identified the mineral as apatite. These results are consistent with previous findings that loss of lens fiber cell gap junctional coupling leads to the formation of calcium precipitates. They also support the hypothesis that pathologic mineralization contributes to the formation of cataracts of different etiologies.
Collapse
Affiliation(s)
- Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - James C Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharon B Bledsoe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andre J Sommer
- Molecular Microspectroscopy Laboratory, Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Examining the effects of cigarette smoke on mouse lens through a multi OMIC approach. Sci Rep 2021; 11:18801. [PMID: 34552108 PMCID: PMC8458305 DOI: 10.1038/s41598-021-95013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
Here, we report a multi OMIC (transcriptome, proteome, and metabolome) approach to investigate molecular changes in lens fiber cells (FC) of mice exposed to cigarette smoke (CS). Pregnant mice were placed in a whole-body smoke chamber and a few days later pups were born, which were exposed to CS for 5 hours/day, 5 days/week for a total of 3½ months. We examined the mice exposed to CS for CS-related cataractogenesis after completion of the CS exposure but no cataracts were observed. Lenses of CS-exposed and age-matched, untreated control mice were extracted and lens FC were subjected to multi OMIC profiling. We identified 348 genes, 130 proteins, and 14 metabolites exhibiting significant (p < 0.05) differential levels in lens FC of mice exposed to CS, corresponding to 3.6%, 4.3%, and 5.0% of the total genes, protein, and metabolites, respectively identified in this study. Our multi OMIC approach confirmed that only a small fraction of the transcriptome, the proteome, and the metabolome was perturbed in the lens FC of mice exposed to CS, which suggests that exposure of CS had a minimal effect on the mouse lens. It is worth noting that while our results confirm that CS exposure does not have a substantial impact on the molecular landscape of the mouse lens FC, we cannot rule out that CS exposure for longer durations and/or in combination with other morbidities or environmental factors would have a more robust effect and/or result in cataractogenesis.
Collapse
|
3
|
Li W, Ji Q, Wei Z, Chen YL, Zhang Z, Yin X, Aghmiuni SK, Liu M, Chen W, Shi L, Chen Q, Du X, Yu L, Cao MJ, Wang Z, Huang S, Jin T, Wang Q. Biochemical characterization of G64W mutant of acidic beta-crystallin 4. Exp Eye Res 2019; 186:107712. [PMID: 31254514 DOI: 10.1016/j.exer.2019.107712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 01/14/2023]
Abstract
Crystallins are structural proteins in the lens that last a lifetime with little turnover. Deviant in crystallins can cause rare but severe visual impairment, namely, congenital cataracts. It is reported that several mutations in the acidic β-crystallin 4 (CRYBA4) are related to congenital cataracts. However, the pathogenesis of these mutants is not well understood at molecular level. Here we evaluate the biochemical properties of wild type CRYBA4 (CRYBA4WT) and a pathogenic G64W mutant (CRYBA4G64W) including protein folding, polymerization state and protein stability. Furthermore, we explore the differences in their interactions with α-crystallin A (CRYAA) and basic β-crystallin 1 (CRYBB1) via yeast two-hybrid and pull-down assay in vitro, through which we find that G64W mutation leads to protein misfolding, decreases protein stability, blocks its interaction with CRYBB1 but maintains its interaction with CRYAA. Our results deepen our understanding of the pathogenesis of congenital cataracts.
Collapse
Affiliation(s)
- Wenqian Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China
| | - Qingshan Ji
- Department of Ophthalmology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongjie Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhiyong Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xueying Yin
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Samaneh Khodi Aghmiuni
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Muziying Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weirong Chen
- Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China
| | - Lei Shi
- Department of Ophthalmology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinzheng Du
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Li Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhulou Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shaohui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tengchuan Jin
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| | - Qiwei Wang
- Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Transgenic zebrafish models reveal distinct molecular mechanisms for cataract-linked αA-crystallin mutants. PLoS One 2018; 13:e0207540. [PMID: 30475834 PMCID: PMC6261105 DOI: 10.1371/journal.pone.0207540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations in the small heat shock proteins α-crystallins have been linked to autosomal dominant cataracts in humans. Extensive studies in vitro have revealed a spectrum of alterations to the structure and function of these proteins including shifts in the size of the oligomer, modulation of subunit exchange and modification of their affinity to client proteins. Although mouse models of these mutants were instrumental in identifying changes in cellular proliferation and lens development, a direct comparative analysis of their effects on lens proteostasis has not been performed. Here, we have transgenically expressed cataract-linked mutants of αA- and αB-crystallin in the zebrafish lens to dissect the underlying molecular changes that contribute to the loss of lens optical properties. Zebrafish lines expressing these mutants displayed a range of morphological lens defects. Phenotype penetrance and severity were dependent on the mutation even in fish lines lacking endogenous α-crystallin. The mechanistic origins of these differences were investigated by the transgenic co-expression of a destabilized human γD-crystallin mutant. We found that the R49C but not the R116C mutant of αA-crystallin drove aggregation of γD-crystallin, although both mutants have similar affinity to client proteins in vitro. Our working model attributes these differences to the propensity of R49C, located in the buried N-terminal domain of αA-crystallin, to disulfide crosslinking as previously demonstrated in vitro. Our findings complement and extend previous work in mouse models and emphasize the need of investigating chaperone/client protein interactions in appropriate cellular context.
Collapse
|
5
|
Wu SY, Zou P, Fuller AW, Mishra S, Wang Z, Schey KL, Mchaourab HS. Expression of Cataract-linked γ-Crystallin Variants in Zebrafish Reveals a Proteostasis Network That Senses Protein Stability. J Biol Chem 2016; 291:25387-25397. [PMID: 27770023 DOI: 10.1074/jbc.m116.749606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
The refractivity and transparency of the ocular lens is dependent on the stability and solubility of the crystallins in the fiber cells. A number of mutations of lens crystallins have been associated with dominant cataracts in humans and mice. Of particular interest were γB- and γD-crystallin mutants linked to dominant cataracts in mouse models. Although thermodynamically destabilized and aggregation-prone, these mutants were found to have weak affinity to the resident chaperone α-crystallin in vitro To better understand the mechanism of the cataract phenotype, we transgenically expressed different γD-crystallin mutants in the zebrafish lens and observed a range of lens defects that arise primarily from the aggregation of the mutant proteins. Unlike mouse models, a strong correlation was observed between the severity and penetrance of the phenotype and the level of destabilization of the mutant. We interpret this result to reflect the presence of a proteostasis network that can "sense" protein stability. In the more destabilized mutants, the capacity of this network is overwhelmed, leading to the observed increase in phenotypic penetrance. Overexpression of αA-crystallin had no significant effects on the penetrance of lens defects, suggesting that its chaperone capacity is not limiting. Although consistent with the prevailing hypothesis that a chaperone network is required for lens transparency, our results suggest that αA-crystallin may not be efficient to inhibit aggregation of lens γ-crystallin. Furthermore, our work implicates additional inputs/factors in this underlying proteostasis network and demonstrates the utility of zebrafish as a platform to delineate mechanisms of cataract.
Collapse
Affiliation(s)
- Shu-Yu Wu
- From the Departments of Molecular Physiology and Biophysics and
| | - Ping Zou
- From the Departments of Molecular Physiology and Biophysics and
| | | | - Sanjay Mishra
- From the Departments of Molecular Physiology and Biophysics and
| | - Zhen Wang
- Biochemistry and.,the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kevin L Schey
- Biochemistry and.,the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
6
|
Cheng MH, Tam CN, Choy KW, Tsang WH, Tsang SL, Pang CP, Song YQ, Sham MH. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid. PLoS One 2016; 11:e0160691. [PMID: 27513760 PMCID: PMC4981419 DOI: 10.1371/journal.pone.0160691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/23/2016] [Indexed: 11/18/2022] Open
Abstract
Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg) was investigated by sequencing. A single base deletion (299delG) in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the generation of CrygaSecc proteins with reduced solubility and prone to form aggregates within lens cells. Accumulation of mutant proteins in the lens fibers would lead to cataract formation in the Secc mutant.
Collapse
Affiliation(s)
- Man Hei Cheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chung Nga Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Hung Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - You Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Reproduction Development and Growth, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong SAR, China
| | - Mai Har Sham
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Reproduction Development and Growth, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Zou P, Wu SY, Koteiche HA, Mishra S, Levic DS, Knapik E, Chen W, Mchaourab HS. A conserved role of αA-crystallin in the development of the zebrafish embryonic lens. Exp Eye Res 2015; 138:104-13. [PMID: 26149094 DOI: 10.1016/j.exer.2015.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 01/19/2023]
Abstract
αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts.
Collapse
Affiliation(s)
- Ping Zou
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Shu-Yu Wu
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Sanjay Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Daniel S Levic
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ela Knapik
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
9
|
Thanos S, Böhm MR, Meyer zu Hörste M, Prokosch-Willing V, Hennig M, Bauer D, Heiligenhaus A. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 2014; 42:145-61. [DOI: 10.1016/j.preteyeres.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
10
|
Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M. Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem 2013; 288:35626-35. [PMID: 24142690 PMCID: PMC3861614 DOI: 10.1074/jbc.m113.514737] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.
Collapse
|
11
|
Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone. PLoS One 2012; 7:e37256. [PMID: 22655036 PMCID: PMC3360035 DOI: 10.1371/journal.pone.0037256] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022] Open
Abstract
Background The transparency of the eye lens depends upon maintenance of the native state of the γ- and β-crystallins, which is aided by the abundant chaperones αA- and αB-crystallin. Mature onset cataract, the leading cause of blindness worldwide, involves the polymerization of covalently damaged or partially unfolded crystallins into light-scattering aggregates. A number of single amino acid substitutions and truncations of γ-crystallins result in congenital cataract in both humans and mice, though in many cases the coupling between the protein alterations and the accumulation of aggregates is poorly defined. Methodology/Principal Findings We have studied the aggregation properties and chaperone interactions of human γD-crystallin carrying substitutions of two buried core mutants, I90F and V75D, which cause congenital cataract in mice. The in vitro aggregation pathway competing with productive refolding was not altered by either substitution. Furthermore, this aggregation pathway for both mutant proteins–originating from a partially folded intermediate–was efficiently suppressed by αB-crystallin. Thus the cataract pathology was unlikely to be associated with a direct folding defect. The native state of wild-type human γD-crystallin exhibited no tendency to aggregate under physiological conditions. However both I90F and V75D native-like proteins exhibited slow (days) aggregation to high molecular weight aggregates under physiological conditions. The perturbed conformation of I90F was recognized and bound by both αA and αB chaperones. In contrast, the aggregation derived from the perturbed state of V75D was not suppressed by either chaperone, and the aggregating species were not bound by the chaperone. Conclusions/Significance The cataract phenotype of I90F in mice may be due to premature saturation of the finite α- crystallin pool. The V75D aggregation pathway and its escape from chaperone surveillance and aggregation suppression can account for the congenital cataract pathology of this mutant. Failure of chaperone recognition may be an important source of pathology for many other protein folding defects.
Collapse
|
12
|
Cataract-linked γD-crystallin mutants have weak affinity to lens chaperones α-crystallins. FEBS Lett 2012; 586:330-6. [PMID: 22289178 DOI: 10.1016/j.febslet.2012.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 01/17/2023]
Abstract
To test the hypothesis that α-crystallin chaperone activity plays a central role in maintenance of lens transparency, we investigated its interactions with γ-crystallin mutants that cause congenital cataract in mouse models. Although the two substitutions, I4F and V76D, stabilize a partially unfolded γD-crystallin intermediate, their affinities to α-crystallin are marginal even at relatively high concentrations. Detectable binding required further reduction of γD-crystallin stability which was achieved by combining the two mutations. Our results demonstrate that mutants and possibly age-damaged γ-crystallin can escape quality control by lens chaperones rationalizing the observation that they nucleate protein aggregation and lead to cataract.
Collapse
|
13
|
Ma Z, Yao W, Theendakara V, Chan CC, Wawrousek E, Hejtmancik JF. Overexpression of human γC-crystallin 5 bp duplication disrupts lens morphology in transgenic mice. Invest Ophthalmol Vis Sci 2011; 52:5369-75. [PMID: 21436266 DOI: 10.1167/iovs.11-7168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To delineate the molecular mechanisms underlying autosomal dominant congenital cataracts caused by a 5 bp duplication in human CRYGC. METHODS c.119_123dup (CRYGC5bpd) and wild-type human γC-crystallin (CRYGC) were expressed in transgenic mouse lenses by the chicken βB1-crystallin promoter. Lenses were characterized histologically, by real-time PCR, SDS-PAGE, and Western blot. pET and Tet-on expression systems were used to express human CRYGC and CRYGC5bpd proteins in Escherichia coliand HeLa cells, respectively. RESULTS Transgenic expression of CRYGC5bpd mutant γC-crystallin results in nuclear cataracts in which lens fiber cells begin to show variable degrees of degeneration and vacuolization by postnatal day 21. By 6 weeks of age all CRYGC5bpd lenses exhibit abnormalities of varying severity, comprising large vacuoles in cortical fiber cells, swelling and disorganization of fiber cells, and defective fiber cell migration and elongation. Levels of CRYGC5bpd mRNA are 3.7- and 14.1-fold higher than endogenous Crygc mRNA in postnatal day 1 and 6-week CRYGC5bpd mice lens, respectively. Crygc, Crygb, Crybb2, and Crybb3 mRNA levels are decreased in CRYGC5bpd mice compared with wild-type and CRYGC mice. Both wild-type and mutant human γC crystallin are uniformly distributed in the cytosol of HeLa cells, but CRYGC5bpd is degraded when expressed in E. coli BL21(DE3). CONCLUSIONS Transgenic expression of mutant CRYGC5bpd γ-crystallin at near-physiological levels causes lens opacities and fiber cell defects, confirming the pathogenicity of this mutation. These results further suggest that HCG5pbd γ-crystallin causes cataracts through a direct toxic or developmental effect on lens cells causing damaged microstructure rather than through formation of HMW aggregates with resultant light scattering.
Collapse
Affiliation(s)
- Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cheng C, Xia CH, Huang Q, Ding L, Horwitz J, Gong X. Altered chaperone-like activity of alpha-crystallins promotes cataractogenesis. J Biol Chem 2010; 285:41187-93. [PMID: 20959464 DOI: 10.1074/jbc.m110.154534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the enormous number of studies demonstrating changes in the chaperone-like activity of α-crystallins in vitro, little is known about how these changes influence life-long lens transparency in vivo. Using the γB-crystallin I4F mutant protein as a target for αA-crystallins, we examined how cataract phenotypes are modulated by interactions between α-crystallins with altered chaperone-like activities and γB-I4F proteins in vivo. Double heterozygous α-crystallin knock-out αA(+/-) αB(+/-) mice with a decreased amount of α-crystallins were used to simulate reduced total α-crystallin chaperone-like activity in vivo. We found that triple heterozygous αA(+/-) αB(+/-) γB(I4F/+) mice developed more severe whole cataracts than heterozygous γB(I4F/+) mice. Thus, total chaperone-like activity of α-crystallins is important for maintaining lens transparency. We further tested whether mutant αA-crystallin Y118D proteins with increased chaperone-like activity influenced the whole cataract caused by the γB-I4F mutation. Unexpectedly, compound αA(Y118D/+) γB(I4F/+) mutant lenses displayed severe nuclear cataracts, whereas the lens cortex remained unaffected. Thus, the synergistic effect of αA-Y118D and γB-I4F mutant proteins is detrimental to the transparency only in the lens core. α-Crystallins with different chaperone-like activities are likely required in the lens cortex and nucleus for maintaining transparency.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
15
|
Li L, Cheng C, Xia CH, White TW, Fletcher DA, Gong X. Connexin mediated cataract prevention in mice. PLoS One 2010; 5. [PMID: 20844585 PMCID: PMC2936561 DOI: 10.1371/journal.pone.0012624] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/06/2010] [Indexed: 01/19/2023] Open
Abstract
Cataracts, named for any opacity in the ocular lens, remain the leading cause of vision loss in the world. Non-surgical methods for cataract prevention are still elusive. We have genetically tested whether enhanced lens gap junction communication, provided by increased α3 connexin (Cx46) proteins expressed from α8(Kiα3) knock-in alleles in Gja8tm1(Gja3)Tww mice, could prevent nuclear cataracts caused by the γB-crystallin S11R mutation in CrygbS11R/S11R mice. Remarkably, homozygous knock-in α8(Kiα3/Kiα3) mice fully prevented nuclear cataracts, while single knock-in α8(Kiα3/−) allele mice showed variable suppression of nuclear opacities in CrygbS11R/S11R mutant mice. Cataract prevention was correlated with the suppression of many pathological processes, including crystallin degradation and fiber cell degeneration, as well as preservation of normal calcium levels and stable actin filaments in the lens. This work demonstrates that enhanced intercellular gap junction communication can effectively prevent or delay nuclear cataract formation and suggests that small metabolites transported through gap junction channels protect the stability of crystallin proteins and the cytoskeletal structures in the lens core. Thus, the use of an array of small molecules to promote lens homeostasis may become a feasible non-surgical approach for nuclear cataract prevention in the future.
Collapse
Affiliation(s)
- Lin Li
- Vision Science Program and School of Optometry, University of California, Berkeley, California, United States of America
| | - Catherine Cheng
- Vision Science Program and School of Optometry, University of California, Berkeley, California, United States of America
| | - Chun-hong Xia
- Vision Science Program and School of Optometry, University of California, Berkeley, California, United States of America
| | - Thomas W. White
- Department of Physiology and Biophysics, State University of New York Stony Brook, Stony Brook, New York, United States of America
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Xiaohua Gong
- Vision Science Program and School of Optometry, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lee MJ, Kim JY, Kim YJ, Cho JW, Cho KH, Song CW, Jung HS. Characteristics of ethylnitrosourea-induced cataracts. Curr Eye Res 2009; 34:360-8. [PMID: 19401879 DOI: 10.1080/02713680902843047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This study analyzed genes associated with the morphology and regulation of ethylnitrosourea (ENU)-induced cataract mouse. MATERIALS AND METHODS Immunohistochemistry analysis using anti-crystallins and PCNA antibody revealed that the localization pattern of these specific markers differed between the cataractous and wild-type lens epithelium. Two-dimensional electrophoresis and microarray techniques were used to identify the proteins and genes related to ENU-induced cataract. RESULTS A novel ENU-induced mutation in the mouse led to nuclear and cortical opacity of the eye lens at 5 weeks postnatal. This cataract phenotype was similar to that of the zonular-pulverulent type of human cataract. Crystallin proteins and gap-junction genes have relations to the formation of cataract. CONCLUSIONS Together, the results suggest that various proteins affect the formation and specific phenotypes of ENU-induced cataract mouse.
Collapse
Affiliation(s)
- Min-Jung Lee
- Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 Project, Oral Science Research Center, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Graw J. Genetics of crystallins: Cataract and beyond. Exp Eye Res 2009; 88:173-89. [DOI: 10.1016/j.exer.2008.10.011] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 01/10/2023]
|
18
|
Hejtmancik JF. Congenital cataracts and their molecular genetics. Semin Cell Dev Biol 2008; 19:134-49. [PMID: 18035564 PMCID: PMC2288487 DOI: 10.1016/j.semcdb.2007.10.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 11/19/2022]
Abstract
Cataract can be defined as any opacity of the crystalline lens. Congenital cataract is particularly serious because it has the potential for inhibiting visual development, resulting in permanent blindness. Inherited cataracts represent a major contribution to congenital cataracts, especially in developed countries. While cataract represents a common end stage of mutations in a potentially large number of genes acting through varied mechanisms in practice most inherited cataracts have been associated with a subgroup of genes encoding proteins of particular importance for the maintenance of lens transparency and homeostasis. The increasing availability of more detailed information about these proteins and their functions and is making it possible to understand the pathophysiology of cataracts and the biology of the lens in general.
Collapse
|
19
|
Xi JH, Bai F, Gross J, Townsend RR, Menko AS, Andley UP. Mechanism of small heat shock protein function in vivo: a knock-in mouse model demonstrates that the R49C mutation in alpha A-crystallin enhances protein insolubility and cell death. J Biol Chem 2007; 283:5801-14. [PMID: 18056999 DOI: 10.1074/jbc.m708704200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
alphaA-crystallin (Cryaa/HSPB4) is a small heat shock protein and molecular chaperone that prevents nonspecific aggregation of denaturing proteins. Several point mutations in the alphaA-crystallin gene cause congenital human cataracts by unknown mechanisms. We took a novel approach to investigate the molecular mechanism of cataract formation in vivo by creating gene knock-in mice expressing the arginine 49 to cysteine mutation (R49C) in alphaA-crystallin (alphaA-R49C). This mutation has been linked with autosomal dominant hereditary cataracts in a four-generation Caucasian family. Homologous recombination in embryonic stem cells was performed using a plasmid containing the C to T transition in exon 1 of the cryaa gene. alphaA-R49C heterozygosity led to early cataracts characterized by nuclear opacities. Unexpectedly, alphaA-R49C homozygosity led to small eye phenotype and severe cataracts at birth. Wild type littermates did not show these abnormalities. Lens fiber cells of alphaA-R49C homozygous mice displayed an increase in cell death by apoptosis mediated by a 5-fold decrease in phosphorylated Bad, an anti-apoptotic protein, but an increase in Bcl-2 expression. However, proliferation measured by in vivo bromodeoxyuridine labeling did not decline. The alphaA-R49C heterozygous and homozygous knock-in lenses demonstrated an increase in insoluble alphaA-crystallin and alphaB-crystallin and a surprising increase in expression of cytoplasmic gamma-crystallin, whereas no changes in beta-crystallin were observed. Co-immunoprecipitation analysis showed increased interaction between alphaA-crystallin and lens substrate proteins in the heterozygous knock-in lenses. To our knowledge this is the first knock-in mouse model for a crystallin mutation causing hereditary human cataract and establishes that alphaA-R49C promotes protein insolubility and cell death in vivo.
Collapse
Affiliation(s)
- Jing-hua Xi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
20
|
McHaourab HS, Kumar MS, Koteiche HA. Specificity of alphaA-crystallin binding to destabilized mutants of betaB1-crystallin. FEBS Lett 2007; 581:1939-43. [PMID: 17449033 PMCID: PMC2219212 DOI: 10.1016/j.febslet.2007.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/29/2007] [Accepted: 04/02/2007] [Indexed: 11/27/2022]
Abstract
To elucidate the structural and energetic basis of attractive protein interactions in the aging lens, we investigated the binding of destabilized mutants of betaB1-crystallin to the lens chaperones, alpha-crystallins. We show that the mutations enhance the binding affinity to alphaA- but not alphaB-crystallin at physiological temperatures. Complex formation disrupts the dimer interface of betaB1-crystallin consistent with the binding of a monomer. Binding isotherms obtained at increasing concentrations of betaB1-crystallin deviate from a classic binding equilibrium and display cooperative-like behavior. In the context of betaB1-crystallin unfolding equilibrium, these characteristics are reflective of the concentration-dependent change in the population of a dimeric intermediate that has low affinity to alphaA-crystallin. In the lens, where alpha-crystallin binding sites are not regenerated, this may represent an added mechanism to maintain lens transparency.
Collapse
Affiliation(s)
- Hassane S McHaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
21
|
Barbaric I, Wells S, Russ A, Dear TN. Spectrum of ENU-induced mutations in phenotype-driven and gene-driven screens in the mouse. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:124-42. [PMID: 17295309 DOI: 10.1002/em.20286] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis in mice has become a standard tool for (i) increasing the pool of mutants in many areas of biology, (ii) identifying novel genes involved in physiological processes and disease, and (iii) in assisting in assigning functions to genes. ENU is assumed to cause random mutations throughout the mouse genome, but this presumption has never been analyzed. This is a crucial point, especially for large-scale mutagenesis, as a bias would reflect a constraint on identifying possible genetic targets. There is a significant body of published data now available from both phenotype-driven and gene-driven ENU mutagenesis screens in the mouse that can be used to reveal the effectiveness and limitations of an ENU mutagenesis approach. Analysis of the published data is presented in this paper. As expected for a randomly acting mutagen, ENU-induced mutations identified in phenotype-driven screens were in genes that had higher coding sequence length and higher exon number than the average for the mouse genome. Unexpectedly, the data showed that ENU-induced mutations were more likely to be found in genes that had a higher G + C content and neighboring base analysis revealed that the identified ENU mutations were more often directly flanked by G or C nucleotides. ENU mutations from phenotype-driven and gene-driven screens were dominantly A:T to T:A transversions or A:T to G:C transitions. Knowledge of the spectrum of mutations that ENU elicits will assist in positional cloning of ENU-induced mutations by allowing prioritization of candidate genes based on some of their inherent features.
Collapse
Affiliation(s)
- Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
22
|
Xia CH, Cheng C, Huang Q, Cheung D, Li L, Dunia I, Benedetti LE, Horwitz J, Gong X. Absence of alpha3 (Cx46) and alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells. Exp Eye Res 2006; 83:688-96. [PMID: 16696970 DOI: 10.1016/j.exer.2006.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/09/2006] [Accepted: 03/21/2006] [Indexed: 12/31/2022]
Abstract
Lens development and transparency have been hypothesized to depend on intercellular gap junction channels, consisting of alpha3 (Cx46) and alpha8 (Cx50) connexin subunits, to transport metabolites, secondary messages and ions between lens cells. To evaluate this hypothesis, we have generated alpha3(-/-) alpha8(-/-) double knockout mice and characterized their lens phenotypes. Without gap junctions between lens fiber cells, alpha3(-/-) alpha8(-/-) lenses displayed severe cataracts resulting from cell swelling and degeneration of inner fibers while normal peripheral fiber cells continued to form throughout life. Neither an increase of degraded crystallins nor an increase of water-insoluble crystallins was found in alpha3(-/-) alpha8(-/-) lenses. However, a substantial reduction of gamma-crystallin proteins, but not alpha- and beta-crystallins, was detected. These results suggest that gap junction communication is important for maintaining lens homeostasis of inner fiber cells and that a loss of gap junctions leads to cataract formation as well as reductions of gamma-crystallin proteins and transcripts.
Collapse
Affiliation(s)
- Chun-hong Xia
- School of Optometry and Vision Science Program, University of California at Berkeley, 693 Minor Hall, Berkeley, CA 94720-2020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cook MC, Vinuesa CG, Goodnow CC. ENU-mutagenesis: insight into immune function and pathology. Curr Opin Immunol 2006; 18:627-33. [PMID: 16889948 DOI: 10.1016/j.coi.2006.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/20/2006] [Indexed: 12/25/2022]
Abstract
In random chemical mutagenesis, gene discovery is driven by phenotypes rather than by hypotheses. A standard dose of N-ethyl-N-nitrosourea results in approximately 30 coding mutations in male G1 mice, of which approximately 4 can be propagated to homozygosity in 3 generations. In recent years, large-scale screens of such G3 mice for phenotypes of interest to immunologists have revealed clues to the number of genes responsible for key immune responses, such as innate recognition of pathogens and autoantibody production. More than 20 of the phenotypes that exhibit a simple (Mendelian) pattern of inheritance have been mapped. Novel alleles have revealed new pathways of host defense, allergy and autoimmunity.
Collapse
Affiliation(s)
- Matthew C Cook
- Frank Fenner Building, Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
24
|
Liang JJ, Liu BF. Fluorescence resonance energy transfer study of subunit exchange in human lens crystallins and congenital cataract crystallin mutants. Protein Sci 2006; 15:1619-27. [PMID: 16751613 PMCID: PMC2242568 DOI: 10.1110/ps.062216006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lens alpha-crystallin is an oligomeric protein with a molecular mass of 500-1000 kDa and a polydispersed assembly. It consists of two types of subunits, alphaA and alphaB, each with a molecular mass of 20 kDa. The subunits also form homo-oligomers in some other tissues and in vitro. Their quaternary structures, which are dynamic and characterized by subunit exchange, have been studied by many techniques, including fluorescence resonance energy transfer (FRET) and mass spectrometry analysis. The proposed mechanism of subunit exchange has been either by dissociation/association of monomeric subunits or by rapid equilibrium between oligomers and suboligomers. To explore the nature of subunit exchange further, we performed additional FRET measurements and analyses using a fluorescent dye-labeled W9F alphaA-crystallin as the acceptor probe and Trp in other crystallins (wild-type and R116C alphaA, wild-type and R120G alphaB, wild-type and Q155* betaB2) as the donor probe and calculated the transfer efficiency, Förster distance, and average distance between two probes. The results indicate only slight decreased efficiency and increased distance between two probes for the R116C alphaA and R120G alphaB mutations despite conformational changes.
Collapse
Affiliation(s)
- Jack J Liang
- Ophthalmic Research/Surgery, Brigham and Women's Hospital, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|