1
|
Loch JI, Pieróg I, Imiołczyk B, Barciszewski J, Marsolais F, Gilski M, Jaskolski M. Unique double-helical packing of protein molecules in the crystal of potassium-independent L-asparaginase from common bean. Acta Crystallogr D Struct Biol 2025; 81:252-264. [PMID: 40243630 DOI: 10.1107/s205979832500292x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Common bean (Phaseolus vulgaris) encodes three class 2 L-asparaginase enzymes: two potassium-dependent enzymes [PvAIII(K)-1 and PvAIII(K)-2] and a potassium-independent enzyme (PvAIII). Here, we present the crystal structure of PvAIII, which displays a rare P2 space-group symmetry and a unique pseudosymmetric 41-like double-helical packing. The asymmetric unit contains 32 protein chains (16 αβ units labeled A-P) organized into two right-handed coiled arrangements, each consisting of four PvAIII (αβ)2 dimers. Detailed analysis of the crystal structure revealed that this unusual packing originates from three factors: (i) the ability of the PvAIII molecules to form extended intermolecular β-sheets, a feature enabled by the PvAIII sequence and secondary structure, (ii) incomplete degradation of the flexible linker remaining at the C-terminus of α subunits of protein chain C after the autoproteolytic cleavage (maturation) of the PvAIII precursor and (iii) intermolecular entanglement between protein chains from the two helices to create `hydrogen-bond linchpins' that connect adjacent protein chains. The Km value of PvAIII for L-asparagine is approximately five times higher than for β-peptides, suggesting that the physiological role of PvAIII may be more related to the removal of toxic β-peptides than to basic L-asparagine metabolism. A comparison of the active sites of PvAIII and PvAIII(K)-1 shows that the proteins have nearly identical residues in the catalytic center, except for Thr219, which is unique to PvAIII. To test whether the residue type at position 219 affects the enzymatic activity of PvAIII, we designed and produced a T219S mutant. The kinetic parameters determined for L-asparagine hydrolysis indicate that the T/S residue type at position 219 does not affect the L-asparaginase activity of PvAIII.
Collapse
Affiliation(s)
- Joanna I Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Izabela Pieróg
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Barbara Imiołczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jakub Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Mirosław Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
2
|
Guerrero-Montero M, Bosy M, Cooper CD. Some Challenges of Diffused Interfaces in Implicit-Solvent Models. J Comput Chem 2025; 46:e70036. [PMID: 39853678 DOI: 10.1002/jcc.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges. In this work we analyzed the impact of the shape of the interfacial variation of the field parameters in solvation and binding energy. However we used a hyperbolic tangent functiontanh k p x $$ \left(\tanh \left({k}_px\right)\right) $$ to couple the internal and external regions, our analysis is valid for other definitions. Our methodology, restricted to the linear PB, was based on a coupled finite element (FEM) and boundary element (BEM) scheme that allowed us to have a special treatment of the permittivity and ionic strength in a bounded FEM region near the interface, while maintaining BEM elsewhere. Our results suggest that the shape of the function (represented byk p $$ {k}_p $$ ) has a large impact on solvation and binding energy. We saw that high values ofk p $$ {k}_p $$ induce a high gradient on the interface, to the limit of recovering the sharp jump whenk p → ∞ $$ {k}_p\to \infty $$ , presenting a numerical challenge where careful meshing is key. Using the FreeSolv database to compare with molecular dynamics, our calculations indicate that an optimal value ofk p $$ {k}_p $$ for solvation energies was around 3. However, more challenging binding free energy tests make this conclusion more difficult, as binding showed to be very sensitive to small variations ofk p $$ {k}_p $$ . In that case, optimal values ofk p $$ {k}_p $$ ranged from 2 to 20.
Collapse
Affiliation(s)
| | - Michał Bosy
- School of Computer Science and Mathematics, Kingston University London, Kingston upon Thames, UK
| | - Christopher D Cooper
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Centro Científico Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
3
|
Wlodawer A, Dauter Z, Lubkowski J, Loch JI, Brzezinski D, Gilski M, Jaskolski M. Towards a dependable data set of structures for L-asparaginase research. Acta Crystallogr D Struct Biol 2024; 80:506-527. [PMID: 38935343 PMCID: PMC11220836 DOI: 10.1107/s2059798324005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Zbigniew Dauter
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of ChemistryJagiellonian UniversityCracowPoland
| | - Dariusz Brzezinski
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
4
|
Pokrywka K, Grzechowiak M, Sliwiak J, Worsztynowicz P, Loch JI, Ruszkowski M, Gilski M, Jaskolski M. Probing the active site of Class 3 L-asparaginase by mutagenesis. I. Tinkering with the zinc coordination site of ReAV. Front Chem 2024; 12:1381032. [PMID: 38638878 PMCID: PMC11024299 DOI: 10.3389/fchem.2024.1381032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ReAV, the inducible Class-3 L-asparaginase from the nitrogen-fixing symbiotic bacterium Rhizobium etli, is an interesting candidate for optimizing its enzymatic potential for antileukemic applications. Since it has no structural similarity to known enzymes with this activity, it may offer completely new ways of approach. Also, as an unrelated protein, it would evade the immunological response elicited by other asparaginases. The crystal structure of ReAV revealed a uniquely assembled protein homodimer with a highly specific C135/K138/C189 zinc binding site in each subunit. It was also shown before that the Zn2+ cation at low and optimal concentration boosts the ReAV activity and improves substrate specificity, which indicates its role in substrate recognition. However, the detailed catalytic mechanism of ReAV is still unknown. In this work, we have applied site-directed mutagenesis coupled with enzymatic assays and X-ray structural analysis to elucidate the role of the residues in the zinc coordination sphere in catalysis. Almost all of the seven ReAV muteins created in this campaign lost the ability to hydrolyze L-asparagine, confirming our predictions about the significance of the selected residues in substrate hydrolysis. We were able to crystallize five of the ReAV mutants and solve their crystal structures, revealing some intriguing changes in the active site area as a result of the mutations. With alanine substitutions of Cys135 or Cys189, the zinc coordination site fell apart and the mutants were unable to bind the Zn2+ cation. Moreover, the absence of Lys138 induced atomic shifts and conformational changes of the neighboring residues from two active-site Ser-Lys tandems. Ser48 from one of the tandems, which is hypothesized to be the catalytic nucleophile, usually changes its hydration pattern in response to the mutations. Taken together, the results provide many useful clues about the catalytic mechanism of the enzyme, allowing one to cautiously postulate a possible enzymatic scenario.
Collapse
Affiliation(s)
- Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Grzechowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Bhat SY. Drug targeting of aminopeptidases: importance of deploying a right metal cofactor. Biophys Rev 2024; 16:249-256. [PMID: 38737204 PMCID: PMC11078913 DOI: 10.1007/s12551-024-01192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/05/2022] [Indexed: 05/14/2024] Open
Abstract
Aminopeptidases are metal co-factor-dependent hydrolases releasing N-terminal amino acid residues from peptides. Many of these enzymes, particularly the M24 methionine aminopeptidases (MetAPs), are considered valid drug targets in the fight against many parasitic and non-parasitic diseases. Targeting MetAPs has shown promising results against the malarial parasite, Plasmodium, which is regarded as potential anti-cancer targets. While targeting these essential enzymes represents a potentially promising approach, many challenges are often ignored by scientists when designing drugs or inhibitory scaffolds against the MetAPs. One such aspect is the metal co-factor, with inadequate attention paid to its role in catalysis, folding and remodeling of the catalytic site, and its role in inhibitor binding or potency. Knowing that a metal co-factor is essential for aminopeptidase enzyme activity and active site remodeling, it is intriguing that most computational biologists often ignore the metal ion while screening millions of potential inhibitors to find hits. Ironically, a similar trend is followed by biologists who avoid metal promiscuity of these enzymes while screening inhibitor libraries in vitro which may lead to false positives. This review highlights the importance of considering a physiologically relevant metal co-factor during the drug discovery processes targeting metal-dependent aminopeptidases. Graphical abstract
Collapse
|
6
|
Sliwiak J, Worsztynowicz P, Pokrywka K, Loch JI, Grzechowiak M, Jaskolski M. Biochemical characterization of L-asparaginase isoforms from Rhizobium etli-the boosting effect of zinc. Front Chem 2024; 12:1373312. [PMID: 38456185 PMCID: PMC10917881 DOI: 10.3389/fchem.2024.1373312] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
L-Asparaginases, divided into three structural Classes, catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. The members of Class 3, ReAIV and ReAV, encoded in the genome of the nitrogen fixing Rhizobium etli, have the same fold, active site, and quaternary structure, despite low sequence identity. In the present work we examined the biochemical consequences of this difference. ReAIV is almost twice as efficient as ReAV in asparagine hydrolysis at 37°C, with the kinetic KM, kcat parameters (measured in optimal buffering agent) of 1.5 mM, 770 s-1 and 2.1 mM, 603 s-1, respectively. The activity of ReAIV has a temperature optimum at 45°C-55°C, whereas the activity of ReAV, after reaching its optimum at 37°C, decreases dramatically at 45°C. The activity of both isoforms is boosted by 32 or 56%, by low and optimal concentration of zinc, which is bound three times more strongly by ReAIV then by ReAV, as reflected by the KD values of 1.2 and 3.3 μM, respectively. We also demonstrate that perturbation of zinc binding by Lys→Ala point mutagenesis drastically decreases the enzyme activity but also changes the mode of response to zinc. We also examined the impact of different divalent cations on the activity, kinetics, and stability of both isoforms. It appeared that Ni2+, Cu2+, Hg2+, and Cd2+ have the potential to inhibit both isoforms in the following order (from the strongest to weakest inhibitors) Hg2+ > Cu2+ > Cd2+ > Ni2+. ReAIV is more sensitive to Cu2+ and Cd2+, while ReAV is more sensitive to Hg2+ and Ni2+, as revealed by IC50 values, melting scans, and influence on substrate specificity. Low concentration of Cd2+ improves substrate specificity of both isoforms, suggesting its role in substrate recognition. The same observation was made for Hg2+ in the case of ReAIV. The activity of the ReAV isoform is less sensitive to Cl- anions, as reflected by the IC50 value for NaCl, which is eightfold higher for ReAV relative to ReAIV. The uncovered complementary properties of the two isoforms help us better understand the inducibility of the ReAV enzyme.
Collapse
Affiliation(s)
- Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Marta Grzechowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
7
|
Loch JI, Ściuk A, Kilichowska M, Pieróg I, Łukaszczyk W, Zimowska K, Jaskolski M. Probing the enzymatic activity and maturation process of the EcAIII Ntn-amidohydrolase using local random mutagenesis. Acta Biochim Pol 2024; 71:12299. [PMID: 38721302 PMCID: PMC11077353 DOI: 10.3389/abp.2024.12299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 05/15/2024]
Abstract
This report describes a comprehensive approach to local random mutagenesis of the E. coli Ntn-amidohydrolase EcAIII, and supplements the results published earlier for the randomization series RDM1. Here, random mutagenesis was applied in the center of the EcAIII molecule, i.e., in the region important for substrate binding and its immediate neighborhood (series RDM2, RDM3, RDM7), in the vicinity of the catalytic threonine triplet (series RDM4, RDM5, RDM6), in the linker region (series RDM8), and in the sodium-binding (stabilization) loop (series RDM9). The results revealed that the majority of the new EcAIII variants have abolished or significantly reduced rate of autoprocessing, even if the mutation was not in a highly conserved sequence and structure regions. AlphaFold-predicted structures of the mutants suggest the role of selected residues in the positioning of the linker and stabilization of the scissile bond in precisely correct orientation, enabling the nucleophilic attack during the maturation process. The presented data highlight the details of EcAIII geometry that are important for the autoproteolytic maturation and for the catalytic mechanism in general, and can be treated as a guide for protein engineering experiments with other Ntn-hydrolases.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Anna Ściuk
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Kilichowska
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Izabela Pieróg
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Weronika Łukaszczyk
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Katarzyna Zimowska
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
8
|
Sharon I, Hilvert D, Schmeing TM. Cyanophycin and its biosynthesis: not hot but very cool. Nat Prod Rep 2023; 40:1479-1497. [PMID: 37231979 DOI: 10.1039/d2np00092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: 1878 to early 2023Cyanophycin is a biopolymer consisting of a poly-aspartate backbone with arginines linked to each Asp sidechain through isopeptide bonds. Cyanophycin is made by cyanophycin synthetase 1 or 2 through ATP-dependent polymerization of Asp and Arg, or β-Asp-Arg, respectively. It is degraded into dipeptides by exo-cyanophycinases, and these dipeptides are hydrolyzed into free amino acids by general or dedicated isodipeptidase enzymes. When synthesized, chains of cyanophycin coalesce into large, inert, membrane-less granules. Although discovered in cyanobacteria, cyanophycin is made by species throughout the bacterial kingdom, and cyanophycin metabolism provides advantages for toxic bloom forming algae and some human pathogens. Some bacteria have developed dedicated schemes for cyanophycin accumulation and use, which include fine temporal and spatial regulation. Cyanophycin has also been heterologously produced in a variety of host organisms to a remarkable level, over 50% of the host's dry mass, and has potential for a variety of green industrial applications. In this review, we summarize the progression of cyanophycin research, with an emphasis on recent structural studies of enzymes in the cyanophycin biosynthetic pathway. These include several unexpected revelations that show cyanophycin synthetase to be a very cool, multi-functional macromolecular machine.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| |
Collapse
|
9
|
Sharon I, Schmeing TM. Bioinformatics of cyanophycin metabolism genes and characterization of promiscuous isoaspartyl dipeptidases that catalyze the final step of cyanophycin degradation. Sci Rep 2023; 13:8314. [PMID: 37221236 PMCID: PMC10206079 DOI: 10.1038/s41598-023-34587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Cyanophycin is a bacterial biopolymer used for storage of fixed nitrogen. It is composed of a backbone of L-aspartate residues with L-arginines attached to each of their side chains. Cyanophycin is produced by cyanophycin synthetase 1 (CphA1) using Arg, Asp and ATP, and is degraded in two steps. First, cyanophycinase breaks down the backbone peptide bonds, releasing β-Asp-Arg dipeptides. Then, these dipeptides are broken down into free Asp and Arg by enzymes with isoaspartyl dipeptidase activity. Two bacterial enzymes are known to possess promiscuous isoaspartyl dipeptidase activity: isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA). We performed a bioinformatic analysis to investigate whether genes for cyanophycin metabolism enzymes cluster together or are spread around the microbial genomes. Many genomes showed incomplete contingents of known cyanophycin metabolizing genes, with different patterns in various bacterial clades. Cyanophycin synthetase and cyanophycinase are usually clustered together when recognizable genes for each are found within a genome. Cyanophycinase and isoaspartyl dipeptidase genes typically cluster within genomes lacking cphA1. About one-third of genomes with genes for CphA1, cyanophycinase and IaaA show these genes clustered together, while the proportion is around one-sixth for CphA1, cyanophycinase and IadA. We used X-ray crystallography and biochemical studies to characterize an IadA and an IaaA from two such clusters, in Leucothrix mucor and Roseivivax halodurans, respectively. The enzymes retained their promiscuous nature, showing that being associated with cyanophycin-related genes did not make them specific for β-Asp-Arg dipeptides derived from cyanophycin degradation.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada.
| |
Collapse
|
10
|
Sharma A, Kaushik V, Goel M. Insights into the Distribution and Functional Properties of l-Asparaginase in the Archaeal Domain and Characterization of Picrophilus torridus Asparaginase Belonging to the Novel Family Asp2like1. ACS OMEGA 2022; 7:40750-40765. [PMID: 36406543 PMCID: PMC9670692 DOI: 10.1021/acsomega.2c01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
l-Asparaginase catalyzes the hydrolysis of l-asparagine to aspartic acid and ammonia and is used in the medical and food industries. In this investigation, from the proteomes of 176 archaeal organisms (with completely sequenced genomes), 116 homologs of l-asparaginase were obtained from 86 archaeal organisms segregated into Asp1, Asp2, IaaA, Asp2like1, and Asp2like2 families based on the conserved domain. The similarities and differences in the structure of selected representatives from each family are discussed. From the two novel archaeal l-asparaginase families Asp2like1 and Asp2like2, a representative of Asp2like1 family Picrophilus torridus asparaginase (PtAsp2like1) was characterized in detail to find its suitability in therapeutics. PtAsp2like1 was a glutaminase-free asparaginase that showed the optimum activity at 80 °C and pH 10.0. The Km of PtAsp2like1 toward substrate l-asparagine was 11.69 mM. This study demonstrates the improved mapping of asparaginases in the archaeal domain, facilitating future focused research on archaeal asparaginases for therapeutic applications.
Collapse
|
11
|
Loch JI, Klonecka A, Kądziołka K, Bonarek P, Barciszewski J, Imiolczyk B, Brzezinski K, Gilski M, Jaskolski M. Structural and biophysical studies of new L-asparaginase variants: lessons from random mutagenesis of the prototypic Escherichia coli Ntn-amidohydrolase. Acta Crystallogr D Struct Biol 2022; 78:911-926. [PMID: 35775990 PMCID: PMC9248843 DOI: 10.1107/s2059798322005691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
This work reports the results of random mutagenesis of the Escherichia coli class 2 L-asparaginase EcAIII belonging to the Ntn-hydrolase family. New variants of EcAIII were studied using structural, biophysical and bioinformatic methods. Activity tests revealed that the L-asparaginase activity is abolished in all analyzed mutants with the absence of Arg207, but some of them retained the ability to undergo the autoproteolytic maturation process. The results of spectroscopic studies and the determined crystal structures showed that the EcAIII fold is flexible enough to accept different types of mutations; however, these mutations may have a diverse impact on the thermal stability of the protein. The conclusions from the experiments are grouped into six lessons focused on (i) the adaptation of the EcAIII fold to new substitutions, (ii) the role of Arg207 in EcAIII activity, (iii) a network of residues necessary for autoprocessing, (iv) the complexity of the autoprocessing reaction, (v) the conformational changes observed in enzymatically inactive variants and (vi) the cooperativity of the EcAIII dimer subunits. Additionally, the structural requirements (pre-maturation checkpoints) that are necessary for the initiation of the autocleavage of Ntn-hydrolases have been classified. The findings reported in this work provide useful hints that should be considered before planning enzyme-engineering experiments aimed at the design of proteins for therapeutic applications. This is especially important for L-asparaginases that can be utilized in leukemia therapy, as alternative therapeutics are urgently needed to circumvent the severe side effects associated with the currently used enzymes.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Agnieszka Klonecka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Kinga Kądziołka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Mirosław Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
12
|
Linhorst A, Lübke T. The Human Ntn-Hydrolase Superfamily: Structure, Functions and Perspectives. Cells 2022; 11:cells11101592. [PMID: 35626629 PMCID: PMC9140057 DOI: 10.3390/cells11101592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
N-terminal nucleophile (Ntn)-hydrolases catalyze the cleavage of amide bonds in a variety of macromolecules, including the peptide bond in proteins, the amide bond in N-linked protein glycosylation, and the amide bond linking a fatty acid to sphingosine in complex sphingolipids. Ntn-hydrolases are all sharing two common hallmarks: Firstly, the enzymes are synthesized as inactive precursors that undergo auto-proteolytic self-activation, which, as a consequence, reveals the active site nucleophile at the newly formed N-terminus. Secondly, all Ntn-hydrolases share a structural consistent αββα-fold, notwithstanding the total lack of amino acid sequence homology. In humans, five subclasses of the Ntn-superfamily have been identified so far, comprising relevant members such as the catalytic active subunits of the proteasome or a number of lysosomal hydrolases, which are often associated with lysosomal storage diseases. This review gives an updated overview on the structural, functional, and (patho-)physiological characteristics of human Ntn-hydrolases, in particular.
Collapse
|
13
|
Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, Sokolov NN, Zhdanov DD. Molecular Analysis of L-Asparaginases for Clarification of the Mechanism of Action and Optimization of Pharmacological Functions. Pharmaceutics 2022; 14:pharmaceutics14030599. [PMID: 35335974 PMCID: PMC8948990 DOI: 10.3390/pharmaceutics14030599] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
L-asparaginases (EC 3.5.1.1) are a family of enzymes that catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. These proteins with different biochemical, physicochemical and pharmacological properties are found in many organisms, including bacteria, fungi, algae, plants and mammals. To date, asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi) are widely used in hematology for the treatment of lymphoblastic leukemias. However, their medical use is limited by side effects associated with the ability of these enzymes to hydrolyze L-glutamine, as well as the development of immune reactions. To solve these issues, gene-editing methods to introduce amino-acid substitutions of the enzyme are implemented. In this review, we focused on molecular analysis of the mechanism of enzyme action and to optimize the antitumor activity.
Collapse
Affiliation(s)
- Marina V. Pokrovskaya
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpiisky Prospect 1, 354340 Sochi, Russia
| | - Svetlana S. Aleksandrova
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Nikolay N. Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia; (M.V.P.); (S.S.A.); (N.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia;
- Correspondence:
| |
Collapse
|
14
|
Loch JI, Jaskolski M. Structural and biophysical aspects of l-asparaginases: a growing family with amazing diversity. IUCRJ 2021; 8:514-531. [PMID: 34258001 PMCID: PMC8256714 DOI: 10.1107/s2052252521006011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
l-Asparaginases have remained an intriguing research topic since their discovery ∼120 years ago, especially after their introduction in the 1960s as very efficient antileukemic drugs. In addition to bacterial asparaginases, which are still used to treat childhood leukemia, enzymes of plant and mammalian origin are now also known. They have all been structurally characterized by crystallography, in some cases at outstanding resolution. The structural data have also shed light on the mechanistic details of these deceptively simple enzymes. Yet, despite all this progress, no better therapeutic agents have been found to beat bacterial asparaginases. However, a new option might arise with the discovery of yet another type of asparaginase, those from symbiotic nitrogen-fixing Rhizobia, and with progress in the protein engineering of enzymes with desired properties. This review surveys the field of structural biology of l-asparaginases, focusing on the mechanistic aspects of the well established types and speculating about the potential of the new members of this amazingly diversified family.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
15
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
16
|
Nagaratnam N, Delker SL, Jernigan R, Edwards TE, Snider J, Thifault D, Williams D, Nannenga BL, Stofega M, Sambucetti L, Hsieh JJ, Flint AJ, Fromme P, Martin-Garcia JM. Structural insights into the function of the catalytically active human Taspase1. Structure 2021; 29:873-885.e5. [PMID: 33784495 DOI: 10.1016/j.str.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Taspase1 is an Ntn-hydrolase overexpressed in primary human cancers, coordinating cancer cell proliferation, invasion, and metastasis. Loss of Taspase1 activity disrupts proliferation of human cancer cells in vitro and in mouse models of glioblastoma. Taspase1 is synthesized as an inactive proenzyme, becoming active upon intramolecular cleavage. The activation process changes the conformation of a long fragment at the C-terminus of the α subunit, for which no full-length structural information exists and whose function is poorly understood. We present a cloning strategy to generate a circularly permuted form of Taspase1 to determine the crystallographic structure of active Taspase1. We discovered that this region forms a long helix and is indispensable for the catalytic activity of Taspase1. Our study highlights the importance of this element for the enzymatic activity of Ntn-hydrolases, suggesting that it could be a potential target for the design of inhibitors with potential to be developed into anticancer therapeutics.
Collapse
Affiliation(s)
- Nirupa Nagaratnam
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Silvia L Delker
- Beryllium Discovery Corp., with present address of UCB Biosciences, Bedford, MA 01730, USA
| | - Rebecca Jernigan
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., with present address of UCB Biosciences, Bedford, MA 01730, USA
| | - Janey Snider
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Darren Thifault
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Dewight Williams
- Eyring Materials Center, Arizona State University, Tempe, AZ 85257, USA
| | - Brent L Nannenga
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Stofega
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Lidia Sambucetti
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - James J Hsieh
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Andrew J Flint
- Frederick National Lab for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jose M Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid 28006, Spain.
| |
Collapse
|
17
|
da Silva LS, Doonan LB, Pessoa A, de Oliveira MA, Long PF. Structural and functional diversity of asparaginases: Overview and recommendations for a revised nomenclature. Biotechnol Appl Biochem 2021; 69:503-513. [PMID: 33624365 DOI: 10.1002/bab.2127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Asparaginases (ASNases) are a large and structurally diverse group of enzymes ubiquitous amongst archaea, bacteria and eukaryotes, that catalyze hydrolysis of asparagine to aspartate and ammonia. Bacterial ASNases are important biopharmaceuticals for the treatment of acute lymphoblastic leukemia, although some patients experience adverse allergic side effects during treatment with these protein therapeutics. ASNases are currently divided into three families: plant-type ASNases, Rhizobium etli-type ASNases and bacterial-type ASNases. This system is outdated as both bacterial-type and plant-type families also include archaeal, bacterial and eukaryotic enzymes, each with their own distinct characteristics. Herein, phylogenetic studies allied to tertiary structural analyses are described with the aim of proposing a revised and more robust classification system that considers the biochemical diversity of ASNases. Accordingly, based on distinct peptide domains, phylogenetic data, structural analysis and functional characteristics, we recommend that ASNases now be divided into three new distinct classes containing subgroups according to structural and functional aspects. Using this new classification scheme, 25 ASNases were identified as candidates for future new lead discovery.
Collapse
Affiliation(s)
- Leonardo Schultz da Silva
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, São Paulo, Brazil.,Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Liam B Doonan
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Adalberto Pessoa
- Departamento de Tecnologia Tecnologia Bioquímico-Farmacêuticas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Paul F Long
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.,Departamento de Tecnologia Tecnologia Bioquímico-Farmacêuticas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Structural basis of the correct subunit assembly, aggregation, and intracellular degradation of nylon hydrolase. Sci Rep 2018; 8:9725. [PMID: 29950566 PMCID: PMC6021441 DOI: 10.1038/s41598-018-27860-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Nylon hydrolase (NylC) is initially expressed as an inactive precursor (36 kDa). The precursor is cleaved autocatalytically at Asn266/Thr267 to generate an active enzyme composed of an α subunit (27 kDa) and a β subunit (9 kDa). Four αβ heterodimers (molecules A-D) form a doughnut-shaped quaternary structure. In this study, the thermostability of the parental NylC was altered by amino acid substitutions located at the A/D interface (D122G/H130Y/D36A/L137A) or the A/B interface (E263Q) and spanned a range of 47 °C. Considering structural, biophysical, and biochemical analyses, we discuss the structural basis of the stability of nylon hydrolase. From the analytical centrifugation data obtained regarding the various mutant enzymes, we conclude that the assembly of the monomeric units is dynamically altered by the mutations. Finally, we propose a model that can predict whether the fate of the nascent polypeptide will be correct subunit assembly, inappropriate protein-protein interactions causing aggregation, or intracellular degradation of the polypeptide.
Collapse
|
19
|
In silico characterization of a cyanobacterial plant-type isoaspartyl aminopeptidase/asparaginase. J Mol Model 2018; 24:108. [PMID: 29619654 DOI: 10.1007/s00894-018-3635-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/08/2018] [Indexed: 11/27/2022]
Abstract
Asparaginases are found in a range of organisms, although those found in cyanobacteria have been little studied, in spite of their great potential for biotechnological application. This study therefore sought to characterize the molecular structure of an L-asparaginase from the cyanobacterium Limnothrix sp. CACIAM 69d, which was isolated from a freshwater Amazonian environment. After homology modeling, model validation was performed using a Ramachandran plot, VERIFY3D, and the RMSD. We also performed molecular docking and dynamics simulations based on binding free-energy analysis. Structural alignment revealed homology with the isoaspartyl peptidase/asparaginase (EcAIII) from Escherichia coli. When compared to the template, our model showed full conservation of the catalytic site. In silico simulations confirmed the interaction of cyanobacterial isoaspartyl peptidase/asparaginase with its substrate, β-Asp-Leu dipeptide. We also observed that the residues Thr154, Thr187, Gly207, Asp218, and Gly237 were fundamental to protein-ligand complexation. Overall, our results suggest that L-asparaginase from Limnothrix sp. CACIAM 669d has similar properties to E. coli EcAIII asparaginase. Our study opens up new perspectives for the biotechnological exploitation of cyanobacterial asparaginases.
Collapse
|
20
|
Ajewole E, Santamaria‐Kisiel L, Pajak A, Jaskolski M, Marsolais F. Structural basis of potassium activation in plant asparaginases. FEBS J 2018; 285:1528-1539. [DOI: 10.1111/febs.14428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Ebenezer Ajewole
- Department of Biology University of Western Ontario London Canada
- London Research and Development Centre Agriculture and Agri‐Food Canada London Canada
| | | | - Agnieszka Pajak
- London Research and Development Centre Agriculture and Agri‐Food Canada London Canada
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan Poland
- Department of Crystallography Faculty of Chemistry A. Mickiewicz University Poznan Poland
| | - Frédéric Marsolais
- Department of Biology University of Western Ontario London Canada
- London Research and Development Centre Agriculture and Agri‐Food Canada London Canada
| |
Collapse
|
21
|
Park SH, Lee CW, Lee SG, Shin SC, Kim HJ, Park H, Lee JH. Crystal structure and functional characterization of an isoaspartyl dipeptidase (CpsIadA) from Colwellia psychrerythraea strain 34H. PLoS One 2017; 12:e0181705. [PMID: 28723955 PMCID: PMC5517026 DOI: 10.1371/journal.pone.0181705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
Isoaspartyl dipeptidase (IadA) is an enzyme that catalyzes the hydrolysis of an isoaspartyl dipeptide-like moiety, which can be inappropriately formed in proteins, between the β-carboxyl group side chain of Asp and the amino group of the following amino acid. Here, we have determined the structures of an isoaspartyl dipeptidase (CpsIadA) from Colwellia psychrerythraea, both ligand-free and that complexed with β-isoaspartyl lysine, at 1.85-Å and 2.33-Å resolution, respectively. In both structures, CpsIadA formed an octamer with two Zn ions in the active site. A structural comparison with Escherichia coli isoaspartyl dipeptidase (EcoIadA) revealed a major difference in the structure of the active site. For metal ion coordination, CpsIadA has a Glu166 residue in the active site, whereas EcoIadA has a post-translationally carbamylated-lysine 162 residue. Site-directed mutagenesis studies confirmed that the Glu166 residue is critical for CpsIadA enzymatic activity. This residue substitution from lysine to glutamate induces the protrusion of the β12-α8 loop into the active site to compensate for the loss of length of the side chain. In addition, the α3-β9 loop of CpsIadA adopts a different conformation compared to EcoIadA, which induces a change in the structure of the substrate-binding pocket. Despite CpsIadA having a different active-site residue composition and substrate-binding pocket, there is only a slight difference in CpsIadA substrate specificity compared with EcoIadA. Comparative sequence analysis classified IadA-containing bacteria and archaea into two groups based on the active-site residue composition, with Type I IadAs having a glutamate residue and Type II IadAs having a carbamylated-lysine residue. CpsIadA has maximal activity at pH 8–8.5 and 45°C, and was completely inactivated at 60°C. Despite being isolated from a psychrophilic bacteria, CpsIadA is thermostable probably owing to its octameric structure. This is the first conclusive description of the structure and properties of a Type I IadA.
Collapse
Affiliation(s)
- Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Sung Gu Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Seung Chul Shin
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
- * E-mail: (HP); (JHL)
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
- * E-mail: (HP); (JHL)
| |
Collapse
|
22
|
Zhong G, Zhao Q, Zhang Q, Liu W. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage. Nat Commun 2017; 8:16109. [PMID: 28706296 PMCID: PMC5519988 DOI: 10.1038/ncomms16109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C–C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria. γ-Glutamyltranspeptidases in gram-positive bacteria are not involved in glutathione metabolism, as their counterparts in eukaryotes and gram-negative bacteria. Here, the authors show that in Actinobacteria they catalyse the unusual cleavage of a C–C bond for the biosynthesis of non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Guannan Zhong
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qunfei Zhao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,State Key Laboratory of Microbial Metabolism, School of Life Science &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qinglin Zhang
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,State Key Laboratory of Microbial Metabolism, School of Life Science &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
23
|
Li W, Irani S, Crutchfield A, Hodge K, Matthews W, Patel P, Zhang YJ, Stone E. Intramolecular Cleavage of the hASRGL1 Homodimer Occurs in Two Stages. Biochemistry 2016; 55:960-9. [PMID: 26780688 DOI: 10.1021/acs.biochem.5b01157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human asparaginase-like protein 1 (hASRGL1) is a member of the N-terminal nucleophile (Ntn) family that hydrolyzes l-asparagine and isoaspartyl-dipeptides. The nascent protein folds into an αβ-βα sandwich fold homodimer that cleaves its own peptide backbone at the G167-T168 bond, resulting in the active form of the enzyme. However, biophysical studies of hASRGL1 are difficult because of the curious fact that intramolecular cleavage of the G167-T168 peptide bond reaches only ≤50% completion. We capitalized upon our previous observation that intramolecular processing increases thermostability and developed a differential scanning fluorimetry assay that allowed direct detection of distinct processing intermediates for the first time. A kinetic analysis of these intermediates revealed that cleavage of one subunit of the hASRGL1 subunit drastically reduces the processing rate of the adjacent monomer, and a mutagenesis study showed that stabilization of the dimer interface plays a critical role in this process. We also report a comprehensive analysis of conserved active site residues and delineate their relative roles in autoprocessing and substrate hydrolysis. In addition to glycine, which was previously reported to selectively accelerate hASRGL1 cleavage, we identified several novel small molecule activators that also promote intramolecular processing. The structure-activity analysis supports the hypothesis that multiple negatively charged small molecules interact within the active site of hASRGL1 to act as a base in promoting cleavage. Overall, our investigation provides a mechanistic understanding of the maturation process of this Ntn hydrolase family member.
Collapse
Affiliation(s)
- Wenzong Li
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Amanda Crutchfield
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Kristal Hodge
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Wendy Matthews
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Pooja Patel
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Everett Stone
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
24
|
Sun Z, Li D, Liu P, Wang W, Ji K, Huang Y, Cui Z. A novel l-asparaginase from Aquabacterium sp. A7-Y with self-cleavage activation. Antonie Van Leeuwenhoek 2015; 109:121-30. [DOI: 10.1007/s10482-015-0614-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022]
|
25
|
Vit A, Mashabela GT, Blankenfeldt W, Seebeck FP. Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC. Chembiochem 2015; 16:1490-6. [DOI: 10.1002/cbic.201500168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 01/08/2023]
|
26
|
Bejger M, Imiolczyk B, Clavel D, Gilski M, Pajak A, Marsolais F, Jaskolski M. Na⁺/K⁺ exchange switches the catalytic apparatus of potassium-dependent plant L-asparaginase. ACTA ACUST UNITED AC 2014; 70:1854-72. [PMID: 25004963 DOI: 10.1107/s1399004714008700] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/16/2014] [Indexed: 01/03/2023]
Abstract
Plant-type L-asparaginases, which are a subclass of the Ntn-hydrolase family, are divided into potassium-dependent and potassium-independent enzymes with different substrate preferences. While the potassium-independent enzymes have already been well characterized, there are no structural data for any of the members of the potassium-dependent group to illuminate the intriguing dependence of their catalytic mechanism on alkali-metal cations. Here, three crystal structures of a potassium-dependent plant-type L-asparaginase from Phaseolus vulgaris (PvAspG1) differing in the type of associated alkali metal ions (K(+), Na(+) or both) are presented and the structural consequences of the different ions are correlated with the enzyme activity. As in all plant-type L-asparaginases, immature PvAspG1 is a homodimer of two protein chains, which both undergo autocatalytic cleavage to α and β subunits, thus creating the mature heterotetramer or dimer of heterodimers (αβ)2. The αβ subunits of PvAspG1 are folded similarly to the potassium-independent enzymes, with a sandwich of two β-sheets flanked on each side by a layer of helices. In addition to the `sodium loop' (here referred to as the `stabilization loop') known from potassium-independent plant-type asparaginases, the potassium-dependent PvAspG1 enzyme contains another alkali metal-binding loop (the `activation loop') in subunit α (residues Val111-Ser118). The active site of PvAspG1 is located between these two metal-binding loops and in the immediate neighbourhood of three residues, His117, Arg224 and Glu250, acting as a catalytic switch, which is a novel feature that is identified in plant-type L-asparaginases for the first time. A comparison of the three PvAspG1 structures demonstrates how the metal ion bound in the activation loop influences its conformation, setting the catalytic switch to ON (when K(+) is coordinated) or OFF (when Na(+) is coordinated) to respectively allow or prevent anchoring of the reaction substrate/product in the active site. Moreover, it is proposed that Ser118, the last residue of the activation loop, is involved in the potassium-dependence mechanism. The PvAspG1 structures are discussed in comparison with those of potassium-independent L-asparaginases (LlA, EcAIII and hASNase3) and those of other Ntn-hydrolases (AGA and Tas1), as well as in the light of noncrystallographic studies.
Collapse
Affiliation(s)
- Magdalena Bejger
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Imiolczyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Damien Clavel
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
27
|
Karamitros CS, Konrad M. Human 60-kDa lysophospholipase contains an N-terminal L-asparaginase domain that is allosterically regulated by L-asparagine. J Biol Chem 2014; 289:12962-75. [PMID: 24657844 PMCID: PMC4036312 DOI: 10.1074/jbc.m113.545038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/02/2014] [Indexed: 11/06/2022] Open
Abstract
The structural and functional characterization of human enzymes that are of potential medical and therapeutic interest is of prime significance for translational research. One of the most notable examples of a therapeutic enzyme is L-asparaginase, which has been established as an antileukemic protein drug for more than four decades. Up until now, only bacterial enzymes have been used in therapy despite a plethora of undesired side effects mainly attributed to the bacterial origins of these enzymes. Therefore, the replacement of the currently approved bacterial drugs by human homologs aiming at the elimination of adverse effects is of great importance. Recently, we structurally and biochemically characterized the enzyme human L-asparaginase 3 (hASNase3), which possesses L-asparaginase activity and belongs to the N-terminal nucleophile superfamily of enzymes. Inspired by the necessity for the development of a protein drug of human origin, in the present study, we focused on the characterization of another human L-asparaginase, termed hASNase1. This bacterial-type cytoplasmic L-asparaginase resides in the N-terminal subdomain of an overall 573-residue protein previously reported to function as a lysophospholipase. Our kinetic, mutagenesis, structural modeling, and fluorescence labeling data highlight allosteric features of hASNase1 that are similar to those of its Escherichia coli homolog, EcASNase1. Differential scanning fluorometry and urea denaturation experiments demonstrate the impact of particular mutations on the structural and functional integrity of the L-asparaginase domain and provide a direct comparison of sites critical for the conformational stability of the human and E. coli enzymes.
Collapse
Affiliation(s)
- Christos S. Karamitros
- From the Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Göttingen D-37077, Germany
| | - Manfred Konrad
- From the Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Göttingen D-37077, Germany
| |
Collapse
|
28
|
Nomme J, Su Y, Lavie A. Elucidation of the specific function of the conserved threonine triad responsible for human L-asparaginase autocleavage and substrate hydrolysis. J Mol Biol 2014; 426:2471-85. [PMID: 24768817 DOI: 10.1016/j.jmb.2014.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 02/05/2023]
Abstract
Our long-term goal is the design of a human l-asparaginase (hASNase3) variant, suitable for use in cancer therapy without the immunogenicity problems associated with the currently used bacterial enzymes. Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. The key property allowing for the depletion of blood asparagine by bacterial asparaginases is their low micromolar KM value. In contrast, human enzymes have a millimolar KM for asparagine. Toward the goal of engineering an hASNase3 variant with micromolar KM, we conducted a structure/function analysis of the conserved catalytic threonine triad of this human enzyme. As a member of the N-terminal nucleophile family, to become enzymatically active, hASNase3 must undergo autocleavage between residues Gly167 and Thr168. To determine the individual contribution of each of the three conserved active-site threonines (threonine triad Thr168, Thr186, Thr219) for the enzyme-activating autocleavage and asparaginase reactions, we prepared the T168S, T186V and T219A/V mutants. These mutants were tested for their ability to cleave and to catalyze asparagine hydrolysis, in addition to being examined structurally. We also elucidated the first N-terminal nucleophile plant-type asparaginase structure in the covalent intermediate state. Our studies indicate that, while not all triad threonines are required for the cleavage reaction, all are essential for the asparaginase activity. The increased understanding of hASNase3 function resulting from these studies reveals the key regions that govern cleavage and the asparaginase reaction, which may inform the design of variants that attain a low KM for asparagine.
Collapse
Affiliation(s)
- Julian Nomme
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ying Su
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
29
|
Schalk AM, Lavie A. Structural and kinetic characterization of guinea pig L-asparaginase type III. Biochemistry 2014; 53:2318-28. [PMID: 24669941 PMCID: PMC4004260 DOI: 10.1021/bi401692v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated whether an uncharacterized protein from guinea pig could be the enzyme behind Kidd's serendipitous discovery, made over 60 years ago, that guinea pig serum has cell killing ability. It has been long known that an enzyme with l-asparaginase activity is responsible for cell killing, although astonishingly, its identity remains unclear. Bacterial asparaginases with similar cell killing properties have since become a mainstay therapy of certain cancers such as acute lymphoblastic leukemia. By hydrolyzing asparagine to aspartate and ammonia, these drugs deplete the asparagine present in the blood, killing cancer cells that rely on extracellular asparagine uptake for survival. However, bacterial asparaginases can elicit an adverse immune response. We propose that replacement of bacterial enzymes with the guinea pig asparaginase responsible for serum activity, by its virtue of being more closely related to human enzymes, will be less immunogenic. To this goal, we investigated whether an uncharacterized protein from guinea pig with putative asparaginase activity, which we call gpASNase3, could be that enzyme. We examined its self-activation process (gpASNase3 requires autocleavage to become active), kinetically characterized it for asparaginase and β-aspartyl dipeptidase activity, and elucidated its crystal structure in both the uncleaved and cleaved states. This work reveals that gpASNase3 is not the enzyme responsible for the antitumor effects of guinea pig serum. It exhibits a low affinity for asparagine as measured by a high Michaelis constant, KM, in the millimolar range, in contrast to the low KM (micromolar range) required for asparaginase to be effective as an anticancer agent.
Collapse
Affiliation(s)
- Amanda M Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , 900 S. Ashland, Chicago , Illinois 60607, United States
| | | |
Collapse
|
30
|
Balakrishna S, Prabhune AA. Gamma-glutamyl transferases: A structural, mechanistic and physiological perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1288-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Heck T, Geueke B, Kohler HPE. Bacterialβ-Aminopeptidases: Structural Insights and Applications for Biocatalysis. Chem Biodivers 2012; 9:2388-409. [DOI: 10.1002/cbdv.201200305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 12/12/2022]
|
32
|
Li W, Cantor JR, Yogesha S, Yang S, Chantranupong L, Liu JQ, Agnello G, Georgiou G, Stone EM, Zhang Y. Uncoupling intramolecular processing and substrate hydrolysis in the N-terminal nucleophile hydrolase hASRGL1 by circular permutation. ACS Chem Biol 2012; 7:1840-7. [PMID: 22891768 PMCID: PMC3514461 DOI: 10.1021/cb300232n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human asparaginase-like protein 1 (hASRGL1) catalyzes the hydrolysis of l-asparagine and isoaspartyl-dipeptides. As an N-terminal nucleophile (Ntn) hydrolase superfamily member, the active form of hASRGL1 is generated by an intramolecular cleavage step with Thr168 as the catalytic residue. However, in vitro, autoprocessing is incomplete (~50%), fettering the biophysical characterization of hASRGL1. We circumvented this obstacle by constructing a circularly permuted hASRGL1 that uncoupled the autoprocessing reaction, allowing us to kinetically and structurally characterize this enzyme and the precursor-like hASRGL1-Thr168Ala variant. Crystallographic and biochemical evidence suggest an activation mechanism where a torsional restraint on the Thr168 side chain helps drive the intramolecular processing reaction. Cleavage and formation of the active site releases the torsional restriction on Thr168, which is facilitated by a small conserved Gly-rich loop near the active site that allows the conformational changes necessary for activation.
Collapse
Affiliation(s)
- Wenzong Li
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712
| | - Jason R Cantor
- Departments of Biomedical and Chemical Engineering, University of Texas, Austin, Texas 78712
| | - S.D. Yogesha
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712
| | - Shirley Yang
- Departments of Biomedical and Chemical Engineering, University of Texas, Austin, Texas 78712
| | - Lynne Chantranupong
- Departments of Biomedical and Chemical Engineering, University of Texas, Austin, Texas 78712
| | - June Qingxia Liu
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712
| | - Giulia Agnello
- Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - George Georgiou
- Departments of Biomedical and Chemical Engineering, University of Texas, Austin, Texas 78712
,Section of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
,Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Everett M Stone
- Departments of Biomedical and Chemical Engineering, University of Texas, Austin, Texas 78712
,Address correspondence to: Yan Zhang: 1 University Station A5300, Austin, TX 78712. Phone: (512)-471-8645. Fax: 512-471-9469. or Everett Stone: 1 University Station C0800, Austin, TX 78712. Phone: (512) 512-232-4105. stonesci@.utexas.edu
| | - Yan Zhang
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712
,Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
,Address correspondence to: Yan Zhang: 1 University Station A5300, Austin, TX 78712. Phone: (512)-471-8645. Fax: 512-471-9469. or Everett Stone: 1 University Station C0800, Austin, TX 78712. Phone: (512) 512-232-4105. stonesci@.utexas.edu
| |
Collapse
|
33
|
Gabriel M, Telmer PG, Marsolais F. Role of asparaginase variable loop at the carboxyl terminal of the alpha subunit in the determination of substrate preference in plants. PLANTA 2012; 235:1013-1022. [PMID: 22127737 DOI: 10.1007/s00425-011-1557-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/17/2011] [Indexed: 05/27/2023]
Abstract
Structural determinants responsible for the substrate preference of the potassium-independent (ASPGA1) and -dependent (ASPGB1) asparaginases from Arabidopsis thaliana have been investigated. Like ASPGA1, ASPGB1 was found to be catalytically active with both L: -Asn and β-Asp-His as substrates, contrary to a previous report. However, ASPGB1 had a 45-fold higher specific activity with Asn as substrate than ASPGA1. A divergent sequence between the two enzymes forms a variable loop at the C-terminal of the alpha subunit. The results of dynamic simulations have previously implicated a movement of the C-terminus in the allosteric transduction of K(+)-binding at the surface of LjNSE1 asparaginase. In the crystal structure of Lupinus luteus asparaginase, most residues in this segment cannot be visualized due to a weak electron density. Exchanging the variable loop in ASPGA1 with that from ASPGB1 increased the affinity for Asn, with a 320-fold reduction in K (m) value. Homology modeling identified a residue specific to ASPGB1, Phe(162), preceding the variable loop, whose side chain is located in proximity to the beta-carboxylate group of the product aspartate, and to Gly(246), a residue participating in an oxyanion hole which stabilizes a negative charge forming on the side chain oxygen of asparagine during catalysis. Replacement with the corresponding leucine from ASPGA1 specifically lowered the V (max) value with Asn as substrate by 8.4-fold.
Collapse
Affiliation(s)
- Michelle Gabriel
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
34
|
Negoro S, Shibata N, Tanaka Y, Yasuhira K, Shibata H, Hashimoto H, Lee YH, Oshima S, Santa R, Oshima S, Mochiji K, Goto Y, Ikegami T, Nagai K, Kato DI, Takeo M, Higuchi Y. Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. J Biol Chem 2011; 287:5079-90. [PMID: 22187439 DOI: 10.1074/jbc.m111.321992] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We performed x-ray crystallographic analyses of the 6-aminohexanoate oligomer hydrolase (NylC) from Agromyces sp. at 2.0 Å-resolution. This enzyme is a member of the N-terminal nucleophile hydrolase superfamily that is responsible for the degradation of the nylon-6 industry byproduct. We observed four identical heterodimers (27 kDa + 9 kDa), which resulted from the autoprocessing of the precursor protein (36 kDa) and which constitute the doughnut-shaped quaternary structure. The catalytic residue of NylC was identified as the N-terminal Thr-267 of the 9-kDa subunit. Furthermore, each heterodimer is folded into a single domain, generating a stacked αββα core structure. Amino acid mutations at subunit interfaces of the tetramer were observed to drastically alter the thermostability of the protein. In particular, four mutations (D122G/H130Y/D36A/E263Q) of wild-type NylC from Arthrobacter sp. (plasmid pOAD2-encoding enzyme), with a heat denaturation temperature of T(m) = 52 °C, enhanced the protein thermostability by 36 °C (T(m) = 88 °C), whereas a single mutation (G111S or L137A) decreased the stability by ∼10 °C. We examined the enzymatic hydrolysis of nylon-6 by the thermostable NylC mutant. Argon cluster secondary ion mass spectrometry analyses of the reaction products revealed that the major peak of nylon-6 (m/z 10,000-25,000) shifted to a smaller range, producing a new peak corresponding to m/z 1500-3000 after the enzyme treatment at 60 °C. In addition, smaller fragments in the soluble fraction were successively hydrolyzed to dimers and monomers. Based on these data, we propose that NylC should be designated as nylon hydrolase (or nylonase). Three potential uses of NylC for industrial and environmental applications are also discussed.
Collapse
Affiliation(s)
- Seiji Negoro
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo 671-2280
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Credali A, Díaz-Quintana A, García-Calderón M, De la Rosa MA, Márquez AJ, Vega JM. Structural analysis of K+ dependence in L-asparaginases from Lotus japonicus. PLANTA 2011; 234:109-22. [PMID: 21390508 DOI: 10.1007/s00425-011-1393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/23/2011] [Indexed: 05/11/2023]
Abstract
The molecular features responsible for the existence in plants of K+-dependent asparaginases have been investigated. For this purpose, two different cDNAs were isolated in Lotus japonicus, encoding for K+-dependent (LjNSE1) or K+-independent (LjNSE2) asparaginases. Recombinant proteins encoded by these cDNAs have been purified and characterized. Both types of asparaginases are composed by two different subunits, α (20 kDa) and β (17 kDa), disposed as (αβ)₂ quaternary structure. Major differences were found in the catalytic efficiency of both enzymes, due to the fact that K+ is able to increase by tenfold the enzyme activity and lowers the K(m) for asparagine specifically in LjNSE1 but not in LjNSE2 isoform. Optimum LjNSE1 activity was found at 5-50 mM K+, with a K(m) for K+ of 0.25 mM. Na+ and Rb+ can, to some extent, substitute for K+ on the activating effect of LjNSE1 more efficiently than Cs+ and Li+ does. In addition, K+ is able to stabilize LjNSE1 against thermal inactivation. Protein homology modelling and molecular dynamics studies, complemented with site-directed mutagenesis, revealed the key importance of E248, D285 and E286 residues for the catalytic activity and K+ dependence of LjNSE1, as well as the crucial relevance of K+ for the proper orientation of asparagine substrate within the enzyme molecule. On the other hand, LjNSE2 but not LjNSE1 showed β-aspartyl-hydrolase activity (K(m) = 0.54 mM for β-Asp-His). These results are discussed in terms of the different physiological significance of these isoenzymes in plants.
Collapse
Affiliation(s)
- Alfredo Credali
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, 41071 Seville, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Yin J, Deng Z, Zhao G, Huang X. The N-terminal nucleophile serine of cephalosporin acylase executes the second autoproteolytic cleavage and acylpeptide hydrolysis. J Biol Chem 2011; 286:24476-86. [PMID: 21576250 DOI: 10.1074/jbc.m111.242313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cephalosporin acylase (CA) precursor is translated as a single polypeptide chain and folds into a self-activating pre-protein. Activation requires two peptide bond cleavages that excise an internal spacer to form the mature αβ heterodimer. Using Q-TOF LC-MS, we located the second cleavage site between Glu(159) and Gly(160), and detected the corresponding 10-aa spacer (160)GDPPDLADQG(169) of CA mutants. The site of the second cleavage depended on Glu(159): moving Glu into the spacer or removing 5-10 residues from the spacer sequence resulted in shorter spacers with the cleavage at the carboxylic side of Glu. The mutant E159D was cleaved more slowly than the wild-type, as were mutants G160A and G160L. This allowed kinetic measurements showing that the second cleavage reaction was a first-order, intra-molecular process. Glutaryl-7-aminocephalosporanic acid is the classic substrate of CA, in which the N-terminal Ser(170) of the β-subunit, is the nucleophile. Glu and Asp resemble glutaryl, suggesting that CA might also remove N-terminal Glu or Asp from peptides. This was indeed the case, suggesting that the N-terminal nucleophile also performed the second proteolytic cleavage. We also found that CA is an acylpeptide hydrolase rather than a previously expected acylamino acid acylase. It only exhibited exopeptidase activity for the hydrolysis of an externally added peptide, supporting the intra-molecular interaction. We propose that the final CA activation is an intra-molecular process performed by an N-terminal nucleophile, during which large conformational changes in the α-subunit C-terminal region are required to bridge the gap between Glu(159) and Ser(170).
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | |
Collapse
|
37
|
Mucha A, Drag M, Dalton JP, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie 2010; 92:1509-29. [PMID: 20457213 PMCID: PMC7117057 DOI: 10.1016/j.biochi.2010.04.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/29/2010] [Indexed: 01/05/2023]
Abstract
Aminopeptidases are enzymes that selectively hydrolyze an amino acid residue from the N-terminus of proteins and peptides. They are important for the proper functioning of prokaryotic and eukaryotic cells, but very often are central players in the devastating human diseases like cancer, malaria and diabetes. The largest aminopeptidase group include enzymes containing metal ion(s) in their active centers, which often determines the type of inhibitors that are the most suitable for them. Effective ligands mostly bind in a non-covalent mode by forming complexes with the metal ion(s). Here, we present several approaches for the design of inhibitors for metallo-aminopeptidases. The optimized structures should be considered as potential leads in the drug discovery process against endogenous and infectious diseases.
Collapse
Affiliation(s)
- Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | |
Collapse
|
38
|
Abstract
This article comprises detailed information about L-asparaginase, encompassing topics such as microbial and plant sources of L-asparaginase, treatment with L-asparaginase, mechanism of action of L-asparaginase, production, purification, properties, expression and characteristics of l-asparaginase along with information about studies on the structure of L-asparaginase. Although L-asparaginase has been reviewed by Savitri and Azmi (2003), our effort has been to include recent and updated information about the enzyme covering new aspects such as structural modification and immobilization of L-asparaginase, recombinant L-asparaginase, resistance to L-asparaginase, methods of assay of L-asparagine and L-asparaginase activity using the biosensor approach, L-asparaginase activity in soil and the factors affecting it. Also, side-effects of L-asparaginase treatment in acute lymphoblastic leukemia (ALL) have been discussed in the current review. L-asparaginase has been and is still one of the most widely studied therapeutic enzymes by researchers and scientists worldwide.
Collapse
Affiliation(s)
- Neelam Verma
- Biosensor Technology Lab, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | | | |
Collapse
|
39
|
Michalska K, Hernandez-Santoyo A, Jaskolski M. The Mechanism of Autocatalytic Activation of Plant-type L-Asparaginases. J Biol Chem 2008; 283:13388-97. [DOI: 10.1074/jbc.m800746200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Boanca G, Sand A, Okada T, Suzuki H, Kumagai H, Fukuyama K, Barycki JJ. Autoprocessing of Helicobacter pylori γ-Glutamyltranspeptidase Leads to the Formation of a Threonine-Threonine Catalytic Dyad. J Biol Chem 2007; 282:534-41. [PMID: 17107958 DOI: 10.1074/jbc.m607694200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helicobacter pylorigamma-glutamyltranspeptidase (HpGT) is a glutathione-degrading enzyme that has been shown to be a virulence factor in infection. It is expressed as a 60-kDa inactive precursor that must undergo autocatalytic processing to generate a 40-kDa/20-kDa heterodimer with full gamma-glutamyl amide bond hydrolase activity. The new N terminus of the processed enzyme, Thr-380, is the catalytic nucleophile in both the autoprocessing and enzymatic reactions, indicating that HpGT is a member of the N-terminal nucleophile hydrolase superfamily. To further investigate activation as a result of autoprocessing, the structure of HpGT has been determined to a resolution of 1.9 A. The refined model contains two 40-kDa/20-kDa heterodimers in the asymmetric unit and has structural features comparable with other N-terminal nucleophile hydrolases. Autoprocessing of HpGT leads to a large conformational change, with the loop preceding the catalytic Thr-380 moving >35 A, thus relieving steric constraints that likely limit substrate binding. In addition, cleavage of the proenzyme results in the formation of a threonine-threonine dyad comprised of Thr-380 and a second conserved threonine residue, Thr-398. The hydroxyl group of Thr-398 is located equidistant from the alpha-amino group and hydroxyl side chain of Thr-380. Mutation of Thr-398 to an alanine results in an enzyme that is fully capable of autoprocessing but is devoid of enzymatic activity. Substrate docking studies in combination with homology modeling studies of the human homologue reveal additional mechanistic details of enzyme maturation and activation, substrate recognition, and catalysis.
Collapse
Affiliation(s)
- Gina Boanca
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Wang Y, Guo HC. Crystallographic snapshot of a productive glycosylasparaginase-substrate complex. J Mol Biol 2006; 366:82-92. [PMID: 17157318 PMCID: PMC1865511 DOI: 10.1016/j.jmb.2006.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/02/2006] [Accepted: 09/20/2006] [Indexed: 11/18/2022]
Abstract
Glycosylasparaginase (GA) plays an important role in asparagine-linked glycoprotein degradation. A deficiency in the activity of human GA leads to a lysosomal storage disease named aspartylglycosaminuria. GA belongs to a superfamily of N-terminal nucleophile hydrolases that autoproteolytically generate their mature enzymes from inactive single chain protein precursors. The side-chain of the newly exposed N-terminal residue then acts as a nucleophile during substrate hydrolysis. By taking advantage of mutant enzyme of Flavobacterium meningosepticum GA with reduced enzymatic activity, we have obtained a crystallographic snapshot of a productive complex with its substrate (NAcGlc-Asn), at 2.0 A resolution. This complex structure provided us an excellent model for the Michaelis complex to examine the specific contacts critical for substrate binding and catalysis. Substrate binding induces a conformational change near the active site of GA. To initiate catalysis, the side-chain of the N-terminal Thr152 is polarized by the free alpha-amino group on the same residue, mediated by the side-chain hydroxyl group of Thr170. Cleavage of the amide bond is then accomplished by a nucleophilic attack at the carbonyl carbon of the amide linkage in the substrate, leading to the formation of an acyl-enzyme intermediate through a negatively charged tetrahedral transition state.
Collapse
Affiliation(s)
| | - Hwai-Chen Guo
- *Corresponding author: Hwai-Chen Guo, Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526, telephone: 617-638-4023, fax: 617-638-4041, E-mail:
| |
Collapse
|
42
|
Bruneau L, Chapman R, Marsolais F. Co-occurrence of both L-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent L-asparaginase. PLANTA 2006; 224:668-79. [PMID: 16705405 DOI: 10.1007/s00425-006-0245-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/08/2006] [Indexed: 05/09/2023]
Abstract
L-asparaginases (EC 3.5.1.1) are hypothesized to play an important role in nitrogen supply to sink tissues, especially in legume-developing seeds. Two plant L-asparaginase subtypes were previously identified according to their K(+)-dependence for catalytic activity. An L-asparaginase homologous to Lupinus K(+)-independent enzymes with activity towards beta-aspartyl dipeptides, At5g08100, has been previously characterized as a member of the N-terminal nucleophile amidohydrolase superfamily in Arabidopsis. In this study, a K(+)-dependent L-asparaginase from Arabidopsis, At3g16150, is characterized. The recombinants At3g16150 and At5g08100 share a similar subunit structure and conserved autoproteolytic pentapeptide cleavage site, commencing with the catalytic Thr nucleophile, as determined by ESI-MS. The catalytic activity of At3g16150 was enhanced approximately tenfold in the presence of K(+). At3g16150 was strictly specific for L-Asn, and had no activity towards beta-aspartyl dipeptides. At3g16150 also had an approximately 80-fold higher catalytic efficiency with L-Asn relative to At5g08100. Among the beta-aspartyl dipeptides tested, At5g08100 had a preference for beta-aspartyl-His, with catalytic efficiency comparable to that with L-Asn. The phylogenetic analysis revealed that At3g16150 and At5g08100 belong to two distinct subfamilies. The transcript levels of At3g16150 and At5g08100 were highest in sink tissues, especially in flowers and siliques, early in development, as determined by quantitative RT-PCR. The overlapping spatial patterns of expression argue for a partially redundant function of the enzymes. However, the high catalytic efficiency suggests that the K(+)-dependent enzyme may metabolize L-Asn more efficiently under conditions of high metabolic demand for N.
Collapse
Affiliation(s)
- Luanne Bruneau
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, Ontario, Canada N5V 4T3
| | | | | |
Collapse
|
43
|
Michalska K, Bujacz G, Jaskolski M. Crystal Structure of Plant Asparaginase. J Mol Biol 2006; 360:105-16. [PMID: 16725155 DOI: 10.1016/j.jmb.2006.04.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/25/2006] [Accepted: 04/27/2006] [Indexed: 11/28/2022]
Abstract
In plants, specialized enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. In addition, K+-independent plant asparaginases are also active in splitting the aberrant isoaspartyl peptide bonds, which makes these proteins important for seed viability and germination. Here, we present the crystal structure of potassium-independent L-asparaginase from yellow lupine (LlA) and confirm the classification of this group of enzymes in the family of Ntn-hydrolases. The alpha- and beta-subunits that form the mature (alphabeta)2 enzyme arise from autoproteolytic cleavage of two copies of a precursor protein. In common with other Ntn-hydrolases, the (alphabeta) heterodimer has a sandwich-like fold with two beta-sheets flanked by two layers of alpha-helices (alphabetabetaalpha). The nucleophilic Thr193 residue, which is liberated in the autocatalytic event at the N terminus of subunit beta, is part of an active site that is similar to that observed in a homologous bacterial enzyme. An unusual sodium-binding loop of the bacterial protein, necessary for proper positioning of all components of the active site, shows strictly conserved conformation and metal coordination in the plant enzyme. A chloride anion complexed in the LlA structure marks the position of the alpha-carboxylate group of the L-aspartyl substrate/product moiety. Detailed analysis of the active site suggests why the plant enzyme hydrolyzes asparagine and its beta-peptides but is inactive towards substrates accepted by similar Ntn-hydrolases, such as taspase1, an enzyme implicated in some human leukemias. Structural comparisons of LlA and taspase1 provide interesting insights into the role of small inorganic ions in the latter enzyme.
Collapse
Affiliation(s)
- Karolina Michalska
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | | | | |
Collapse
|