1
|
Li C, Zhang H, Liu Y, Zhang T, Gu F. Gpr109A in TAMs promoted hepatocellular carcinoma via increasing PKA/PPARγ/MerTK/IL-10/TGFβ induced M2c polarization. Sci Rep 2025; 15:18820. [PMID: 40442173 PMCID: PMC12122892 DOI: 10.1038/s41598-025-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
To delineate Gpr109A's role and mechanisms in modulating the immune microenvironment of hepatocellular carcinoma. Employing Gpr109A-knockout mice and in vitro co-cultures of hepatocellular carcinoma cells with macrophages, this study utilized a suite of techniques, including lentiviral vectors for stable cell line establishment, Western blotting, cell scratch, CCK-8, transwell assays, flow cytometry, immunohistochemistry and phagocytosis assay to assess various cellular behaviors and interactions. Gpr109A deletion markedly reduced the oncogenic potential of H22 cells, both in vivo and when co-cultured with knockout macrophages, impairing their growth, invasion, and migration. In Gpr109A-knockout macrophages, an upregulation of MerTK and a reduction in immunosuppressive cytokine release were observed, indicating a shift towards an M2c macrophage phenotype. This shift is linked to Gpr109A's role in promoting protease overexpression and inhibiting SHP2 phosphorylation, crucial for enhancing cancer cell proliferation and invasiveness. Gpr109A significantly influences macrophage polarization to the M2c type, augmenting hepatocellular carcinoma cell aggressiveness.
Collapse
Affiliation(s)
- Cong Li
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Hongan Zhang
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Yanchun Liu
- Department of Pediatrics, North China Petroleum Administration General Hospital, Renqiu, China
| | - Ting Zhang
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Feng Gu
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China.
| |
Collapse
|
2
|
Soares Martins T, Pelech S, Ferreira M, Pinho B, Leandro K, de Almeida LP, Breitling B, Hansen N, Esselmann H, Wiltfang J, da Cruz e Silva OAB, Henriques AG. Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer's Disease. Int J Mol Sci 2024; 25:1584. [PMID: 38338863 PMCID: PMC10855802 DOI: 10.3390/ijms25031584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphorylation plays a key role in Alzheimer's disease (AD) pathogenesis, impacting distinct processes such as amyloid-beta (Aβ) peptide production and tau phosphorylation. Impaired phosphorylation events contribute to senile plaques and neurofibrillary tangles' formation, two major histopathological hallmarks of AD. Blood-derived extracellular particles (bdEP) can represent a disease-related source of phosphobiomarker candidates, and hence, in this pilot study, bdEP of Control and AD cases were analyzed by a targeted phosphoproteomics approach using a high-density microarray that featured at least 1145 pan-specific and 913 phosphosite-specific antibodies. This approach, innovatively applied to bdEP, allowed the identification of 150 proteins whose expression levels and/or phosphorylation patterns were significantly altered across AD cases. Gene Ontology enrichment and Reactome pathway analysis unraveled potentially relevant molecular targets and disease-associated pathways, and protein-protein interaction networks were constructed to highlight key targets. The discriminatory value of both the total proteome and the phosphoproteome was evaluated by univariate and multivariate approaches. This pilot experiment supports that bdEP are enriched in phosphotargets relevant in an AD context, holding value as peripheral biomarker candidates for disease diagnosis.
Collapse
Affiliation(s)
- Tânia Soares Martins
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Kinexus Bioinformatics Corporation, Vancouver, BC V6P 6T3, Canada
| | - Maria Ferreira
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Beatriz Pinho
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Kevin Leandro
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector–Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector–Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Benedict Breitling
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Hermann Esselmann
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
| | - Jens Wiltfang
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, 37075 Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (T.S.M.)
| |
Collapse
|
3
|
Ruiz-Ceja KA, Capasso D, Pinelli M, Del Prete E, Carrella D, di Bernardo D, Banfi S. Definition of the transcriptional units of inherited retinal disease genes by meta-analysis of human retinal transcriptome data. BMC Genomics 2023; 24:206. [PMID: 37072692 PMCID: PMC10111803 DOI: 10.1186/s12864-023-09300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Inherited retinal diseases (IRD) are genetically heterogeneous disorders that cause the dysfunction or loss of photoreceptor cells and ultimately lead to blindness. To date, next-generation sequencing procedures fail to detect pathogenic sequence variants in coding regions of known IRD disease genes in about 30-40% of patients. One of the possible explanations for this missing heritability is the presence of yet unidentified transcripts of known IRD genes. Here, we aimed to define the transcript composition of IRD genes in the human retina by a meta-analysis of publicly available RNA-seq datasets using an ad-hoc designed pipeline. RESULTS We analysed 218 IRD genes and identified 5,054 transcripts, 3,367 of which were not previously reported. We assessed their putative expression levels and focused our attention on 435 transcripts predicted to account for at least 5% of the expression of the corresponding gene. We looked at the possible impact of the newly identified transcripts at the protein level and experimentally validated a subset of them. CONCLUSIONS This study provides an unprecedented, detailed overview of the complexity of the human retinal transcriptome that can be instrumental in contributing to the resolution of some cases of missing heritability in IRD patients.
Collapse
Affiliation(s)
- Karla Alejandra Ruiz-Ceja
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Program in Molecular Life Science, University of Campania "Luigi Vanvitelli", Via Vivaldi, 43, 81100, Caserta, Italy
| | - Dalila Capasso
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomic and Experimental Medicine Program, University of Naples "Federico II", Largo S. Marcellino, 10, 80138, Napoli, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Eugenio Del Prete
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Chemical Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125, Napoli, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7, 80138, Napoli, Italy.
| |
Collapse
|
4
|
Erofeeva N, Meshalkina D, Firsov M. Multiple Roles of cAMP in Vertebrate Retina. Cells 2023; 12:cells12081157. [PMID: 37190066 DOI: 10.3390/cells12081157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
cAMP is a key regulatory molecule that controls many important processes in the retina, including phototransduction, cell development and death, growth of neural processes, intercellular contacts, retinomotor effects, and so forth. The total content of cAMP changes in the retina in a circadian manner following the natural light cycle, but it also shows local and even divergent changes in faster time scales in response to local and transient changes in the light environment. Changes in cAMP might also manifest or cause various pathological processes in virtually all cellular components of the retina. Here we review the current state of knowledge and understanding of the regulatory mechanisms by which cAMP influences the physiological processes that occur in various retinal cells.
Collapse
Affiliation(s)
- Natalia Erofeeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Darya Meshalkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Michael Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
6
|
Wu Y, Wang S, Wang H, Hu B, Wang J. Selectivity mechanism of GRK2/5 inhibition through in silico investigation. Comput Biol Chem 2022; 101:107786. [DOI: 10.1016/j.compbiolchem.2022.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
7
|
Chrispell JD, Xiong Y, Weiss ER. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP. J Biol Chem 2022; 298:102636. [PMID: 36273582 PMCID: PMC9692042 DOI: 10.1016/j.jbc.2022.102636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
In the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent. In many vertebrates, including humans and zebrafish, GRK1 is expressed in both rods and cones while GRK7 is expressed only in cones. However, mice express only GRK1 in both rods and cones and lack GRK7. We recently generated a mutation in Grk1 that deletes the phosphorylation site, Ser21. This mutant demonstrated delayed dark adaptation in mouse rods but not in cones in vivo, suggesting GRK1 may serve a different role depending upon the photoreceptor cell type in which it is expressed. Here, zebrafish were selected to evaluate the role of cAMP-dependent GRK phosphorylation in cone photoreceptor recovery. Electroretinogram analyses of larvae treated with forskolin show that elevated intracellular cAMP significantly decreases recovery of the cone photoresponse, which is mediated by Grk7a rather than Grk1b. Using a cone-specific dominant negative PKA transgene, we show for the first time that PKA is required for Grk7a phosphorylation in vivo. Lastly, immunoblot analyses of rod grk1a-/- and cone grk1b-/- zebrafish and Nrl-/- mouse show that cone-expressed Grk1 does not undergo cAMP-dependent phosphorylation in vivo. These results provide a better understanding of the function of Grk phosphorylation relative to cone adaptation and recovery.
Collapse
|
8
|
Hermawan A, Putri H. Computational analysis of G-protein-coupled receptor kinase family members as potential targets for colorectal cancer therapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
G-protein-coupled receptor (GPCR) kinases (GRKs) interact with ligand-activated GPCR, causing intracellular phosphorylation and interfering with the intracellular signal transduction associated with the development of cancer. Colorectal cancer (CRC) is a fast-growing disease, and its molecular mechanism involves various regulatory proteins, including kinases. However, the GRK mechanism in CRC has not been explored.
Methods
We used an integrated computational approach to investigate the potential of GRK family members as targeted proteins in CRC. The GRK expression levels in tumor and normal tissues, colon adenocarcinoma samples, and metastatic colon adenocarcinoma were analyzed using ONCOMINE, GEPIA, and UALCAN, as well as TNM plots. Genetic changes in the GRK family genes were investigated using cBioportal. The prognostic value related to the gene expression of the GRK family was examined using GEPIA and UALCAN. Co-expression analysis of the GRK family was conducted using COXPRESdb. Association analysis of the Gene Ontology, KEGG pathway enrichment, and drug-gene analyses were performed using the over-representation analysis (ORA) in WebGestalt.
Results
GRK2, GRK3, and GRK5 mRNA levels increased significantly in patients with CRC and metastatic CRC. Genetic changes were detected in patients with CRC, including GRK7 (1.1%), GRK2 (1.7%), GRK4 (2.3%), GRK5 (2.5%), GRK6 (2.5%), GRK3 (2.9%), and GRK1 (4%). CRC patients with low mRNA of GRK7 levels had better disease-free and overall survival than those with high GRK7 levels. Hierarchical clustering analysis revealed significant positive correlations between GRK5 and GRK2 and between GRK2 and GRK6. KEGG pathway enrichment analysis showed that the gene network (GN) regulated several cellular pathways, such as the morphine addiction signaling and chemokine signaling pathways in cancer. The drug-gene association analysis indicated that the GN was associated with several drugs, including reboxetine, pindolol, beta-blocking agents, and protein kinase inhibitors.
Conclusion
No research has been conducted on the relation of GRK1 and GRK7 to cancer, particularly CRC. In this work, genes GRK2, GRK3, GRK5, and GRK6 were found to be oncogenes in CRC. Although inhibitors against GRK2, GRK5, and GRK6 have previously been developed, further research, particularly preclinical and clinical studies, is needed before these agents may be used to treat CRC.
Collapse
|
9
|
He J, Yamamoto M, Sumiyama K, Konagaya Y, Terai K, Matsuda M, Sato S. Two-photon AMPK and ATP imaging reveals the bias between rods and cones in glycolysis utility. FASEB J 2021; 35:e21880. [PMID: 34449091 DOI: 10.1096/fj.202101121r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
In vertebrates, retinal rod and cone photoreceptor cells rely significantly on glycolysis. Lactate released from photoreceptor cells fuels neighboring retinal pigment epithelium cells and Müller glial cells through oxidative phosphorylation. To understand this highly heterogeneous metabolic environment around photoreceptor cells, single-cell analysis is needed. Here, we visualized cellular AMP-activated protein kinase (AMPK) activity and ATP levels in the retina by two-photon microscopy. Transgenic mice expressing a hyBRET-AMPK biosensor were used for measuring the AMPK activity. GO-ATeam2 transgenic mice were used for measuring the ATP level. Temporal metabolic responses were successfully detected in the live retinal explants upon drug perfusion. A glycolysis inhibitor, 2-deoxy-d-glucose (2-DG), activated AMPK and reduced ATP. These effects were clearly stronger in rods than in cones. Notably, rod AMPK and ATP started to recover at 30 min from the onset of 2-DG perfusion. Consistent with these findings, ex vivo electroretinogram recordings showed a transient slowdown in rod dim flash responses during a 60-min 2-DG perfusion, whereas cone responses were not affected. Based on these results, we propose that cones surrounded by highly glycolytic rods become less dependent on glycolysis, and rods also become less dependent on glycolysis within 60 min upon the glycolysis inhibition.
Collapse
Affiliation(s)
- Jiazhou He
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Yumi Konagaya
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Sato
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Sulon SM, Benovic JL. Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. ACTA ACUST UNITED AC 2021; 16:56-65. [PMID: 33718657 DOI: 10.1016/j.coemr.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) interact with three protein families following agonist binding: heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs) and arrestins. GRK-mediated phosphorylation of GPCRs promotes arrestin binding to uncouple the receptor from G protein, a process called desensitization, and for many GPCRs, arrestin binding also promotes receptor endocytosis and intracellular signaling. Thus, GRKs play a central role in modulating GPCR signaling and localization. Here we review recent advances in this field which include additional insight into how GRKs target GPCRs and bias signaling, and the development of specific inhibitors to dissect GRK function in model systems.
Collapse
Affiliation(s)
- Sarah M Sulon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells. Proc Natl Acad Sci U S A 2020; 117:26996-27003. [PMID: 33046651 DOI: 10.1073/pnas.2009164117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Light-induced extrasynaptic dopamine release in the retina reduces adenosine 3',5'-cyclic monophosphate (cAMP) in rod photoreceptor cells, which is thought to mediate light-dependent desensitization. However, the fine time course of the cAMP dynamics in rods remains elusive due to technical difficulty. Here, we visualized the spatiotemporal regulation of cAMP-dependent protein kinase (PKA) in mouse rods by two-photon live imaging of retinal explants of PKAchu mice, which express a fluorescent biosensor for PKA. Unexpectedly, in addition to the light-on-induced suppression, we observed prominent light-off-induced PKA activation. This activation required photopic light intensity and was confined to the illuminated rods. The estimated maximum spectral sensitivity of 489 nm and loss of the light-off-induced PKA activation in rod-transducin-knockout retinas strongly suggest the involvement of rhodopsin. In support of this notion, rhodopsin-deficient retinal explants showed only the light-on-induced PKA suppression. Taken together, these results suggest that, upon photopic light stimulation, rhodopsin and dopamine signals are integrated to shape the light-off-induced cAMP production and following PKA activation. This may support the dark adaptation of rods.
Collapse
|
12
|
Kolesnikov AV, Chrispell JD, Osawa S, Kefalov VJ, Weiss ER. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors. FASEB J 2020; 34:2677-2690. [PMID: 31908030 PMCID: PMC7043924 DOI: 10.1096/fj.201902535r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Timely recovery of the light response in photoreceptors requires efficient inactivation of photoactivated rhodopsin. This process is initiated by phosphorylation of its carboxyl terminus by G protein-coupled receptor kinase 1 (GRK1). Previously, we showed that GRK1 is phosphorylated in the dark at Ser21 in a cAMP-dependent manner and dephosphorylated in the light. Results in vitro indicate that dephosphorylation of Ser21 increases GRK1 activity, leading to increased phosphorylation of rhodopsin. This creates the possibility of light-dependent regulation of GRK1 activity and its efficiency in inactivating the visual pigment. To address the functional role of GRK1 phosphorylation in rods and cones in vivo, we generated mutant mice in which Ser21 is substituted with alanine (GRK1-S21A), preventing dark-dependent phosphorylation of GRK1. GRK1-S21A mice had normal retinal morphology, without evidence of degeneration. The function of dark-adapted GRK1-S21A rods and cones was also unaffected, as demonstrated by the normal amplitude and kinetics of their responses obtained by ex vivo and in vivo ERG recordings. In contrast, rod dark adaptation following exposure to bright bleaching light was significantly delayed in GRK1-S21A mice, suggesting that the higher activity of this kinase results in enhanced rhodopsin phosphorylation and therefore delays its regeneration. In contrast, dark adaptation of cones was unaffected by the S21A mutation. Taken together, these data suggest that rhodopsin phosphorylation/dephosphorylation modulates the recovery of rhodopsin to the ground state and rod dark adaptation. They also reveal a novel role for cAMP-dependent phosphorylation of GRK1 in regulating the dark adaptation of rod but not cone photoreceptors.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Maza NA, Schiesser WE, Calvert PD. An intrinsic compartmentalization code for peripheral membrane proteins in photoreceptor neurons. J Cell Biol 2019; 218:3753-3772. [PMID: 31594805 PMCID: PMC6829649 DOI: 10.1083/jcb.201906024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
In neurons, peripheral membrane proteins are enriched in subcellular compartments, where they play key roles, including transducing and transmitting information. However, little is known about the mechanisms underlying their compartmentalization. To explore the roles of hydrophobic and electrostatic interactions, we engineered probes consisting of lipidation motifs attached to fluorescent proteins by variously charged linkers and expressed them in Xenopus rod photoreceptors. Quantitative live cell imaging showed dramatic differences in distributions and dynamics of the probes, including presynapse and ciliary OS enrichment, depending on lipid moiety and protein surface charge. Opposing extant models of ciliary enrichment, most probes were weakly membrane bound and diffused through the connecting cilium without lipid binding chaperone protein interactions. A diffusion-binding-transport model showed that ciliary enrichment of a rhodopsin kinase probe occurs via recycling as it perpetually leaks out of the ciliary OS. The model accounts for weak membrane binding of peripheral membrane proteins and a leaky connecting cilium diffusion barrier.
Collapse
Affiliation(s)
- Nycole A Maza
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, NY.,Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY
| | - William E Schiesser
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| | - Peter D Calvert
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, NY .,Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY
| |
Collapse
|
14
|
Schott RK, Van Nynatten A, Card DC, Castoe TA, S W Chang B. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Mol Biol Evol 2019; 35:1376-1389. [PMID: 29800394 DOI: 10.1093/molbev/msy025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Daren C Card
- Department of Biology, University of Texas, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, TX
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Lamb TD, Patel HR, Chuah A, Hunt DM. Evolution of the shut-off steps of vertebrate phototransduction. Open Biol 2019; 8:rsob.170232. [PMID: 29321241 PMCID: PMC5795056 DOI: 10.1098/rsob.170232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Different isoforms of the genes involved in phototransduction are expressed in vertebrate rod and cone photoreceptors, providing a unique example of parallel evolution via gene duplication. In this study, we determine the molecular phylogeny of the proteins underlying the shut-off steps of phototransduction in the agnathan and jawed vertebrate lineages. For the G-protein receptor kinases (GRKs), the GRK1 and GRK7 divisions arose prior to the divergence of tunicates, with further expansion during the two rounds of whole-genome duplication (2R); subsequently, jawed and agnathan vertebrates retained different subsets of three isoforms of GRK. For the arrestins, gene expansion occurred during 2R. Importantly, both for GRKs and arrestins, the respective rod isoforms did not emerge until the second round of 2R, just prior to the separation of jawed and agnathan vertebrates. For the triplet of proteins mediating shut-off of the G-protein transducin, RGS9 diverged from RGS11, probably at the second round of 2R, whereas Gβ5 and R9AP appear not to have undergone 2R expansion. Overall, our analysis provides a description of the duplications and losses of phototransduction shut-off genes that occurred during the transition from a chordate with only cone-like photoreceptors to an ancestral vertebrate with both cone- and rod-like photoreceptors.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - Aaron Chuah
- Genome Discovery Unit, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - David M Hunt
- The Lions Eye Institute, The University of Western Australia, Western Australia 6009, Australia.,School of Biological Sciences, The University of Western Australia, Western Australia 6009, Australia
| |
Collapse
|
16
|
Chrispell JD, Dong E, Osawa S, Liu J, Cameron DJ, Weiss ER. Grk1b and Grk7a Both Contribute to the Recovery of the Isolated Cone Photoresponse in Larval Zebrafish. Invest Ophthalmol Vis Sci 2018; 59:5116-5124. [PMID: 30372740 PMCID: PMC6203174 DOI: 10.1167/iovs.18-24455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose To define the functional roles of Grk1 and Grk7 in zebrafish cones in vivo. Methods Genome editing was used to generate grk7a and grk1b knockout zebrafish. Electroretinogram (ERG) analyses of the isolated cone mass receptor potential and the b-wave were performed in dark-adapted zebrafish using a paired flash paradigm to determine recovery of cone photoreceptors and the inner retina after an initial flash. In addition, psychophysical visual response was measured using the optokinetic response (OKR). Results ERG analysis demonstrated that deletion of either Grk1b or Grk7a in zebrafish larvae resulted in modestly lower rates of recovery of the isolated cone mass receptor potential from an initial flash compared to wildtype larvae. On the other hand, grk1b-/- and grk7a-/- larvae exhibited a b-wave recovery that was similar to wildtype larvae. We evaluated the OKR and found that deletion of either Grk1b or Grk7a leads to a small decrease in temporal contrast sensitivity and alterations in visual acuity. Conclusions For the first time, we demonstrate that Grk1b and Grk7a both contribute to visual function in larval zebrafish cones. Since the difference between wildtype and each knockout fish is modest, it appears that either GRK is sufficient for adequate cone visual function.
Collapse
Affiliation(s)
- Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Enheng Dong
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - D. Joshua Cameron
- College of Optometry, Western University of Health Sciences, Pomona, California, United States
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
17
|
Involvement of cannabinoid receptor type 2 in light-induced degeneration of cells from mouse retinal cell line in vitro and mouse photoreceptors in vivo. Exp Eye Res 2018; 167:44-50. [DOI: 10.1016/j.exer.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/18/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022]
|
18
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
19
|
|
20
|
Abstract
G-protein-coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein-coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs, as well as by non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes, and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review, we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes.
Collapse
|
21
|
Chen CKJ. RGS Protein Regulation of Phototransduction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:31-45. [PMID: 26123301 DOI: 10.1016/bs.pmbts.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
First identified in yeast and worm and later in other species, the physiological importance of Regulators of G-protein Signaling (RGS) in mammals was first demonstrated at the turn of the century in mouse retinal photoreceptors, in which RGS9 is needed for timely recovery of rod phototransduction. The role of RGS in vision has also been established a synapse away in retinal depolarizing bipolar cells (DBCs), where RGS7 and RGS11 work redundantly and in a complex with Gβ5-S as GAPs for Goα in the metabotropic glutamate receptor 6 pathway situated at DBC dendritic tips. Much less is known on how RGS protein subserves vision in the rest of the visual system. The research into the roles of RGS proteins in vision holds great potential for many exciting new discoveries.
Collapse
Affiliation(s)
- Ching-Kang Jason Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
22
|
Kim HJ, Son ED, Jung JY, Choi H, Lee TR, Shin DW. Violet light down-regulates the expression of specific differentiation markers through Rhodopsin in normal human epidermal keratinocytes. PLoS One 2013; 8:e73678. [PMID: 24069221 PMCID: PMC3775733 DOI: 10.1371/journal.pone.0073678] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/19/2013] [Indexed: 01/09/2023] Open
Abstract
Several recent reports have demonstrated that photoreceptors are expressed in human skin. The rod and cone photoreceptor-like proteins are expressed in human skin and rhodopsin, long wavelength-opsin, and short wavelength-opsin are also present in cultured murine melanocytes. Furthermore, the photopigment rhodopsin is expressed in human melanocytes and is involved in ultraviolet A phototransduction which induces early melanin synthesis. In this study, we investigated whether rhodopsin is expressed and plays any physiological roles in the normal human epidermal keratinocytes (NHEKs). We found that rhodopsin was expressed and localized on the plasma membrane in NHEKs, and only violet light among several wavelengths within the visible range significantly increased the expression of rhodopsin mRNA. We further found that rhodopsin over-expression decreased the mRNA expression levels of keratinocyte differentiation markers, such as keratin-1 and keratin-10, and violet light also decreased the mRNA expression levels of keratinocyte differentiation markers and these decreased expression levels were recovered by a rhodopsin-directed siRNA. Moreover, we further demonstrated that violet light significantly decreased the phosphorylation levels of cAMP responsive element-binding protein (CREB) and that it more effectively decreased the phosphorylation of CREB when rhodopsin was over-expressed. In addition, we observed that pertussis toxin, a Gαi protein inhibitor, restored the rhodopsin-induced decrease in the differentiation markers in NHEKs. Taken together, these results suggest that rhodopsin down-regulates the expression levels of specific keratinocyte differentiation markers via the Gαi signaling pathway in NHEKs.
Collapse
Affiliation(s)
- Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon-city, Republic of Korea
| | - Eui Dong Son
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
| | - Ji-Yong Jung
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
| | - Hyun Choi
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
- * E-mail: (DWS); (TRL)
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
- * E-mail: (DWS); (TRL)
| |
Collapse
|
23
|
Kunst S, Wolloscheck T, Hölter P, Wengert A, Grether M, Sticht C, Weyer V, Wolfrum U, Spessert R. Transcriptional analysis of rat photoreceptor cells reveals daily regulation of genes important for visual signaling and light damage susceptibility. J Neurochem 2013; 124:757-69. [PMID: 23145934 DOI: 10.1111/jnc.12089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 01/20/2023]
Abstract
Photoreceptor cells face the challenge of adjusting their function and, possibly, their susceptibility to light damage to the marked daily changes in ambient light intensity. To achieve a better understanding of photoreceptor adaptation at the transcriptional level, this study aimed to identify genes which are under daily regulation in photoreceptor cells using microarray analysis and quantitative PCR. Included in the gene set obtained were a number of genes which up until now have not been shown to be expressed in photoreceptor cells, such as Atf3 (activating transcription factor 3) and Pde8a (phosphodiesterase 8A), and others with a known impact on phototransduction and/or photoreceptor survival, such as Grk1 (G protein-coupled receptor kinase 1) and Pgc-1α (peroxisome proliferator-activated receptor γ, coactivator 1alpha). According to their daily dynamics, the genes identified could be clustered in two groups: those with peak expression during the second part of the day which are uniformly promoted to cycle by light/dark transitions and those with peak expression during the second part of the night which are predominantly driven by a clock. Since Grk1 and Pgc-1α belong in the first group, the present results support a concept in which transcriptional regulation of genes by ambient light contributes to the functional adjustment of photoreceptor cells over the 24-h period.
Collapse
Affiliation(s)
- Stefanie Kunst
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Astakhova LA, Samoiliuk EV, Govardovskii VI, Firsov ML. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade. ACTA ACUST UNITED AC 2013; 140:421-33. [PMID: 23008435 PMCID: PMC3457688 DOI: 10.1085/jgp.201210811] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.
Collapse
Affiliation(s)
- Luba A Astakhova
- IM Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | | | |
Collapse
|
25
|
Sterne-Marr R, Baillargeon AI, Michalski KR, Tesmer JJ. Expression, purification, and analysis of G-protein-coupled receptor kinases. Methods Enzymol 2013; 521:347-66. [PMID: 23351749 PMCID: PMC4297658 DOI: 10.1016/b978-0-12-391862-8.00019-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
G-protein-coupled receptor (GPCR) kinases (GRKs) were first identified based on their ability to specifically phosphorylate activated GPCRs. Although many soluble substrates have since been identified, the chief physiological role of GRKs still remains the uncoupling of GPCRs from heterotrimeric G-proteins by promoting β-arrestin binding through the phosphorylation of the receptor. It is expected that GRKs recognize activated GPCRs through a docking site that not only recognizes the active conformation of the transmembrane domain of the receptor but also stabilizes a more catalytically competent state of the kinase domain. Many of the recent gains in understanding GRK-receptor interactions have been gleaned through biochemical and structural analysis of recombinantly expressed GRKs. Described herein are current techniques and procedures being used to express, purify, and assay GRKs in both in vitro and living cells.
Collapse
Affiliation(s)
- Rachel Sterne-Marr
- Biology Department, Siena College, Morrell Science Center, Loudonville, New York, USA
| | - Alison I. Baillargeon
- Department of Chemistry and Biochemistry, Siena College, Morrell Science Center, Loudonville, New York, USA
| | - Kevin R. Michalski
- Department of Chemistry and Biochemistry, Siena College, Morrell Science Center, Loudonville, New York, USA
| | - John J.G. Tesmer
- Life Sciences Institute and the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA,Corresponding author:
| |
Collapse
|
26
|
Van Hook MJ, Wong KY, Berson DM. Dopaminergic modulation of ganglion-cell photoreceptors in rat. Eur J Neurosci 2012; 35:507-18. [PMID: 22304466 DOI: 10.1111/j.1460-9568.2011.07975.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel class of photoreceptors, the intrinsically photosensitive retinal ganglion cells (ipRGCs), express the photopigment melanopsin and drive non-image-forming responses to light such as circadian photoentrainment, the pupillary light reflex and suppression of nocturnal melatonin production in the pineal. Because dendrites from one subclass of these cells - the M1-type ipRGCs - make presumptive synaptic contacts at sites of dopamine release from dopaminergic amacrine cells, they are prime targets for modulation by dopamine, a neuromodulator implicated in retinal circadian rhythms and light adaptation. In patch-clamp recordings from ipRGCs in intact rat retinas, dopamine attenuated the melanopsin-based photocurrent. We confirmed that this was the result of direct action on ipRGCs by replicating the effect in dissociated ipRGCs that were isolated from influences of other retinal neurons. In these recordings, the D1-family dopamine receptor agonist SKF38393 attenuated the photocurrent, caused a modest depolarization, and reduced the input resistance of ipRGCs. The D2-family agonist quinpirole had no effect on the photocurrent. Single-cell reverse-transcriptase polymerase chain reaction revealed that the majority of ipRGCs tested expressed drd1a, the gene coding for the D1a dopamine receptor. This finding was supported by immunohistochemical localization of D1a receptor protein in melanopsin-expressing ganglion cells. Finally, the adenylate cyclase activator forskolin, applied in combination with the phosphodiesterase inhibitor IBMX (isobutylmethylxanthine), mimicked the effects of SKF38393 on the ipRGC photocurrent, membrane potential and input resistance, consistent with a D1-receptor signaling pathway. These data suggest that dopamine, acting via D1-family receptors, alters the responses of ipRGCs and thus of non-image-forming vision.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Neuroscience, Brown University, Box G-LN, Providence, RI, USA
| | | | | |
Collapse
|
27
|
Osawa S, Weiss ER. A tale of two kinases in rods and cones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:821-7. [PMID: 22183412 PMCID: PMC3632502 DOI: 10.1007/978-1-4614-0631-0_105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shoji Osawa
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, CB# 7090, 108 Taylor Hall, Chapel Hill, NC 27599, USA
| | - Ellen R. Weiss
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, CB# 7090, 108 Taylor Hall, Chapel Hill, NC 27599, USA. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA
| |
Collapse
|
28
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2012; 133:40-69. [PMID: 21903131 PMCID: PMC3241883 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
29
|
Unknown Mechanisms Regulating the GPCR Signal Cascade in Vertebrate Photoreceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11055-011-9551-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Osawa S, Jo R, Xiong Y, Reidel B, Tserentsoodol N, Arshavsky VY, Iuvone PM, Weiss ER. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. J Biol Chem 2011; 286:20923-9. [PMID: 21504899 PMCID: PMC3121460 DOI: 10.1074/jbc.m111.230904] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.
Collapse
Affiliation(s)
- Shoji Osawa
- From the Department of Cell and Developmental Biology and
| | - Rebecca Jo
- From the Department of Cell and Developmental Biology and
| | - Yubin Xiong
- From the Department of Cell and Developmental Biology and
| | - Boris Reidel
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | | | - Vadim Y. Arshavsky
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | - P. Michael Iuvone
- the Departments of Pharmacology and Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ellen R. Weiss
- From the Department of Cell and Developmental Biology and
- the Lineberger Comprehensive Cancer Center, the University of North Carolina, Chapel Hill, North Carolina 27599-7090
| |
Collapse
|
31
|
Abstract
Phototransduction in retinal rods is one of the most extensively studied G-protein signaling systems. In recent years, our understanding of the biochemical steps that regulate the deactivation of the rod's response to light has greatly improved. Here, we summarize recent advances and highlight some of the remaining puzzles in this model signaling system.
Collapse
Affiliation(s)
- Marie E Burns
- Departments of Ophthalmology and Vision Science, University of California, Davis, California, USA.
| | | |
Collapse
|
32
|
Abstract
The absorption of photons in rods and cones of the retina activate homologous biochemical signaling cascades that lead to the electrical changes that subserve the first steps in vision. Persistent activity of the cascade interferes with the ability of the photoreceptor to signal the absorption of subsequent photons, ultimately limiting the photoreceptor's sensitivity and temporal resolution. This article summarizes recent work on transgenic and knockout mouse rods that has revealed the deactivation mechanisms essential for normal response recovery and how each of these processes contributes to the overall time course of the flash response of rods.
Collapse
Affiliation(s)
- Marie E. Burns
- From the Department of Ophthalmology and Vision Science and Center for Neuroscience, University of California, Davis, Davis, California
| |
Collapse
|
33
|
Whitaker CM, Cooper NGF. Differential distribution of exchange proteins directly activated by cyclic AMP within the adult rat retina. Neuroscience 2009; 165:955-67. [PMID: 19883736 DOI: 10.1016/j.neuroscience.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/09/2009] [Accepted: 10/27/2009] [Indexed: 12/15/2022]
Abstract
The recently discovered exchange protein directly activated by cAMP (Epac), a guanine exchange factor for the G-protein RAP-1, is directly activated by cAMP independently of protein kinase A (PKA). While cAMP is known to be an important second messenger in the retina, the presence of Epac has not been investigated in this tissue. The goal of the present study was to determine if the Epac1 and Epac2 genes are present and to characterize their location within the retina. Western blot analysis revealed that Epac1 and Epac2 proteins are expressed within the retina, and the presence of mRNA was demonstrated with the aid of reverse transcriptase polymerase chain reaction (RT-PCR). Additionally, we used immunofluorescence and confocal microscopy to demonstrate that Epac1 and Epac2 have overlapping as well as unique distributions within the retina. Both are present within horizontal cells, rod and cone bipolar cells, cholinergic amacrine cells, retrograde labeled retinal ganglion cells, and Müller cells. Uniquely, Epac2 was expressed by cone photoreceptor inner and outer segments, cell bodies, and synaptic terminals. In contrast, Epac1 was expressed in vesicular glutamate transporter 1 (VGlut1) and C-terminal binding protein 2 (CtBP2) positive photoreceptor synaptic terminals. Together, these results provide evidence that Epac1 and Epac2 are differentially expressed within the retina and provide the framework for further functional studies of cAMP pathways within the retina.
Collapse
Affiliation(s)
- C M Whitaker
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
34
|
Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T, Takamatsu T. Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 2009; 41:232-9. [PMID: 19291756 DOI: 10.1002/lsm.20750] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-energy laser irradiation (low-level laser therapy) (LELI/LLLT/photobiomodulation) has been found to modulate various biological effects, especially those involved in promoting cell proliferation. Synovial fibroblasts are important in maintaining the homeostasis of articular joints and have strong chondrogenetic capacity. Here, we investigated the effect and molecular basis of LELI on synovial fibroblast proliferation. STUDY DESIGN/MATERIALS AND METHODS HIG-82 rabbit synovial fibroblasts were cultured, and laser irradiation (660 nm) was applied at the power density of 40 mW/cm(2) for 2 minutes, corresponding to laser fluence of 4.8 J/cm(2). The effect of LELI on cell proliferation, cell cycle progression, and expression of cyclin-dependent kinase inhibitors (CKIs) were investigated. We also examined whether the effects of LELI on HIG-82 cell proliferation were affected by cAMP content, which is known to influence the cell cycle via inducing CKIs. RESULTS LELI promoted HIG-82 synovial fibroblast proliferation and induced cytoplasmic localization of cyclin-dependent kinase inhibitor p15 (INK4B/CDKN2B). Moreover, the proliferation of HIG-82 synovial fibroblasts was reduced by cAMP, while cAMP inhibitor, SQ22536, induced p15 cytoplasmic localization and as a result, elevated synovial fibroblast proliferation was observed. In addition, the promotive effect of LELI-induced HIG-82 synovial fibroblast proliferation was abolished by cAMP treatment. Our findings suggest that cAMP may be involved in the effect of LELI on synovial fibroblast proliferation. CONCLUSION We revealed the effect and molecular link involved in synovial fibroblast proliferation induced by 660-nm LELI. Our study provides new insights into the mechanisms by which LELI has biological effects on synovial fibroblast proliferation. These insights may contribute to further investigation on biological effects and application of LELI in regenerative medicine.
Collapse
Affiliation(s)
- Daigo Taniguchi
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Osawa S, Jo R, Weiss ER. Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light. J Neurochem 2008; 107:1314-24. [PMID: 18803695 DOI: 10.1111/j.1471-4159.2008.05691.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The retina-specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicates that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA.
Collapse
Affiliation(s)
- Shoji Osawa
- Department of Cell and Developmental Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090, USA
| | | | | |
Collapse
|
36
|
Hayashi T, Gekka T, Takeuchi T, Goto-Omoto S, Kitahara K. A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses. Ophthalmology 2006; 114:134-41. [PMID: 17070587 DOI: 10.1016/j.ophtha.2006.05.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 04/01/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022] Open
Abstract
PURPOSE The only mutations reported to date in Japanese patients with Oguchi disease, a rare form of stationary night blindness with autosomal recessive transmission, have been in the SAG (arrestin) gene. The objective of this study was to describe the ophthalmic features and a novel mutation in the GRK1 (rhodopsin kinase) gene in 2 Japanese patients with Oguchi disease. DESIGN Molecular genetic and observational case study. PARTICIPANTS A consanguineous family including 2 siblings with Oguchi disease (a 35-year-old man and a 31-year-old woman). METHODS Best-corrected visual acuity (BCVA), fundus examinations, Goldmann perimetry, color vision tests, and full-field electroretinograms (ERGs) were evaluated. Mutation screening of the SAG and GRK1 genes was performed with polymerase chain reaction amplification and direct sequencing. MAIN OUTCOME MEASURES Mutations in the GRK1 gene, BCVA, color vision, fundus photographs, visual fields, and ERG findings. RESULTS Molecular analysis revealed a novel homozygous missense mutation (p.P391H) in the GRK1 gene in both patients. Proline 391 is not only within the functionally important catalytic domain, but is also a phylogenetically conserved amino acid residue among GRK1 orthologs and homologs. No mutation was found in the SAG gene. The unaffected parents were heterozygous carriers of the mutation. Both patients had night blindness, 1.5 BCVA for each eye, normal color vision, and typical fundus appearance with golden-yellow discoloration. The visual fields were normal in the male sibling. The ERGs showed no rod B waves, reduced standard combined responses, and markedly reduced single-flash cone and 30-Hz flicker responses in both patients. CONCLUSIONS A novel homozygous GRK1 mutation (p.P391H) was found in 2 Japanese siblings with Oguchi disease. Visual function in the 2 patients has not deteriorated with age, indicating that the disease is stationary. This is the first report of any patient with GRK1-associated Oguchi disease with markedly reduced cone responses.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Department of Ophthalmology, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
37
|
Wada Y, Sugiyama J, Okano T, Fukada Y. GRK1 and GRK7: unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones. J Neurochem 2006; 98:824-37. [PMID: 16787417 DOI: 10.1111/j.1471-4159.2006.03920.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal cone cells exhibit distinctive photoresponse with a more restrained sensitivity to light and a more rapid shutoff kinetics than those of rods. To understand the molecular basis for these characteristics of cone responses, we focused on the opsin deactivation process initiated by G protein-coupled receptor kinase (GRK) 1 and GRK7 in the zebrafish, an animal model suitable for studies on retinal physiology and biochemistry. Screening of the ocular cDNAs identified two homologs for each of GRK1 (1A and 1B) and GRK7 (7-1 and 7-2), and they were classified into three GRK subfamilies, 1 A, 1B and 7 by phylogenetic analysis. In situ hybridization and immunohistochemical studies localized both GRK1B and GRK7-1 in the cone outer segments and GRK1A in the rod outer segments. The opsin/GRKs molar ratio was estimated to be 569 in the rod and 153 in the cone. The recombinant GRKs phosphorylated light-activated rhodopsin, and the Vmax value of the major cone subtype, GRK7-1, was 32-fold higher than that of the rod kinase, GRK1A. The reinforced activity of the cone kinase should provide a strengthened shutoff mechanism of the light-signaling in the cone and contribute to the characteristics of the cone responses by reducing signal amplification efficiency.
Collapse
Affiliation(s)
- Yasutaka Wada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
38
|
Chen CK. The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol 2006; 154:101-21. [PMID: 16634148 DOI: 10.1007/s10254-005-0004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The biochemical cascade which transduces light into a neuronal signal in retinal photoreceptors is a heterotrimeric GTP-binding protein (G protein) signaling pathway called phototransduction. Works from psychophysicists, electrophysiologists, biochemists, and geneticists over several decades have come together to shape our understanding of how photon absorption leads to photoreceptor membrane hyperpolarization. The insights of phototransduction provide the foundation for a mechanistic account of signaling from many other G protein-coupled receptors (GPCR) found throughout nature. The application of reverse genetic techniques has strengthened many historic findings and helped to describe this pathway at greater molecular details. However, many important questions remain to be answered.
Collapse
Affiliation(s)
- C K Chen
- Virginia Commonwealth University, Department of Biochemistry, 1101 E. Marshall Street, Rm 2-032, Richmond, 23298-0614 VA, USA.
| |
Collapse
|
39
|
Abstract
For over 30 years, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and G protein signaling. Recently, photoreceptors have become an equally attractive model for studying many facets of neuronal cell biology. The primary goal of this review is to illustrate this rapidly growing trend. We will highlight the areas of active research in photoreceptor biology that reveal how different specialized compartments of the cell cooperate in fulfilling its overall function: converting photon absorption into changes in neurotransmitter release. The same trend brings us closer to understanding how defects in photoreceptor signaling can lead to cell death and retinal degeneration.
Collapse
Affiliation(s)
- Marie E Burns
- Center for Neuroscience and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California 95616, USA.
| | | |
Collapse
|