1
|
Visser N, Nelemans LC, He Y, Lourens HJ, Corrales MG, Huls G, Wiersma VR, Schuringa JJ, Bremer E. Signal regulatory protein beta 2 is a novel positive regulator of innate anticancer immunity. Front Immunol 2023; 14:1287256. [PMID: 38116002 PMCID: PMC10729450 DOI: 10.3389/fimmu.2023.1287256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
In recent years, the therapeutic (re)activation of innate anticancer immunity has gained prominence, with therapeutic blocking of the interaction of Signal Regulatory Protein (SIRP)-α with its ligand CD47 yielding complete responses in refractory and relapsed B cell lymphoma patients. SIRP-α has as crucial inhibitory role on phagocytes, with e.g., its aberrant activation enabling the escape of cancer cells from immune surveillance. SIRP-α belongs to a family of paired receptors comprised of not only immune-inhibitory, but also putative immune-stimulatory receptors. Here, we report that an as yet uninvestigated SIRP family member, SIRP-beta 2 (SIRP-ß2), is strongly expressed under normal physiological conditions in macrophages and granulocytes at protein level. Endogenous expression of SIRP-ß2 on granulocytes correlated with trogocytosis of cancer cells. Further, ectopic expression of SIRP-ß2 stimulated macrophage adhesion, differentiation and cancer cell phagocytosis as well as potentiated macrophage-mediated activation of T cell Receptor-specific T cell activation. SIRP-ß2 recruited the immune activating adaptor protein DAP12 to positively regulate innate immunity, with the charged lysine 202 of SIRP-ß2 being responsible for interaction with DAP12. Mutation of lysine 202 to leucine lead to a complete loss of the increased adhesion and phagocytosis. In conclusion, SIRP-ß2 is a novel positive regulator of innate anticancer immunity and a potential costimulatory target for innate immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| |
Collapse
|
2
|
T Cells Expressing NKG2D CAR with a DAP12 Signaling Domain Stimulate Lower Cytokine Production While Effective in Tumor Eradication. Mol Ther 2020; 29:75-85. [PMID: 32956627 DOI: 10.1016/j.ymthe.2020.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/08/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-related toxicity associated with the use of highly active chimeric antigen receptor T cells (CAR-T cells) is a significant clinical problem. By fusing the natural killer group 2D (NKG2D) ectodomain to 4-1BB and the DAP12 cytoplasmic domain containing only one immunoreceptor tyrosine-based activation motif, we have developed a 2nd-generation (2nd-Gen) NKG2D CAR for stable expression in human T cells. When compared to T cells modified with NKG2D CAR containing the commonly used CD3ζ activation domain, T cells expressing the NKG2D-DAP12 CAR stimulated lower level release of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin (IL)-2 during tumor cell lysis and their proliferative activity was lower upon repeated antigen stimulation, although no difference between the two CARs was observed in mediating in vitro tumor cell lysis. In tumor-bearing NSG mice, both types of CAR-T cells displayed similar anti-tumor activity, being able to completely eradicate established solid tumor xenografts. However, treatment with the NKG2D-CD3ζ CAR-T cells led to the death of most mice from xenogeneic graft versus host disease starting 30 days post-CAR-T cell injection, which was associated with a higher level of cytokine release, whereas all the mice treated with the NKG2D-DAP12 CAR-T cells survived well. Thus, the incorporation of the DAP12 activation domain in a CAR design may possibly provide a potential clinical advantage in mitigating the risk of cytokine release syndrome (CRS).
Collapse
|
3
|
Zheng L, Ren L, Kouhi A, Khawli LA, Hu P, Kaslow HR, Epstein AL. A Humanized Lym-1 CAR with Novel DAP10/DAP12 Signaling Domains Demonstrates Reduced Tonic Signaling and Increased Antitumor Activity in B-Cell Lymphoma Models. Clin Cancer Res 2020; 26:3694-3706. [PMID: 32273277 DOI: 10.1158/1078-0432.ccr-19-3417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/19/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The murine Lym-1 mAb targets a discontinuous epitope (Lym-1 epitope) on several subtypes of HLA-DR, which is upregulated in a majority of human B-cell lymphomas and leukemias. Unlike CD19, the Lym-1 epitope does not downregulate upon crosslinking, which may provide an advantage as a target for CAR T-cell therapy. Lym-1 CAR T cells with a conventional 4-1BB and CD3ζ (BB3z) signaling domain exhibited impaired ex vivo expansion. This study aimed to identify the underlying mechanisms and develop strategies to overcome this effect. EXPERIMENTAL DESIGN A functional humanized Lym-1 antibody (huLym-1-B) was identified and its scFv form was used for CAR design. To overcome observed impaired expansion in vitro, a huLym-1-B CAR using DAP10 and DAP12 (DAP) signaling domains was evaluated for ex vivo expansion and in vivo function. RESULTS Impaired expansion in huLym-1-B-BB3z CAR T cells was shown to be due to ligand-dependent suboptimal CAR signaling caused by interaction of the CAR binding domain and the surface of human T cells. Using the novel DAP signaling domain construct, the effects of suboptimal CAR signaling were overcome to produce huLym-1-B CAR T cells with improved expansion ex vivo and function in vivo. In addition, the Lym-1 epitope does not significantly downregulate in response to huLym-1-B-DAP CAR T cells both ex vivo and in vivo. CONCLUSIONS DAP intracellular domains can serve as signaling motifs for CAR, and this new construct enables nonimpaired production of huLym-1-B CAR T cells with potent in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Long Zheng
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Luqing Ren
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Aida Kouhi
- School of Pharmacy, University of Southern California, Los Angeles, California
| | - Leslie A Khawli
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Harvey R Kaslow
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
4
|
López-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S. NKG2D signaling in cancer immunosurveillance. Int J Cancer 2014; 136:1741-50. [DOI: 10.1002/ijc.28775] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| | | | - Andrea Acebes-Huerta
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| | - Mónica Villa-Alvarez
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| | - Segundo Gonzalez
- Departamento de Biología Funcional; Universidad de Oviedo; IUOPA, Asturias Spain
| |
Collapse
|
5
|
Merck E, Voyle RB, MacDonald HR. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. THE JOURNAL OF IMMUNOLOGY 2009; 182:183-92. [PMID: 19109149 DOI: 10.4049/jimmunol.182.1.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.
Collapse
Affiliation(s)
- Estelle Merck
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
6
|
Abstract
The activating receptor NKG2D (natural-killer group 2, member D) and its ligands play an important role in the NK, gammadelta(+) and CD8(+) T-cell-mediated immune response to tumors. Ligands for NKG2D are rarely detectable on the surface of healthy cells and tissues, but are frequently expressed by tumor cell lines and in tumor tissues. It is evident that the expression levels of these ligands on target cells have to be tightly regulated to allow immune cell activation against tumors, but at the same time avoid destruction of healthy tissues. Importantly, it was recently discovered that another safeguard mechanism controlling activation via the receptor NKG2D exists. It was shown that NKG2D signaling is coupled to the IL-15 receptor pathway in a cell-specific manner suggesting that priming of NKG2D-mediated activation depends on the cellular microenvironment and the distinct cellular context. This review will provide a broad overview of our up-to-date knowledge of the NKG2D receptor and its ligands in the context of tumor immunology. Strategies to amplify NKG2D-mediated antitumor responses and counteract tumor immune escape mechanisms will be discussed.
Collapse
|
7
|
Divangahi M, Yang T, Kugathasan K, McCormick S, Takenaka S, Gaschler G, Ashkar A, Stampfli M, Gauldie J, Bramson J, Takai T, Brown E, Yokoyama WM, Aoki N, Xing Z. Critical negative regulation of type 1 T cell immunity and immunopathology by signaling adaptor DAP12 during intracellular infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:4015-26. [PMID: 17785840 DOI: 10.4049/jimmunol.179.6.4015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmembrane signaling adaptor DAP12 has increasingly been recognized for its important role in innate responses. However, its role in the regulation of antimicrobial T cell responses has remained unknown. In our current study, we have examined host defense, T cell responses, and tissue immunopathology in models of intracellular infection established in wild-type and DAP12-deficient mice. During mycobacterial infection, lack of DAP12 leads to pronounced proinflammatory and Th1 cytokine responses, overactivation of Ag-specific CD4 and CD8 T cells of type 1 phenotype, and heightened immunopathology both in the lung and lymphoid organs. DAP12-deficient airway APC display enhanced NF-kappaB activation and cytokine responses upon TLR stimulation or mycobacterial infection in vitro. Of importance, adoptive transfer of Ag-loaded DAP12-deficient APC alone could lead to overactivation of transferred transgenic or endogenous wild-type T cells in vivo. We have further found that the immune regulatory role by DAP12 is not restricted only to intracellular bacterial infection, since lack of this molecule also leads to uncontrolled type 1 T cell activation and severe immunopathology and tissue injury during intracellular viral infection. Our study thus identifies DAP12 as an important novel immune regulatory molecule that acts, via APC, to control the level of antimicrobial type 1 T cell activation and immunopathology.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/virology
- Cytokines/biosynthesis
- Down-Regulation/genetics
- Down-Regulation/immunology
- Granuloma/genetics
- Granuloma/immunology
- Granuloma/microbiology
- Granuloma/pathology
- Immunity, Innate/genetics
- Immunophenotyping
- Inflammation Mediators/metabolism
- Inflammation Mediators/physiology
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Intracellular Fluid/microbiology
- Intracellular Fluid/virology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mycobacterium bovis/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/prevention & control
- T-Box Domain Proteins/biosynthesis
- T-Box Domain Proteins/genetics
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/microbiology
- Th1 Cells/virology
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
Collapse
Affiliation(s)
- Maziar Divangahi
- Infectious Diseases Division, Centre for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Natural killer (NK) cells have originally been identified based on their capacity to kill transformed cells in a seemingly non-specific fashion. Over the last 15 years, knowledge on receptor ligand systems used by NK cells to specifically detect transformed cells has been accumulating rapidly. One of these receptor ligand systems, the NKG2D pathway, has received particular attention, and now serves as a paradigm for how the immune system is able to gather information about the health status of autologous host cells. In addition to its significance on NK cells, NKG2D, as well as other NK cell receptors, play significant roles on T cells. This review aims at summarizing recent insights into the regulation of NKG2D function, the control over NKG2D ligand expression and the role of NKG2D in tumor immunity. Finally, we will discuss first attempts to exploit NKG2D function to improve immunity to tumors.
Collapse
Affiliation(s)
- Jérôme D Coudert
- Ludwig Institute for Cancer Research, Lausanne Branch and University of Lausanne, Ch des Boveresses 155, Epalinges, Switzerland
| | | |
Collapse
|
9
|
Lahoud MH, Proietto AI, Gartlan KH, Kitsoulis S, Curtis J, Wettenhall J, Sofi M, Daunt C, O'keeffe M, Caminschi I, Satterley K, Rizzitelli A, Schnorrer P, Hinohara A, Yamaguchi Y, Wu L, Smyth G, Handman E, Shortman K, Wright MD. Signal regulatory protein molecules are differentially expressed by CD8- dendritic cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:372-82. [PMID: 16785533 DOI: 10.4049/jimmunol.177.1.372] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A normalized subtracted gene expression library was generated from freshly isolated mouse dendritic cells (DC) of all subtypes, then used to construct cDNA microarrays. The gene expression profiles of the three splenic conventional DC (cDC) subsets were compared by microarray hybridization and two genes encoding signal regulatory protein beta (Sirpbeta1 and Sirpbeta4) molecules were identified as differentially expressed in CD8(-) cDC. Genomic sequence analysis revealed a third Sirpbeta member localized in the same gene cluster. These Sirpbeta genes encode cell surface molecules containing extracellular Ig domains and short intracytoplasmic domains that have a charged amino acid in the transmembrane region which can potentially interact with ITAM-bearing molecules to mediate signaling. Indeed, we demonstrated interactions between Sirpbeta1 and beta2 with the ITAM-bearing signaling molecule Dap12. Real-time PCR analysis showed that all three Sirpbeta genes were expressed by CD8(-) cDC, but not by CD8(+) cDC or plasmacytoid pre-DC. The related Sirpalpha gene showed a similar expression profile on cDC subtypes but was also expressed by plasmacytoid pre-DC. The differential expression of Sirpalpha and Sirpbeta1 molecules on DC was confirmed by staining with mAbs, including a new mAb recognizing Sirpbeta1. Cross-linking of Sirpbeta1 on DC resulted in a reduction in phagocytosis of Leishmania major parasites, but did not affect phagocytosis of latex beads, perhaps indicating that the regulation of phagocytosis by Sirpbeta1 is a ligand-dependent interaction. Thus, we postulate that the differential expression of these molecules may confer the ability to regulate the phagocytosis of particular ligands to CD8(-) cDC.
Collapse
Affiliation(s)
- Mireille H Lahoud
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
NKG2D is a type II transmembrane-anchored glycoprotein expressed as a disulfide-linked homodimer on the surface of all mouse and human natural killer cells (NK cells). Stimulation of NK cells through NKG2D triggers cell-mediated cytotoxicity and in some cases induces the production of cytokines. NKG2D binds to family of ligands with structural homology to MHC class I, however, unlike conventional MHC class I molecules, NKG2D ligands often display up-regulated surface expression on stressed cells and are frequently over expressed by tumors. Recent evidence clearly implicates that NKG2D recognition plays an important role in tumor immune surveillance and that NKG2D primarily acts to trigger perforin-mediated apoptosis. The data begin to place the NKG2D pathway into the context of other recognition-effector systems used by NK cells.
Collapse
Affiliation(s)
- Yoshihiro Hayakawa
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Vic. 3002, Australia
| | | |
Collapse
|