1
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
2
|
Renò F, De Andrea M, Raviola S, Migliario M, Invernizzi M. Clodronate Reduces ATP-Containing Microvesicle Releasing Induced by Nociceptive Stimuli in Human Keratinocytes. Int J Mol Sci 2024; 25:8435. [PMID: 39126004 PMCID: PMC11312912 DOI: 10.3390/ijms25158435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Clodronate (Clod), a first-generation bisphosphonate, acts as a natural analgesic inhibiting vesicular storage of the nociception mediator ATP by vesicular nucleotide transporter (VNUT). Epidermal keratinocytes participate in cutaneous nociception, accumulating ATP within vesicles, which are released following different stimulations. Under stress conditions, keratinocytes produce microvesicles (MVs) by shedding from plasma membrane evagination. MV secretion has been identified as a novel and universal mode of intercellular communication between cells. The aim of this project was to evaluate if two nociceptive stimuli, Capsaicin and Potassium Hydroxide (KOH), could stimulate MV shedding from human keratinocytes, if these MVs could contain ATP, and if Clod could inhibit this phenomenon. In our cellular model, the HaCaT keratinocyte monolayer, both Capsaicin and KOH stimulated MV release after 3 h incubation, and the released MVs contained ATP. Moreover, Clod (5 µM) was able to reduce Caps-induced MV release and abolish the one KOH induced, while the Dansylcadaverine, an endocytosis inhibitor of Clod uptake, partially failed to block the bisphosphonate activity. Based on these new data and given the role of the activation of ATP release by keratinocytes as a vehicle for nociception and pain, the "old" bisphosphonate Clodronate could provide the pharmacological basis to develop new local analgesic drugs.
Collapse
Affiliation(s)
- Filippo Renò
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Eastern Piedmont, Corso Trieste, 15/A, 28100 Novara, Italy; (M.D.A.); (S.R.)
- Department of Public Health and Pediatric Sciences, University of Turin, Via Verdi 8, 10124 Turin, Italy
| | - Stefano Raviola
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Eastern Piedmont, Corso Trieste, 15/A, 28100 Novara, Italy; (M.D.A.); (S.R.)
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Mario Migliario
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| |
Collapse
|
3
|
Pawlowska R, Radzikowska-Cieciura E, Jafari S, Fastyn J, Korkus E, Gendaszewska-Darmach E, Zhao G, Snaar-Jagalska E, Chworos A. Double-modified, thio and methylene ATP analogue facilitates wound healing in vitro and in vivo. Sci Rep 2024; 14:13148. [PMID: 38849425 PMCID: PMC11161507 DOI: 10.1038/s41598-024-63759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Recent data indicate that extracellular ATP affects wound healing efficacy via P2Y2-dependent signaling pathway. In the current work, we propose double-modified ATP analogue-alpha-thio-beta,gamma-methylene-ATP as a potential therapeutic agent for a skin regeneration. For the better understanding of structure-activity relationship, beside tested ATP analogues, the appropriate single-modified derivatives of target compound, such as alpha-thio-ATP and beta,gamma-methylene-ATP, were also tested in the context of their involvement in the activation of ATP-dependent purinergic signaling pathway via the P2Y2 receptor. The diastereomerically pure alpha-thio-modified-ATP derivatives were obtained using the oxathiaphospholane method as separate SP and RP diastereomers. Both the single- and double- modified ATP analogues were then tested for their impact on the viability and migration of human keratinocytes. The involvement of P2Y2-dependent purinergic signaling was analyzed in silico by molecular docking of the tested compounds to the P2Y2 receptor and experimentally by studying intracellular calcium mobilization in the human keratinocytes HaCaT. The effects obtained for ATP analogues were compared with the results for ATP as a natural P2Y2 agonist. To confirm the contribution of the P2Y2 receptor to the observed effects, the tests were also performed in the presence of the selective P2Y2 antagonist-AR-C118925XX. The ability of the alpha-thio-beta,gamma-methylene-ATP to influence cell migration was analyzed in vitro on the model HaCaT and MDA-MB-231 cells by wound healing assay and transwell migration test as well as in vivo using zebrafish system. The impact on tissue regeneration was estimated based on the regrowth rate of cut zebrafish tails. The in vitro and in vivo studies have shown that the SP-alpha-thio-beta,gamma-methylene-ATP analogue promotes regeneration-related processes, making it a suitable agent for enhance wound healing. Performed studies indicated its impact on the cell migration, induction of epithelial-mesenchymal transition and intracellular calcium mobilization. The enhanced regeneration of cut zebrafish tails confirmed the pro-regenerative activity of this ATP analogue. Based on the performed studies, the SP-alpha-thio-beta,gamma-methylene-ATP is proposed as a potential therapeutic agent for wound healing and skin regeneration treatment.
Collapse
Affiliation(s)
- Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Ewa Radzikowska-Cieciura
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Sepideh Jafari
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Julia Fastyn
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Eliza Korkus
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Gangyin Zhao
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
4
|
He X, Gao X, Guo Y, Xie W. Research Progress on Bioactive Factors against Skin Aging. Int J Mol Sci 2024; 25:3797. [PMID: 38612608 PMCID: PMC11011925 DOI: 10.3390/ijms25073797] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The relentless pursuit of effective strategies against skin aging has led to significant interest in the role of bioactive factors, particularly secondary metabolites from natural sources. The purpose of this study is to meticulously explore and summarize the recent advancements in understanding and utilization of bioactive factors against skin aging, with a focus on their sources, mechanisms of action, and therapeutic potential. Skin, the largest organ of the body, directly interacts with the external environment, making it susceptible to aging influenced by factors such as UV radiation, pollution, and oxidative stress. Among various interventions, bioactive factors, including peptides, amino acids, and secondary metabolites, have shown promising anti-aging effects by modulating the biological pathways associated with skin integrity and youthfulness. This article provides a comprehensive overview of these bioactive compounds, emphasizing collagen peptides, antioxidants, and herbal extracts, and discusses their effectiveness in promoting collagen synthesis, enhancing skin barrier function, and mitigating the visible signs of aging. By presenting a synthesis of the current research, this study aims to highlight the therapeutic potential of these bioactive factors in developing innovative anti-aging skin care solutions, thereby contributing to the broader field of dermatological research and offering new perspectives for future studies. Our findings underscore the importance of the continued exploration of bioactive compounds for their potential to revolutionize anti-aging skin care and improve skin health and aesthetics.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Yifan Guo
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.); (Y.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Saffioti NA, Alvarez CL, Bazzi Z, Gentilini MV, Gondolesi GE, Schwarzbaum PJ, Schachter J. Dynamic recycling of extracellular ATP in human epithelial intestinal cells. PLoS Comput Biol 2023; 19:e1011196. [PMID: 37384797 DOI: 10.1371/journal.pcbi.1011196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Intestinal epithelial cells play important roles in the absorption of nutrients, secretion of electrolytes and food digestion. The function of these cells is strongly influenced by purinergic signalling activated by extracellular ATP (eATP) and other nucleotides. The activity of several ecto-enzymes determines the dynamic regulation of eATP. In pathological contexts, eATP may act as a danger signal controlling a variety of purinergic responses aimed at defending the organism from pathogens present in the intestinal lumen. In this study, we characterized the dynamics of eATP on polarised and non-polarised Caco-2 cells. eATP was quantified by luminometry using the luciferin-luciferase reaction. Results show that non-polarized Caco-2 cells triggered a strong but transient release of intracellular ATP after hypotonic stimuli, leading to low micromolar eATP accumulation. Subsequent eATP hydrolysis mainly determined eATP decay, though this effect could be counterbalanced by eATP synthesis by ecto-kinases kinetically characterized in this study. In polarized Caco-2 cells, eATP showed a faster turnover at the apical vs the basolateral side. To quantify the extent to which different processes contribute to eATP regulation, we created a data-driven mathematical model of the metabolism of extracellular nucleotides. Model simulations showed that eATP recycling by ecto-AK is more efficient a low micromolar eADP concentrations and is favored by the low eADPase activity of Caco-2 cells. Simulations also indicated that a transient eATP increase could be observed upon the addition of non-adenine nucleotides due the high ecto-NDPK activity in these cells. Model parameters showed that ecto-kinases are asymmetrically distributed upon polarization, with the apical side having activity levels generally greater in comparison with the basolateral side or the non-polarized cells. Finally, experiments using human intestinal epithelial cells confirmed the presence of functional ecto-kinases promoting eATP synthesis. The adaptive value of eATP regulation and purinergic signalling in the intestine is discussed.
Collapse
Affiliation(s)
- Nicolas Andres Saffioti
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
- Instituto de Nanosistemas, Universidad Nacional de General San Martin, Buenos Aires, Argentina
| | - Cora Lilia Alvarez
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Zaher Bazzi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
| | - María Virginia Gentilini
- Fundación Favaloro Hospital Universitario, Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Buenos Aires, Argentina
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB, CONICET, Universidad Favaloro), Laboratorio de Inmunología asociada al Trasplante, Buenos Aires, Argentina
| | - Gabriel Eduardo Gondolesi
- Fundación Favaloro Hospital Universitario, Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Buenos Aires, Argentina
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB, CONICET, Universidad Favaloro), Laboratorio de Inmunología asociada al Trasplante, Buenos Aires, Argentina
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
| | - Julieta Schachter
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Buenos Aires, Argentina
| |
Collapse
|
6
|
Noronha-Matos JB, Pinto-Cardoso R, Bessa-Andrês C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Marinhas J, Freitas R, Lemos R, Vilaça A, Oliveira A, Pelletier J, Sévigny J, Correia-de-Sá P. Silencing NTPDase3 activity rehabilitates the osteogenic commitment of post-menopausal stem cell bone progenitors. Stem Cell Res Ther 2023; 14:97. [PMID: 37076930 PMCID: PMC10116749 DOI: 10.1186/s13287-023-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y6 receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs. METHODS MSCs were harvested from the bone marrow of Pm women (69 ± 2 years old) and younger female controls (22 ± 4 years old). The cells were allowed to grow for 35 days in an osteogenic-inducing medium in either the absence or the presence of NTPDase3 inhibitors (PSB 06126 and hN3-B3s antibody); pre-treatment with a lentiviral short hairpin RNA (Lenti-shRNA) was used to silence the NTPDase3 gene expression. Immunofluorescence confocal microscopy was used to monitor protein cell densities. The osteogenic commitment of BM-MSCs was assessed by increases in the alkaline phosphatase (ALP) activity. The amount of the osteogenic transcription factor Osterix and the alizarin red-stained bone nodule formation. ATP was measured with the luciferin-luciferase bioluminescence assay. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC RESULTS: The extracellular catabolism of ATP and UDP was faster in BM-MSCs from Pm women compared to younger females. The immunoreactivity against NTPDase3 increased 5.6-fold in BM-MSCs from Pm women vs. younger females. Selective inhibition or transient NTPDase3 gene silencing increased the extracellular accumulation of adenine and uracil nucleotides in cultured Pm BM-MSCs. Downregulation of NTPDase3 expression or activity rehabilitated the osteogenic commitment of Pm BM-MSCs measured as increases in ALP activity, Osterix protein cellular content and bone nodule formation; blockage of P2X7 and P2Y6 purinoceptors prevented this effect. CONCLUSIONS Data suggest that NTPDase3 overexpression in BM-MSCs may be a clinical surrogate of the osteogenic differentiation impairment in Pm women. Thus, besides P2X7 and P2Y6 receptors activation, targeting NTPDase3 may represent a novel therapeutic strategy to increase bone mass and reduce the osteoporotic risk of fractures in Pm women.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| | - Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
- Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UP), 4050-313, Porto, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rui Lemos
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Adélio Vilaça
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - António Oliveira
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| |
Collapse
|
7
|
Shen Q, Yang H, Kong QP, Li GH, Li L. Metabolic Modeling Identifies a Novel Molecular Type of Glioblastoma Associated with Good Prognosis. Metabolites 2023; 13:metabo13020172. [PMID: 36837790 PMCID: PMC9964559 DOI: 10.3390/metabo13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive forms of cancer. Although IDH1 mutation indicates a good prognosis and a potential target for treatment, most GBMs are IDH1 wild-type. Identifying additional molecular markers would help to generate personalized therapies and improve patient outcomes. Here, we used our recently developed metabolic modeling method (genome-wide precision metabolic modeling, GPMM) to investigate the metabolic profiles of GBM, aiming to identify additional novel molecular markers for this disease. We systematically analyzed the metabolic reaction profiles of 149 GBM samples lacking IDH1 mutation. Forty-eight reactions showing significant association with prognosis were identified. Further analysis indicated that the purine recycling, nucleotide interconversion, and folate metabolism pathways were the most robust modules related to prognosis. Considering the three pathways, we then identified the most significant GBM type for a better prognosis, namely N+P-. This type presented high nucleotide interconversion (N+) and low purine recycling (P-). N+P--type exhibited a significantly better outcome (log-rank p = 4.7 × 10-7) than that of N-P+. GBM patients with the N+P--type had a median survival time of 19.6 months and lived 65% longer than other GBM patients. Our results highlighted a novel molecular type of GBM, which showed relatively high frequency (26%) in GBM patients lacking the IDH1 mutation, and therefore exhibits potential in GBM prognostic assessment and personalized therapy.
Collapse
Affiliation(s)
- Qiu Shen
- The First Hospital of Kunming, Kunming 650600, China
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hua Yang
- The Third People’s Hospital of Yunnan Province, Kunming 650600, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Correspondence: (G.-H.L.); (L.L.)
| | - Li Li
- The First Hospital of Kunming, Kunming 650600, China
- Correspondence: (G.-H.L.); (L.L.)
| |
Collapse
|
8
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Gallinat A, Badimon L. DJ-1 interacts with the ectopic ATP-synthase in endothelial cells during acute ischemia and reperfusion. Sci Rep 2022; 12:12753. [PMID: 35882968 PMCID: PMC9325725 DOI: 10.1038/s41598-022-16998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 01/28/2023] Open
Abstract
Endothelial cells (ECs) play a central role in ischemia. ATP-Synthase is now recognized to be ectopically expressed in the cell surface of many cell types, with putative roles described in angiogenesis, proliferation, and intracellular pH regulation. DJ-1 is a multifunctional protein, involved in cell protection against ischemia, ischemia–reperfusion (I/R), and oxidative stress, that regulates mitochondrial ATP-synthase. Here we focused on the characterization of the endothelial dynamics of DJ-1, and its implication in the regulation of the ectopic ATP-synthase (ecATP-S) activity, during acute ischemia and I/R in ECs. We found that DJ-1 is secreted from ECs, by a mechanism enhanced in ischemia and I/R. A cleaved form of DJ-1 (DJ-1∆C) was found only in the secretome of ischemic cells. The ecATP-S activity increased following acute ischemia in ECs, coinciding with DJ-1 and DJ-1∆C secretion. The inhibition of DJ-1 expression inhibited the ecATP-S response to ischemia by ∼ 50%, and its exogenous administration maximized the effect, together with an enhanced Akt phosphorylation and angiotube-formation potential at reperfusion. Immunoprecipitation studies showed direct interaction between DJ-1 and the ecATP-S. Altogether suggesting that DJ-1 is actively cleaved and released from ischemic ECs and plays an important role in the regulation of the ecATP-S activity during acute ischemia and reperfusion.
Collapse
Affiliation(s)
- Alex Gallinat
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, c/Sant Antoni María Claret, 167, 08025, Barcelona, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, c/Sant Antoni María Claret, 167, 08025, Barcelona, Spain. .,CIBERCV-Instituto de Salud Carlos III, Madrid, Spain. .,UAB-Chair Cardiovascular Research, Barcelona, Spain.
| |
Collapse
|
10
|
Sasaki S, Oba K, Kodera Y, Itakura M, Shichiri M. ANGT_HUMAN[448–462], an Anorexigenic Peptide Identified using Plasma Peptidomics. J Endocr Soc 2022; 6:bvac082. [PMID: 35702602 PMCID: PMC9184509 DOI: 10.1210/jendso/bvac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
The discovery of bioactive peptides is an important research target that enables the elucidation of the pathophysiology of human diseases and provides seeds for drug discovery. Using a large number of native peptides previously identified using plasma peptidomics technology, we sequentially synthesized selected sequences and subjected them to functional screening using human cultured cells. A 15-amino-acid residue proangiotensinogen-derived peptide, designated ANGT_HUMAN[448–462], elicited cellular responses and bound to cultured human cells. Synthetic fluorescent-labeled and biotinylated ANGT_HUMAN[448–462] peptides were rendered to bind to cell- and tissue-derived proteins and peptide-cell protein complexes were retrieved and analyzed using liquid chromatography-tandem mass spectrometry, revealing the β-subunit of ATP synthase as its cell-surface binding protein. Because ATP synthase mediates the effects of anorexigenic peptides, the ability of ANGT_HUMAN[448–462] to modulate eating behavior in mice was investigated. Both intraperitoneal and intracerebroventricular injections of low doses of ANGT_HUMAN[448–462] suppressed spontaneous food and water intake throughout the dark phase of the diurnal cycle without affecting locomotor activity. Immunoreactive ANGT_HUMAN[448–462], distributed throughout human tissues and in human-derived cells, is mostly co-localized with angiotensin II and is occasionally present separately from angiotensin II. In this study, an anorexigenic peptide, ANGT_HUMAN[448–462], was identified by exploring cell surface target proteins of the human native peptides identified using plasma peptidomics.
Collapse
Affiliation(s)
- Sayaka Sasaki
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Kazuhito Oba
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
| | - Yoshio Kodera
- Department of Physics, Kitasato University School of Science, Kanagawa 252-0373, Japan
- Center for Disease Proteomics, Kitasato University School of Science, Kanagawa 252-0373, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine Kanagawa 252-0374, Japan
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Kyosai Hospital, Tokyo 153-8934, Japan
| |
Collapse
|
11
|
Schepler H, Neufurth M, Wang S, She Z, Schröder HC, Wang X, Müller WE. Acceleration of chronic wound healing by bio-inorganic polyphosphate: In vitro studies and first clinical applications. Theranostics 2022; 12:18-34. [PMID: 34987631 PMCID: PMC8690915 DOI: 10.7150/thno.67148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The healing of chronic wounds is impaired by a lack of metabolic energy. In previous studies, we showed that physiological inorganic polyphosphate (polyP) is a generator of metabolic energy by forming ATP as a result of the enzymatic cleavage of the high-energy phosphoanhydride bonds of this polymer. Therefore, in the present study, we investigated whether the administration of polyP can substitute for the energy deficiency in chronic wound healing. Methods: PolyP was incorporated into collagen mats and applied in vitro and to patients in vivo. Results: (i) In vitro studies: Keratinocytes grown in vitro onto the polyP/collagen mats formed long microvilli to guide them to a favorable environment. HUVEC cells responded to polyP/collagen mats with an increased adhesion and migration propensity as well as penetration into the mats. (ii) In vivo - human clinical studies: In a "bench to bedside" process these promising in vitro results were translated from the laboratory into the clinic. In the proof-of-concept application, the engineered polyP/collagen mats were applied to chronic wounds in patients. Those mats impressively accelerated the re-epithelialization rate, with a reduction of the wound area to 65% after 3 weeks and to 36.6% and 22.5% after 6 and 9 weeks, respectively. Complete healing was achieved and no further treatment was necessary. Biopsy samples from the regenerating wound area showed predominantly myofibroblasts. The wound healing process was supported by the use of a polyP containing moisturizing solution. Conclusion: The results strongly recommend polyP as a beneficial component in mats for a substantial healing of chronic wounds.
Collapse
Affiliation(s)
- Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Zhengding She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | | | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E.G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
12
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
Fujishiro M, Yahagi S, Takemi S, Nakahara M, Sakai T, Sakata I. Pyridoxine stimulates filaggrin production in human epidermal keratinocytes. Mol Biol Rep 2021; 48:5513-5518. [PMID: 34302584 DOI: 10.1007/s11033-021-06563-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
Pyridoxine (PN), one of the vitamers of vitamin B6, plays an important role in the maintenance of epidermal function and is used to treat acne and rough skin. Clinical studies have revealed that PN deficiency causes skin problems such as seborrheic dermatitis and stomatitis. However, the detailed effects of PN and its mechanism of action in epidermal function are poorly understood. In this study, we examined the effects of PN on epidermal function in normal human epidermal keratinocytes and found that PN specifically causes an increase in the expression of profilaggrin mRNA, among marker genes of terminal epidermal differentiation. In addition, PN treatment caused an increase in the production of filaggrin protein in a concentration-dependent manner. Treatment with P2x purinoceptor antagonists, namely, pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid) tetrasodium salt hydrate and TNP-ATP hydrate, induced an increase in the filaggrin protein levels. Moreover, we showed that elevated filaggrin production induced upon PN treatment was suppressed by ATP (known as P2x purinoceptor agonist). This study is the first to report that PN causes an increase in filaggrin transcription and production, and these results suggest that PN-induced filaggrin production may be a useful target as a daily care component in atopic dermatitis, wherein filaggrin levels are specifically reduced.
Collapse
Affiliation(s)
- Miyuki Fujishiro
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan.,Nikkol Group Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashiku, Tokyo, 174-0046, Japan
| | - Shoichi Yahagi
- Nikkol Group Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashiku, Tokyo, 174-0046, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Mio Nakahara
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan. .,Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
14
|
Dong X, Li Y, Li W, Kang W, Tang R, Wu W, Xing Z, Zhou L. The function of Cav-1 in MDA-MB-231 breast cancer cell migration and invasion induced by ectopic ATP5B. Med Oncol 2021; 38:73. [PMID: 34009483 PMCID: PMC8134283 DOI: 10.1007/s12032-021-01519-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/04/2021] [Indexed: 12/03/2022]
Abstract
Ectopic ATP5B, which is located in a unique type of lipid raft caveolar structure, can be upregulated by cholesterol loading. As the structural component of caveolae, Cav-1 is a molecular hub that is involved in transmembrane signaling. In a previous study, the ATP5B-specific binding peptide B04 was shown to inhibit the migration and invasion of prostate cancer cells, and the expression of ATP5B on the plasma membrane of MDA-MB-231 cells was confirmed. The present study investigated the effect of ectopic ATP5B on the migration and invasion of MDA-MB-231 cells and examined the involvement of Cav-1. Cholesterol loading increased the level of ectopic ATP5B and promoted cell migration and invasion. These effects were blocked by B04. Ectopic ATP5B was physically colocalized with Cav-1, as demonstrated by double immunofluorescence staining and coimmunoprecipitation. After Cav-1 knockdown, the migration and invasion abilities of MDA-MB-231 cells were significantly decreased, suggesting that Cav-1 influences the function of ectopic ATP5B. Furthermore, these effects were not reversed after treatment with cholesterol. We concluded that Cav-1 may participate in MDA-MB-231 cell migration and invasion induced by binding to ectopic ATP5B.
Collapse
Affiliation(s)
- Xinjie Dong
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yilei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Wenzhe Kang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Rong Tang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Wenyi Wu
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Ziyi Xing
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| | - Lijuan Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
- Electron Microscopy Laboratory of Renal Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
15
|
Lv ZY, Yang YQ, Yin LM. Role of Purinergic Signaling in Acupuncture Therapeutics. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:645-659. [PMID: 33641652 DOI: 10.1142/s0192415x21500294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acupuncture is a therapeutic treatment that is well recognized in many countries. However, the initiation mechanisms of acupuncture are not well understood. Purinergic signaling has been considered a key signaling pathway in acupuncture in recent years. Acupuncture-induced ATP is mainly produced by mast cells and fibroblasts, and ATP is gradually hydrolyzed into adenosine. ATP and adenosine further participate in the process of acupuncture information transmission to the nervous and immune systems through specific purine receptors. Acupuncture initiates analgesia via the down-regulation of the expression of P2 receptors or up-regulation of the expression of adenosine A1 receptors on nerve fibers. ATP also promotes the proliferation of immune cells through P2 receptors and A3 receptors, causing inflammation. In contrast, adenosine activates A2 receptors, promotes the production and infiltration of immunosuppressive cells, and causes an anti-inflammatory response. In summary, we described the role of purinergic signaling as a general signaling pathway in the initiation of acupuncture and the influence of purinergic signaling on the neuroimmune network to lay the foundation for future systematic research on the mechanisms of acupuncture therapeutics.
Collapse
Affiliation(s)
- Zhi-Ying Lv
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China.,Shanghai Innovation Center of Traditional Chinese Medicine, Health Service, Shanghai 201203, P. R. China
| |
Collapse
|
16
|
Modified tamarind kernel polysaccharide-based matrix alters neuro-keratinocyte cross-talk and serves as a suitable scaffold for skin tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111779. [PMID: 33579440 DOI: 10.1016/j.msec.2020.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022]
Abstract
Advanced technologies like skin tissue engineering are requisite of various disorders where artificially synthesized materials need to be used as a scaffold in vivo, which in turn can allow the formation of functional skin and epidermal layer with all biological sensory functions. In this work, we present a set of hydrogels which have been synthesized by the method utilizing radical polymerization of a natural polymer extracted from kernel of Tamarindus indica, commonly known as Tamarind Kernel Powder (TKP) modified by utilizing the monomer acrylic acid (AA) in different mole ratios. These materials are termed as TKP: AA hydrogels and characterized by Atomic Force Microscopy (AFM), surface charge, and particle size distribution using Dynamic Light Scattering measurements. These materials are biocompatible with mouse dermal fibroblasts (NIH- 3T3) and human skin keratinocytes (HaCaT), as confirmed by MTT and biocompatibility assays. These TKP: AA hydrogels do not induce unwanted ROS signaling as confirmed by mitochondrial functionality determined by DCFDA staining, Mitosox imaging, and measuring the ATP levels. We demonstrate that in the co-culture system, TKP: AA allows the establishment of proper neuro-keratinocyte contact formation, suggesting that this hydrogel can be suitable for developing skin with sensory functions. Skin corrosion analysis on SD rats confirms that TKP: AA is appropriate for in vivo applications as well. This is further confirmed by in vivo compatibility and toxicity studies, including hemocompatibility and histopathology of liver and kidney upon direct introduction of hydrogel into the body. We propose that TKP: AA (1: 5) offers a suitable surface for skin tissue engineering with sensory functions applicable in vitro, in vivo, and ex vivo. These findings may have broad biomedical and clinical importance.
Collapse
|
17
|
Mikhalchik EV, Morozova OV, Tsimbalenko TV, Kharaeva ZF, Balabushevich NG, Lipatova VA, Gadzhigoroeva AG. Analysis of Cytokines and ATP in Plucked Hair Follicles. Bull Exp Biol Med 2021; 170:299-302. [PMID: 33452973 DOI: 10.1007/s10517-021-05055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 10/22/2022]
Abstract
The concentrations of ATP, IL-6, and IL-10 were measured in extracts of plucked hair follicles from healthy volunteers (normal values) and patients with androgenetic alopecia and then, ATP, IL-6, and IL-10 content was calculated for each follicle. The resulting values were directly proportional to hair follicle length, except for IL-6. The concentration of extracted ATP correlated with lactate dehydrogenase activity indicating cell damage. In patients with androgenetic alopecia, IL-10 content exceeded the normal values in follicles with a length <1 mm and ATP content surpassed the normal in follicles >2 mm long. The content of IL-6 and IL-10 measured by ELISA was comparable with results of mRNA expression assayed by RT-PCR, which attested to moderate level of gene expression. The content of ATP and IL- 10, but not IL-6 depended on the length of plucked hair follicle and on pathogenetic factors affecting hair growth.
Collapse
Affiliation(s)
- E V Mikhalchik
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - O V Morozova
- Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - T V Tsimbalenko
- Moscow Practical Center of Dermatovenerology and Cosmetology, Moscow Healthcare Department, Moscow, Russia
| | - Z F Kharaeva
- H. M. Berbekov Kabardino-Balkarian State University, Nalchik, Kabardino-Balkarian Republic, Russia
| | - N G Balabushevich
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - V A Lipatova
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Gadzhigoroeva
- Moscow Practical Center of Dermatovenerology and Cosmetology, Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
18
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int J Mol Sci 2020; 21:E6214. [PMID: 32867366 PMCID: PMC7503421 DOI: 10.3390/ijms21176214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| |
Collapse
|
19
|
Zheng J, Li X, Wang K, Song J, Qi H. Electrochemical Nanoaptasensor for Continuous Monitoring of ATP Fluctuation at Subcellular Level. Anal Chem 2020; 92:10940-10945. [PMID: 32700526 DOI: 10.1021/acs.analchem.0c00569] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monitoring the fluctuation of adenosine 5'-triphosphate (ATP) at the subcellular level is important for the study of cell energy metabolism. Herein, we fabricated an electrochemical nanoaptasensor for continuously monitoring ATP fluctuation at the subcellular level. A gold nanoelectrode with a diameter of 120 nm was fabricated, and ferrocene (Fc)-labeled anti-ATP aptamer was self-assembled onto the nanoelectrode surface to form a nanoaptasensor. In the presence of ATP, the ferrocene-labeled anti-ATP aptamer bound with two ATP units to form an ATP-aptamer conjugation, resulting in the close proximity of Fc to the nanoelectrode surface and then an increase of oxidation current of Fc. ATP can be detected with a detection limit of 26 μM within 2 min. Cell viability assays indicated that the nanoaptasensor was biocompatible with negligible biological effects. By taking advantage of the good biocompatibility of the nanoaptasensor, ATP fluctuation at the subcellular level was monitored under glucose starvation and Ca2+ induction. This work demonstrates that the nanoaptasensor is a useful tool for investigating ATP-relevant biological processes via the electrochemical method.
Collapse
Affiliation(s)
- Jingyi Zheng
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jiajia Song
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
20
|
Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020; 57:102825. [PMID: 32553574 PMCID: PMC7378960 DOI: 10.1016/j.ebiom.2020.102825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Science, Roma3 University, 00146 Rome, Italy
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | | | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yaru Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A..
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy.
| |
Collapse
|
21
|
Lin HC, Chu LJ, Huang PJ, Cheng WH, Zheng YH, Huang CY, Hong SW, Chen LC, Lin HA, Wang JY, Chen RM, Lin WN, Tang P, Huang KY. Proteomic signatures of metronidazole-resistant Trichomonas vaginalis reveal novel proteins associated with drug resistance. Parasit Vectors 2020; 13:274. [PMID: 32487244 PMCID: PMC7268490 DOI: 10.1186/s13071-020-04148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Trichomoniasis is the most common non-viral sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. Metronidazole (MTZ) is a widely used drug for the treatment of trichomoniasis; however, increased resistance of the parasite to MTZ has emerged as a highly problematic public health issue. METHODS We conducted iTRAQ-based analysis to profile the proteomes of MTZ-sensitive (MTZ-S) and MTZ-resistant (MTZ-R) parasites. STRING and gene set enrichment analysis (GESA) were utilized to explore the protein-protein interaction networks and enriched pathways of the differentially expressed proteins, respectively. Proteins potentially related to MTZ resistance were selected for functional validation. RESULTS A total of 3123 proteins were identified from the MTZ-S and MTZ-R proteomes in response to drug treatment. Among the identified proteins, 304 proteins were differentially expressed in the MTZ-R proteome, including 228 upregulated and 76 downregulated proteins. GSEA showed that the amino acid-related metabolism, including arginine, proline, alanine, aspartate, and glutamate are the most upregulated pathways in the MTZ-R proteome, whereas oxidative phosphorylation is the most downregulated pathway. Ten proteins categorized into the gene set of oxidative phosphorylation were ATP synthase subunit-related proteins. Drug resistance was further examined in MTZ-S parasites pretreated with the ATP synthase inhibitors oligomycin and bafilomycin A1, showing enhanced MTZ resistance and potential roles of ATP synthase in drug susceptibility. CONCLUSIONS We provide novel insights into previously unidentified proteins associated with MTZ resistance, paving the way for future development of new drugs against MTZ-refractory trichomoniasis.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 333, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City, 333, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Wei-Hung Cheng
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Yu-Hsing Zheng
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Ching-Yun Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Shu-Wen Hong
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital SongShan Branch, Taipei City, 105, Taiwan
| | - Jui-Yang Wang
- Division of Family Medicine, Tri-Service General Hospital Songshan Branch, Taipei City, 105, Taiwan
| | - Ruei-Min Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan.
| |
Collapse
|
22
|
Yuan J, Deng Z, Liu H, Li X, Li J, He Y, Qing Z, Yang Y, Zhong S. Cell-Surface-Anchored Ratiometric DNA Nanoswitch for Extracellular ATP Imaging. ACS Sens 2019; 4:1648-1653. [PMID: 31244008 DOI: 10.1021/acssensors.9b00482] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The precise detection of extracellular ATP, although a challenging task, is of great significance for understanding the related cell processes. Herein, we developed a ratiometric DNA nanoswitch by employing a DNA tweezer and split aptamer. The nanoswitch is composed of three specially designed ssDNA strands, namely, the central strands O1, O2, and O3. This nanoswitch can be anchored on the cell membrane by cholesterol labeled at the 3' end of O3. Initially, the DNA tweezer adopts an open state, separating the dual fluorophores and giving rise to a low FRET (fluorescence resonance energy transfer) ratio. The presence of ATP induces the binding of the two split aptamers to alter the structure of the nanoswitch from the open state to the closed state, bringing the donor and the acceptor closer together and generating high FRET efficiency. The results demonstrated that the ratiometric DNA nanoswitch can be applied for quantitative analysis and real-time monitoring of the changes in extracellular ATP. We believe that the cell surface-anchored DNA nanoswitch has promising prospects for use as a powerful tool for the understanding of different ATP-related physiological activities.
Collapse
Affiliation(s)
- Jing Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Xiufang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jianbing Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhihe Qing
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| |
Collapse
|
23
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 2018; 205:16-24. [PMID: 30439478 DOI: 10.1016/j.imlet.2018.11.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022]
Abstract
Extracellular nucleotides, mainly ATP, but also ADP, UTP, UDP and UDP-sugars, adenosine, and adenine base participate in the "purinergic signalling" pathway, an ubiquitous system of cell-to-cell communication. Fundamental pathophysiological processes such as tissue homeostasis, wound healing, neurodegeneration, immunity, inflammation and cancer are modulated by purinergic signalling. Nucleotides can be released from cells via unspecific or specific mechanisms. A non-regulated nucleotide release can occur from damaged or dying cells, whereas exocytotic granules, plasma membrane-derived microvesicles, membrane channels (connexins, pannexins, calcium homeostasis modulator (CALHM) channels and P2X7 receptor) or specific ATP binding cassette (ABC) transporters are involved in the controlled release. Four families of specific receptors, i.e. nucleotide P2X and P2Y receptors, adenosine P1 receptors, and the adenine-selective P0 receptor, and several ecto- nucleotidases are essential components of the "purinergic signalling" pathway. Thanks to the activity of ecto-nucleotidases, ATP (and possibly other nucleotides) are degraded into additional messenger molecules with specific action. The final biological effects depend on the type and amount of released nucleotides, their modification by ecto-nucleotidases, and their possible cellular re-uptake. Overall, these processes confer a remarkable level of selectivity and plasticity to purinergic signalling that makes this network one of the most relevant extracellular messenger systems in higher organisms.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy.
| |
Collapse
|
25
|
Taurino F, Gnoni A. Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol 2018; 104:59-70. [DOI: 10.1016/j.yexmp.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
26
|
Moehring F, Cowie AM, Menzel AD, Weyer AD, Grzybowski M, Arzua T, Geurts AM, Palygin O, Stucky CL. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. eLife 2018; 7:31684. [PMID: 29336303 PMCID: PMC5777822 DOI: 10.7554/elife.31684] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022] Open
Abstract
The first point of our body’s contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions. The skin is the largest sensory organ of the body, and the first point of contact with the outside world. Whether it is being pinched or caressed, the skin’s sense of touch informs organisms about their surroundings and allows them to react appropriately. Nerve cells present in the skin capture information about touch and transmit it to the brain where it is decoded. However, there are many other types of cells in the skin besides nerve cells. The role that these other skin cells play in perceiving non-painful and painful touch is still unclear. Moehring et al. now report how the skin cells that form 95% of the most outer layer of the skin are involved in detecting touch. In mutant mice whose cells can be ‘switched off’ by a certain light, artificially deactivating these cells makes the animals less able to respond to tactile stimuli. Further experiments show that when pressure is applied onto the skin, the surface skin cells release a chemical messenger, which then binds specifically to the nerve cells. When the messaging molecule is experimentally destroyed or prevented from attaching to the nerve cell, the mice react less to non-painful and painful touch. This means the cells at the surface of the skin detect tactile signals from the environment and then communicate this information to the nerve cells, where it is taken to the brain. Disrupted communication between the cells in the outer layer of the skin and the nerve cells is found in painful and itchy skin conditions such as eczema and psoriasis. Knowing how these two types of cells normally work together may help with finding new pain and itch treatments for these skin disorders.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Ashley M Cowie
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Anthony D Menzel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Andy D Weyer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Thiago Arzua
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
27
|
Geraghty NJ, Mansfield KJ, Fuller SJ, Watson D, Sluyter R. The P2X7 receptor is not essential for development of imiquimod-induced psoriasis-like inflammation in mice. Purinergic Signal 2017; 13:405-415. [PMID: 28597172 PMCID: PMC5714832 DOI: 10.1007/s11302-017-9569-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder, characterised by epidermal hyperplasia (acanthosis) and leukocyte infiltration of the skin. Current therapies are inadequate, highlighting the need for new therapeutic targets. The P2X7 receptor is implicated in the pathogenesis of psoriasis. This study investigated the role of P2X7 in imiquimod (IMQ)-induced psoriasis-like inflammation. Topically applied IMQ caused twofold greater ear swelling in BALB/c mice compared to C57BL/6 mice, which encode a partial loss-of-function missense mutation in the P2RX7 gene. However, there was no difference in histological skin pathology (acanthosis and leukocyte infiltration) between the two strains. IMQ treatment up-regulated P2X7 expression in skin from both mouse strains. Additionally, IMQ induced ATP release from cultured human keratinocytes, a process independent of cell death. Injection of the P2X7 antagonist Brilliant Blue G (BBG) but not A-804598 partly reduced ear swelling compared to vehicle-injected control mice. Neither antagonist altered skin pathology. Moreover, no difference in ear swelling or skin pathology was observed between C57BL/6 and P2X7 knock-out (KO) mice. Flow cytometric analysis of IMQ-treated skin from C57BL/6 and P2X7 KO mice demonstrated similar leukocyte infiltration, including neutrophils, macrophages and T cells. In conclusion, this study demonstrates that P2X7 is not essential for development of IMQ-induced psoriasis-like inflammation but does not exclude a role for this receptor in psoriasis development in humans or other mouse models of this disease.
Collapse
Affiliation(s)
- Nicholas J Geraghty
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Kylie J Mansfield
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Stephen J Fuller
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Debbie Watson
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
28
|
Cardouat G, Duparc T, Fried S, Perret B, Najib S, Martinez LO. Ectopic adenine nucleotide translocase activity controls extracellular ADP levels and regulates the F 1-ATPase-mediated HDL endocytosis pathway on hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:832-841. [PMID: 28504211 DOI: 10.1016/j.bbalip.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Ecto-F1-ATPase is a complex related to mitochondrial ATP synthase which has been identified as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), and has been shown to contribute to HDL endocytosis in several cell types. On hepatocytes, apoA-I binding to ecto-F1-ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y13-mediated HDL endocytosis pathway. Interestingly, other mitochondrial proteins have been found to be expressed at the plasma membrane of several cell types. Among these, adenine nucleotide translocase (ANT) is an ADP/ATP carrier but its role in controlling extracellular ADP levels and F1-ATPase-mediated HDL endocytosis has never been investigated. Here we confirmed the presence of ANT at the plasma membrane of human hepatocytes. We then showed that ecto-ANT activity increases or reduces extracellular ADP level, depending on the extracellular ADP/ATP ratio. Interestingly, ecto-ANT co-localized with ecto-F1-ATPase at the hepatocyte plasma membrane and pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F1-ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis on human hepatocytes. This study thus uncovered a new location and function of ANT for which activity at the cell surface of hepatocytes modulates the concentration of extracellular ADP and regulates HDL endocytosis.
Collapse
Affiliation(s)
- G Cardouat
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - T Duparc
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - S Fried
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - B Perret
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France; Service de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - S Najib
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| | - L O Martinez
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| |
Collapse
|
29
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
30
|
CCN1 promotes IL-1β production in keratinocytes by activating p38 MAPK signaling in psoriasis. Sci Rep 2017; 7:43310. [PMID: 28266627 PMCID: PMC5339692 DOI: 10.1038/srep43310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 01/25/2017] [Indexed: 01/06/2023] Open
Abstract
CCN1, an extracellular protein also known as cysteine-rich protein 61 (Cyr61), is a novel pro-inflammatory factor involved in the pathogenesis of rheumatoid arthritis. As an inflammatory disease, psoriasis is characterized by keratinocyte activation-induced epidermal hyperplasia and cytokine-mediated inflammation. We demonstrated in our previous study that CCN1 promoted keratinocyte activation in psoriasis. However, the role of CCN1 in regulating inflammation in psoriasis is still unknown. Here, we showed that CCN1 increased inflammatory cytokine IL-1β production in keratinocytes. Furthermore, endogenous ATP and caspase-1 were required for mature IL-1β production stimulated by CCN1 in keratinocytes. After binding to the receptor of integrin α6β1, CCN1 activated the downstream p38 MAPK signaling pathway, thus inducing the expression of IL-1β. In addition, we inhibited CCN1 function in mouse models of psoriasis, and decreased IL-1β production was observed in vivo. Overall, we showed that CCN1 increased IL-1β production via p38 MAPK signaling, indicating a role for CCN1 protein in regulating inflammation in psoriasis.
Collapse
|
31
|
Xiaoyun X, Chaofei H, Weiqi Z, Chen C, Lixia L, Queping L, Cong P, Shuang Z, Juan S, Xiang C. Possible Involvement of F1F0-ATP synthase and Intracellular ATP in Keratinocyte Differentiation in normal skin and skin lesions. Sci Rep 2017; 7:42672. [PMID: 28209970 PMCID: PMC5314331 DOI: 10.1038/srep42672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
The F1F0-ATP synthase, an enzyme complex, is mainly located on the mitochondrial inner membrane or sometimes cytomembrane to generate or hydrolyze ATP, play a role in cell proliferation. This study focused on the role of F1F0-ATP synthase in keratinocyte differentiation, and its relationship with intracellular and extracellular ATP (InATP and ExATP). The F1F0-ATP synthase β subunit (ATP5B) expression in various skin tissues and confluence-dependent HaCaT differentiation models was detected. ATP5B expression increased with keratinocyte and HaCaT cell differentiation in normal skin, some epidermis hyper-proliferative diseases, squamous cell carcinoma, and the HaCaT cell differentiation model. The impact of InATP and ExATP content on HaCaT differentiation was reflected by the expression of the differentiation marker involucrin. Inhibition of F1F0-ATP synthase blocked HaCaT cell differentiation, which was associated with a decrease of InATP content, but not with changes of ExATP. Our results revealed that F1F0-ATP synthase expression is associated with the process of keratinocyte differentiation which may possibly be related to InATP synthesis.
Collapse
Affiliation(s)
- Xie Xiaoyun
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Department of Rheumatology and Immunology, XiangYa Hospital, Central South University, Changsha, China
| | - Han Chaofei
- Department of Plastic and Reconstructive Surgery, The Third XiangYa Hospital, Central South University, Changsha, China
| | - Zeng Weiqi
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, XiangYa Hospital, Central South University, Changsha, China
| | - Chen Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Department of Nephrology, XiangYa Hospital, Central South University, Changsha, China
| | - Lu Lixia
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, XiangYa Hospital, Central South University, Changsha, China
| | - Liu Queping
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, XiangYa Hospital, Central South University, Changsha, China
| | - Peng Cong
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, XiangYa Hospital, Central South University, Changsha, China
| | - Zhao Shuang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, XiangYa Hospital, Central South University, Changsha, China
| | - Su Juan
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, XiangYa Hospital, Central South University, Changsha, China
| | - Chen Xiang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Jokela T, Kärnä R, Rauhala L, Bart G, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis. J Biol Chem 2017; 292:4861-4872. [PMID: 28188289 DOI: 10.1074/jbc.m116.760322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 μm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Leena Rauhala
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Genevieve Bart
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Sanna Oikari
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku I Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Raija H Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
33
|
Azim S, McDowell D, Cartagena A, Rodriguez R, Laughlin TF, Ahmad Z. Venom peptides cathelicidin and lycotoxin cause strong inhibition of Escherichia coli ATP synthase. Int J Biol Macromol 2016; 87:246-51. [PMID: 26930579 DOI: 10.1016/j.ijbiomac.2016.02.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/29/2022]
Abstract
Venom peptides are known to have strong antimicrobial activity and anticancer properties. King cobra cathelicidin or OH-CATH (KF-34), banded krait cathelicidin (BF-30), wolf spider lycotoxin I (IL-25), and wolf spider lycotoxin II (KE-27) venom peptides were found to strongly inhibit Escherichia coli membrane bound F1Fo ATP synthase. The potent inhibition of wild-type E. coli in comparison to the partial inhibition of null E. coli by KF-34, BF-30, Il-25, or KE-27 clearly links the bactericidal properties of these venom peptides to the binding and inhibition of ATP synthase along with the possibility of other inhibitory targets. The four venom peptides KF-34, BF-30, IL-25, and KE-27, caused ≥85% inhibition of wild-type membrane bound E.coli ATP synthase. Venom peptide induced inhibition of ATP synthase and the strong abrogation of wild-type E. coli cell growth in the presence of venom peptides demonstrates that ATP synthase is a potent membrane bound molecular target for venom peptides. Furthermore, the process of inhibition was found to be fully reversible.
Collapse
Affiliation(s)
- Sofiya Azim
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, United States; Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, United States
| | - Derek McDowell
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, United States
| | - Alec Cartagena
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, United States
| | - Ricky Rodriguez
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, United States
| | - Thomas F Laughlin
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, United States
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, United States.
| |
Collapse
|
34
|
Nakanishi-Matsui M, Sekiya M, Futai M. ATP synthase from Escherichia coli : Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:129-140. [DOI: 10.1016/j.bbabio.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
35
|
Riding A, Pullar CE. ATP Release and P2 Y Receptor Signaling are Essential for Keratinocyte Galvanotaxis. J Cell Physiol 2016; 231:181-91. [PMID: 26058714 DOI: 10.1002/jcp.25070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/05/2015] [Indexed: 01/06/2023]
Abstract
Repair to damaged tissue requires directional cell migration to heal the wound. Immediately upon wounding an electrical guidance cue is created with the cathode of the electric field (EF) located at the center of the wound. Previous research has demonstrated directional migration of keratinocytes toward the cathode when an EF of physiological strength (100-150 mV/mm) is applied in vitro, but the "sensor" by which keratinocytes sense the EF remains elusive. Here we use a customized chamber design to facilitate the application of a direct current (DC) EF of physiological strength (100 mV/mm) to keratinocytes whilst pharmacologically modulating the activation of both connexin hemichannels and purinergic receptors to determine their role in EF-mediated directional keratinocyte migration, galvanotaxis. In addition, keratinocytes were exposed to DiSCAC2 (3) dye to visualize membrane potential changes within the cell upon exposure to the applied DC EF. Here we unveil ATP-medicated mechanisms that underpin the initiation of keratinocyte galvanotaxis. The application of a DC EF of 100 mV/mm releases ATP via hemichannels activating a subset of purinergic P2 Y receptors, locally, to initiate the directional migration of keratinocytes toward the cathode in vitro, the center of the wound in vivo. The delineation of the mechanisms underpinning galvanotaxis extends our understanding of this endogenous cue and will facilitate the optimization and wider use of EF devices for chronic wound treatment. J. Cell. Physiol. 230: 181-191, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aimie Riding
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | - Christine E Pullar
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Ono S, Kabashima K. Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). ALLERGO JOURNAL 2015. [DOI: 10.1007/s15007-015-0911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). ACTA ACUST UNITED AC 2015; 24:170-179. [PMID: 27069837 PMCID: PMC4792357 DOI: 10.1007/s40629-015-0065-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
Abstract
The skin is equipped with serial barriers that provide rapid and efficient protection against external intruders. Beneath the epidermal physical barriers of the stratum corneum and the tight junctions, the integrated immune systems in both the epidermis and the dermis act in a coordinated manner to protect the host. This “immunological” barrier is composed of various cells, including skin-resident cells, such as keratinocytes, dendritic cells, tissue-resident macrophages, resident memory T cells, mast cells, and innate lymphoid cells. Additionally, infiltrating memory T cells, monocytes, neutrophils, basophils, and eosinophils are recruited in support of the host immunity. In addition to discussing the role of each of these cellular populations, we describe the concept of skin associated lymphoid tissue (SALT), which reminds us that the skin is an important component of the lymphatic system. We further describe the newly discovered phenomenon of multiple cell gathering under skin inflammation, which can be referred to as inducible SALT (iSALT). iSALT contributes to our understanding of SALT by highlighting the importance of direct cell-cell interaction in skin immunity.
Collapse
|
38
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
39
|
Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold-dependent manner. Proc Natl Acad Sci U S A 2015; 112:E3345-54. [PMID: 26080404 DOI: 10.1073/pnas.1423357112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Deviation of the ambient temperature is one of the most ubiquitous stimuli that continuously affect mammals' skin. Although the role of the warmth receptors in epidermal homeostasis (EH) was elucidated in recent years, the mystery of the keratinocyte mild-cold sensor remains unsolved. Here we report the cloning and characterization of a new functional epidermal isoform of the transient receptor potential M8 (TRPM8) mild-cold receptor, dubbed epidermal TRPM8 (eTRPM8), which is localized in the keratinocyte endoplasmic reticulum membrane and controls mitochondrial Ca(2+) concentration ([Ca(2+)]m). In turn, [Ca(2+)]m modulates ATP and superoxide (O2(·-)) synthesis in a cold-dependent manner. We report that this fine tuning of ATP and O2(·-) levels by cooling controls the balance between keratinocyte proliferation and differentiation. Finally, to ascertain eTRPM8's role in EH in vivo we developed a new functional knockout mouse strain by deleting the pore domain of TRPM8 and demonstrated that eTRPM8 knockout impairs adaptation of the epidermis to low temperatures.
Collapse
|
40
|
Decrease of serum adenine nucleotide hydrolysis in an irritant contact dermatitis mice model: potential P2X7R involvement. Mol Cell Biochem 2015; 404:221-8. [PMID: 25772484 DOI: 10.1007/s11010-015-2381-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) has significant effects on a variety of pathological conditions and it is the main physiological agonist of P2X7 purinergic receptor (P2X7R). It is known that ATP acting via purinergic receptors plays a relevant role on skin inflammation, and P2X7R is required to neutrophil recruitment in a mice model of irritant contact dermatitis (ICD).The present study investigated the effects of chemical irritant croton oil (CrO) upon ATP, ADP, and AMP hydrolysis in mice blood serum, and the potential involvement of P2X7R. The topical application CrO induced a decrease on soluble ATP/ADPase activities (~50 %), and the treatment with the selective P2X7R antagonist, A438079, reversed these effects to control level. Furthermore, we showed that CrO decreased cellular viability (52.6 % ± 3.9) in relation to the control and caused necrosis in keratinocytes (PI positive cells). The necrosis induced by CrO was prevented by the pre-treatment with the selective P2X7R antagonist A438079. The results presented herein suggest that CrO exerts an inhibitory effect on the activity of ATPDase in mouse serum, reinforcing the idea that ICD has a pathogenic mechanism dependent of CD39. Furthermore, it is tempting to suggest that P2X7R may act as a controller of the extracellular levels of ATP.
Collapse
|
41
|
Chang HY, Huang TC, Chen NN, Huang HC, Juan HF. Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis 2014; 5:e1540. [PMID: 25429617 PMCID: PMC4260757 DOI: 10.1038/cddis.2014.504] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 01/01/2023]
Abstract
F1Fo ATP synthase is present in all organisms and is predominantly located on the inner membrane of mitochondria in eukaryotic cells. The present study demonstrated that ATP synthase and electron transport chain complexes were ectopically expressed on the surface of breast cancer cells and could serve as a potent anticancer target. We investigated the anticancer effects of the ATP synthase inhibitor citreoviridin on breast cancer cells through proteomic approaches and revealed that differentially expressed proteins in cell cycle regulation and in the unfolded protein response were functionally enriched. We showed that citreoviridin triggered PERK-mediated eIF2α phosphorylation, which in turn attenuated general protein synthesis and led to cell cycle arrest in the G0/G1 phase. We further showed that the combination of citreoviridin and the 26S proteasome inhibitor bortezomib could improve the anticancer activity by enhancing ER stress, by ameliorating citreoviridin-caused cyclin D3 compensation, and by contributing to CDK1 deactivation and PCNA downregulation. More interestingly, the combined treatment triggered lethality through unusual non-apoptotic caspase- and autophagy-independent cell death with a cytoplasmic vacuolization phenotype. The results imply that by boosting ER stress, the combination of ATP synthase inhibitor citreoviridin and 26S proteasome inhibitor bortezomib could potentially be an effective therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- H-Y Chang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - T-C Huang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - N-N Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - H-C Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - H-F Juan
- 1] Department of Life Science, National Taiwan University, Taipei, Taiwan [2] Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan [3] Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Involvement of ATP synthase β subunit in chikungunya virus entry into insect cells. Arch Virol 2014; 159:3353-64. [PMID: 25168043 DOI: 10.1007/s00705-014-2210-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Chikungunya virus (CHIKV), the virus responsible for the disease chikungunya fever in humans, is transmitted by Aedes mosquitoes. While significant progress has been made in understanding the process by which CHIKV enters into mammalian cells, far less progress has been made in understanding the CHIKV entry process in insect cells. This study sought to identify mosquito-cell-expressed CHIKV-binding proteins through a combination of virus overlay protein binding assays (VOPBA) and mass spectroscopy. A 50-kDa CHIKV-binding protein was identified as the ATP synthase β subunit (ATPSβ). Co-immunoprecipitation studies confirmed the interaction, and colocalization analysis showed cell-surface and intracellular co-localization between CHIKV and ATPSβ. Both antibody inhibition and siRNA-mediated downregulation experiments targeted to ATPSβ showed a significant reduction in viral entry and virus production. These results suggest that ATPSβ is a CHIKV-binding protein capable of mediating the entry of CHIKV into insect cells.
Collapse
|
43
|
Takada H, Furuya K, Sokabe M. Mechanosensitive ATP release from hemichannels and Ca²⁺ influx through TRPC6 accelerate wound closure in keratinocytes. J Cell Sci 2014; 127:4159-71. [PMID: 25097230 DOI: 10.1242/jcs.147314] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing is accelerated by exogenous mechanical forces and is impaired in TRPC6-knockout mice. Therefore, we designed experiments to determine how mechanical force and TRPC6 channels contribute to wound healing using HaCaT keratinocytes. HaCaT cells were pretreated with hyperforin, a major component of a traditional herbal medicine for wound healing and also a TRPC6 activator, and cultured in an elastic chamber. At 3 h after scratching the confluent cell layer, the ATP release and intracellular Ca(2+) increases in response to stretching (20%) were live-imaged. ATP release was observed only in cells at the frontier facing the scar. The diffusion of released ATP caused intercellular Ca(2+) waves that propagated towards the rear cells in a P2Y-receptor-dependent manner. The Ca(2+) response and wound healing were inhibited by ATP diphosphohydrolase apyrase, the P2Y antagonist suramin, the hemichannel blocker CBX and the TRPC6 inhibitor diC8-PIP2. Finally, the hemichannel-permeable dye calcein was taken up only by ATP-releasing cells. These results suggest that stretch-accelerated wound closure is due to the ATP release through mechanosensitive hemichannels from the foremost cells and the subsequent Ca(2+) waves mediated by P2Y and TRPC6 activation.
Collapse
Affiliation(s)
- Hiroya Takada
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Kishio Furuya
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| |
Collapse
|
44
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
45
|
XING SANLI, SHEN DINGZHU, CHEN CHUAN, WANG JIAN, LIU TE, YU ZHIHUA. Regulation of neuronal toxicity of β-amyloid oligomers by surface ATP synthase. Mol Med Rep 2013; 8:1689-94. [DOI: 10.3892/mmr.2013.1722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 11/05/2022] Open
|
46
|
Calzia D, Candiani S, Garbarino G, Caicci F, Ravera S, Bruschi M, Manni L, Morelli A, Traverso CE, Candiano G, Tacchetti C, Panfoli I. Are rod outer segment ATP-ase and ATP-synthase activity expression of the same protein? Cell Mol Neurobiol 2013; 33:637-49. [PMID: 23568658 PMCID: PMC11497934 DOI: 10.1007/s10571-013-9926-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/12/2013] [Indexed: 12/15/2022]
Abstract
Vertebrate retinal rod outer segments (OS) consist of a stack of disks surrounded by the plasma membrane, where phototransduction takes place. Energetic metabolism in rod OS remains obscure. Literature described a so-called Mg(2+)-dependent ATPase activity, while our previous results demonstrated the presence of oxidative phosphorylation (OXPHOS) in OS, sustained by an ATP synthetic activity. Here we propose that the OS ATPase and ATP synthase are the expression of the same protein, i.e., of F1Fo-ATP synthase. Imaging on bovine retinal sections showed that some OXPHOS proteins are expressed in the OS. Biochemical data on bovine purified rod OS, characterized for purity, show an ATP synthase activity, inhibited by classical F1Fo-ATP synthase inhibitors. Moreover, OS possess a pH-dependent ATP hydrolysis, inhibited by pH values below 7, suggestive of the functioning of the inhibitor of F1 (IF1) protein. WB confirmed the presence of IF1 in OS, substantiating the expression of F1Fo ATP synthase in OS. Data suggest that the OS F1Fo ATP synthase is able to hydrolyze or synthesize ATP, depending on in vitro or in vivo conditions and that the role of IF1 would be pivotal in the prevention of the reversal of ATP synthase in OS, for example during hypoxia, granting photoreceptor survival.
Collapse
Affiliation(s)
| | | | | | - Federico Caicci
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | | | - Maurizio Bruschi
- Laboratorio di Fisiopatologia dell’Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | | | | | - Giovanni Candiano
- Laboratorio di Fisiopatologia dell’Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Carlo Tacchetti
- IFOM Centro di Oncologia cellulare e Ultrastruttura, Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | | |
Collapse
|
47
|
Sakowicz-Burkiewicz M, Grden M, Maciejewska I, Szutowicz A, Pawelczyk T. High glucose impairs ATP formation on the surface of human peripheral blood B lymphocytes. Int J Biochem Cell Biol 2013; 45:1246-54. [PMID: 23523697 DOI: 10.1016/j.biocel.2013.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/20/2022]
Abstract
Diabetes-associated lymphocyte dysfunction may be attributed to the direct effect of hyperglycemia, but the impact of glucose concentration on B cell functionality is not fully resolved. Since, adenosine 5'-triphosphate (ATP) and its metabolite adenosine are the core constituents of the purinergic signaling network involved in regulation of immune response we aimed to investigate the impact of high glucose concentration on ATP outflow and metabolism on B cell surface. Purified human peripheral blood B cells cultured at high glucose (25 mM) concentration released significantly less ATP (~60%) comparing to cells cultured in low glucose (5mM) concentration. We observed that high glucose altered ATP hydrolysis on B cell surface due to increased activity of nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1/CD39). In the presence of 10 μM [(3)H]AMP and 100 μM ATP significant quantities of [(3)H]ADP and [(3)H]ATP were generated, although the AMP to ADP phosphorylation potential of B cells cultured in high glucose decreased significantly. The flow cytometry analysis revealed that the level of ecto-adenylate kinase 1β (AK1β) on surface of B cells cultured in high glucose decreased significantly. Inhibition of NTPDase1/CD39 activity with 100 μM ARL67156 resulted in decreased cell viability, although significantly more viable cells retained in the culture media containing low glucose compared to high glucose media. Selective inhibition of P2X7 purinergic receptor irrespective of glucose concentration completely protected B cells against the ARL 67156-induced cell death. We assume that high glucose-induced alteration of ATP handling on B cell surface might contribute to impaired functionality of B cells in diabetes.
Collapse
|
48
|
Espelt MV, de Tezanos Pinto F, Alvarez CL, Alberti GS, Incicco J, Leal Denis MF, Davio C, Schwarzbaum PJ. On the role of ATP release, ectoATPase activity, and extracellular ADP in the regulatory volume decrease of Huh-7 human hepatoma cells. Am J Physiol Cell Physiol 2013; 304:C1013-26. [PMID: 23485713 DOI: 10.1152/ajpcell.00254.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypotonicity triggered in human hepatoma cells (Huh-7) the release of ATP and cell swelling, followed by volume regulatory decrease (RVD). We analyzed how the interaction between those processes modulates cell volume. Cells exposed to hypotonic medium swelled 1.5 times their basal volume. Swelling was followed by 41% RVD(40) (extent of RVD after 40 min of maximum), whereas the concentration of extracellular ATP (ATP(e)) increased 10 times to a maximum value at 15 min. Exogenous apyrase (which removes di- and trinucleotides) did not alter RVD, whereas exogenous Na(+)-K(+)-ATPase (which converts ATP to ADP in the extracellular medium) enhanced RVD(40) by 2.6 times, suggesting that hypotonic treatment alone produced a basal RVD, whereas extracellular ADP activated RVD to achieve complete volume regulation (i.e., RVD(40) ≈100%). Under hypotonicity, addition of 2-(methylthio)adenosine 5'-diphosphate (2MetSADP; ADP analog) increased RVD to the same extent as exposure to Na(+)-K(+)-ATPase and the same analog did not stimulate RVD when coincubated with MRS2211, a blocker of ADP receptor P2Y(13). RT-PCR and Western blot analysis confirmed the presence of P2Y(13). Cells exhibited significant ectoATPase activity, which according to RT-PCR analysis can be assigned to ENTPDase2. Both carbenoxolone, a blocker of conductive ATP release, and brefeldin A, an inhibitor of exocytosis, were able to partially decrease ATP(e) accumulation, pointing to the presence of at least two mechanisms for ATP release. Thus, in Huh-7 cells, hypotonic treatment triggered the release of ATP. Conversion of ATP(e) to ADP(e) by ENTPDase 2 activity facilitates the accumulated ADP(e) to activate P2Y(13) receptors, which mediate complete RVD.
Collapse
Affiliation(s)
- María V Espelt
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ho CL, Yang CY, Lin WJ, Lin CH. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes. PLoS One 2013; 8:e57666. [PMID: 23536768 PMCID: PMC3594229 DOI: 10.1371/journal.pone.0057666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.
Collapse
Affiliation(s)
- Chia-Lin Ho
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Wen-Jie Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
50
|
Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS One 2013; 8:e56744. [PMID: 23457608 PMCID: PMC3574084 DOI: 10.1371/journal.pone.0056744] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/14/2013] [Indexed: 01/17/2023] Open
Abstract
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.
Collapse
Affiliation(s)
- Travis P. Barr
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
| | - Phillip J. Albrecht
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Quanzhi Hou
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Alexander A. Mongin
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Gary R. Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank L. Rice
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| |
Collapse
|