1
|
Mishra S, Chander V, Kass DA. Cardiac cGMP Regulation and Therapeutic Applications. Hypertension 2025; 82:185-196. [PMID: 39660453 PMCID: PMC11732264 DOI: 10.1161/hypertensionaha.124.21709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
cGMP plays a central role in cardiovascular regulation in health and disease. It is synthesized by NO or natriuretic peptide activated cyclases and hydrolyzed to 5'GMP by select members of the PDEs (phosphodiesterase) superfamily. The primary downstream effector is cGMP-dependent protein kinase, primarily cGK-1a (cyclic GMP-dependent protein kinase 1 alpha) also known as protein kinase G 1a in the heart and vasculature. cGMP signaling is controlled in intracellular nanodomains to regulate myocyte growth, survival, metabolism, protein homeostasis, G-protein-coupled receptor signaling, and other critical functions. The vascular effects of cGMP signaling have been dominated by its lowering of smooth muscle tone, but other cellular processes are also engaged. Localization of cyclases and corresponding PDEs within intracellular domains, along with their varying expression across different cell types, adds multiorgan complexity to cGMP signaling. This diversity can be leveraged therapeutically by targeting selective pathway components to impact some but not other cGMP signaling effects. Here, we review the generation and regulation of cGMP by PDEs and cyclases, focusing mainly on their role in cardiac physiology and pathophysiology. Current therapeutic uses of cGMP modulation and ongoing trials testing new potential applications are discussed.
Collapse
Affiliation(s)
- Sumita Mishra
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, (S.M., V.C.), Virginia Tech, Blacksburg, VA
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, (S.M.), Virginia Tech, Blacksburg, VA
- Department of Human Nutrition, Foods, and Exercise, College of Life Sciences (S.M.), Virginia Tech, Blacksburg, VA
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA (S.M.)
| | - Vivek Chander
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, (S.M., V.C.), Virginia Tech, Blacksburg, VA
| | - David A. Kass
- Division of Cardiology, Department of Medicine (D.A.K.), Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pharmacology and Molecular Sciences (D.A.K.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
2
|
Yasuda K, Berenger F, Amaike K, Ueda A, Nakagomi T, Hamasaki G, Li C, Otani NY, Kaitoh K, Tsuda K, Itami K, Yamanishi Y. De novo generation of dual-target compounds using artificial intelligence. iScience 2025; 28:111526. [PMID: 39801837 PMCID: PMC11721219 DOI: 10.1016/j.isci.2024.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/06/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Drugs that interact with multiple therapeutic targets are potential high-value products in polypharmacology-based drug discovery, but the rational design remains a formidable challenge. Here, we present artificial intelligence (AI)-based methods to design the chemical structures of compounds that interact with multiple therapeutic target proteins. The molecular structure generation is performed by a fragment-based approach using a genetic algorithm with chemical substructures and a deep learning approach using reinforcement learning with stochastic policy gradients in the framework of generative adversarial networks. Using the proposed methods, we designed the chemical structures of compounds that would interact with two therapeutic targets of bronchial asthma, i.e., adenosine A2a receptor (ADORA2A) and phosphodiesterase 4D (PDE4D). We then synthesized 10 compounds and evaluated their bioactivities via the binding assays of 39 target human proteins, including ADORA2A and PDE4D. Three of the 10 synthesized compounds successfully interacted with ADORA2A and PDE4D with high specificity.
Collapse
Affiliation(s)
- Kasumi Yasuda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Francois Berenger
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuma Amaike
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Ayaka Ueda
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Tomoya Nakagomi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Genki Hamasaki
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Chen Li
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Noriko Yuyama Otani
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Kazuma Kaitoh
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
3
|
Kelly ED, Ranek MJ, Zhang M, Kass DA, Muller GK. Phosphodiesterases: Evolving Concepts and Implications for Human Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:415-441. [PMID: 39322437 DOI: 10.1146/annurev-pharmtox-031524-025239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs in normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.
Collapse
Affiliation(s)
- Evan D Kelly
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manling Zhang
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Grace K Muller
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| |
Collapse
|
4
|
Sawada R, Sakajiri Y, Shibata T, Yamanishi Y. Predicting therapeutic and side effects from drug binding affinities to human proteome structures. iScience 2024; 27:110032. [PMID: 38868195 PMCID: PMC11167438 DOI: 10.1016/j.isci.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Evaluation of the binding affinities of drugs to proteins is a crucial process for identifying drug pharmacological actions, but it requires three dimensional structures of proteins. Herein, we propose novel computational methods to predict the therapeutic indications and side effects of drug candidate compounds from the binding affinities to human protein structures on a proteome-wide scale. Large-scale docking simulations were performed for 7,582 drugs with 19,135 protein structures revealed by AlphaFold (including experimentally unresolved proteins), and machine learning models on the proteome-wide binding affinity score (PBAS) profiles were constructed. We demonstrated the usefulness of the method for predicting the therapeutic indications for 559 diseases and side effects for 285 toxicities. The method enabled to predict drug indications for which the related protein structures had not been experimentally determined and to successfully extract proteins eliciting the side effects. The proposed method will be useful in various applications in drug discovery.
Collapse
Affiliation(s)
- Ryusuke Sawada
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuko Sakajiri
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| | - Tomokazu Shibata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
5
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
6
|
Yang B, An Y, Yang Y, Zhao Y, Yu K, Weng Y, Du C, Li H, Yu B. The ERβ-cAMP signaling pathway regulates estradiol-induced ovine oocyte meiotic arrest. Theriogenology 2024; 214:81-88. [PMID: 37862941 DOI: 10.1016/j.theriogenology.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Although 17β-estradiol (E2) and its receptors (ERs) are reported to play important roles in regulating oocyte maturation, the specific mechanism remains unclear. First, we performed immunohistochemistry analyses to determine the expression of the ERα and ERβ proteins in ovine ovarian tissue. Second, E2 (0.5 ng/mL and 1 μg/mL) were added to pre-IVM medium for 0 h, 1 h and 2 h. The effects of E2 (0.5 ng/mL and 1 μg/mL) on cyclic adenosine monophosphate (cAMP) level in cumulus-oocyte complexes (COCs) and on oocyte meiotic progression were evaluated by ELISA and DAPI staining respectively. Third, the effects of E2 on the gene and protein expression of ERα and ERβ in COCs were investigated by Western blotting and real-time PCR. Afterward, ERβ and cAMP regulators were added to the 2-h pretreatment medium with or without E2 (0.5 ng/mL) to explore the possible interactions among E2, cAMP and ERβ. The results showed that both ERα and ERβ proteins were expressed in ovine cumulus layers and oocytes. E2 significantly increased intra-COC cAMP levels, maintained oocyte meiotic arrest, and promoted ERβ transcript and protein expression. E2 treatment increased the cAMP concentration, which was enhanced by ERβ agonist treatment and remarkably attenuated by ERβ inhibitor treatment. Forskolin plus IBMX treatment increased ERβ protein expression in COCs (P < 0.05), and this was attenuated by Rp-cAMP treatment. In conclusion, E2 (0.5 ng/mL) increased intra-COC cAMP levels by promoting ERβ expression, thereby maintaining oocyte meiotic arrest. cAMP in COCs has a positive feedback effect on ERβ expression, which provides a novel explanation for the positive role of E2 in regulating ovine follicle development and oocyte maturation.
Collapse
Affiliation(s)
- Bingxue Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yang An
- Inner Mongolia People's Hospital, Hohhot, 010020, PR China
| | - Yanyan Yang
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, PR China
| | - Yufen Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Kai Yu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yu Weng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Animal Embryo and Development Engineering of Autonomous Region Universities, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| | - Boyang Yu
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
7
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
8
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
9
|
Ercu M, Mücke MB, Pallien T, Markó L, Sholokh A, Schächterle C, Aydin A, Kidd A, Walter S, Esmati Y, McMurray BJ, Lato DF, Yumi Sunaga-Franze D, Dierks PH, Flores BIM, Walker-Gray R, Gong M, Merticariu C, Zühlke K, Russwurm M, Liu T, Batolomaeus TUP, Pautz S, Schelenz S, Taube M, Napieczynska H, Heuser A, Eichhorst J, Lehmann M, Miller DC, Diecke S, Qadri F, Popova E, Langanki R, Movsesian MA, Herberg FW, Forslund SK, Müller DN, Borodina T, Maass PG, Bähring S, Hübner N, Bader M, Klussmann E. Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage. Circulation 2022; 146:1758-1778. [PMID: 36259389 DOI: 10.1161/circulationaha.122.060210] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.
Collapse
Affiliation(s)
- Maria Ercu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| | - Michael B Mücke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| | - Lajos Markó
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
| | - Carolin Schächterle
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Atakan Aydin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Alexa Kidd
- Clinical Genetics Ltd, Christchurch, New Zealand (A.K.)
| | | | - Yasmin Esmati
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Brandon J McMurray
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada (B.J.M., D.F.L., P.G.M.)
| | - Daniella F Lato
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada (B.J.M., D.F.L., P.G.M.)
| | - Daniele Yumi Sunaga-Franze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Philip H Dierks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Barbara Isabel Montesinos Flores
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Maolian Gong
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Claudia Merticariu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Michael Russwurm
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät MA N1, Ruhr-Universität Bochum, Germany (M.R.)
| | - Tiannan Liu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Theda U P Batolomaeus
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Sabine Pautz
- Department of Biochemistry, University of Kassel, Germany (S.P., F.W.H.)
| | - Stefanie Schelenz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Martin Taube
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Hanna Napieczynska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L.)
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (J.E., M.L.)
| | - Duncan C Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Berlin Institute of Health (BIH), Germany (S.D., S.K.F.)
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Reika Langanki
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | | | | | - Sofia K Forslund
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
- Berlin Institute of Health (BIH), Germany (S.D., S.K.F.)
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany (S.K.F.)
| | - Dominik N Müller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada (B.J.M., D.F.L., P.G.M.)
- Department of Molecular Genetics, University of Toronto, ON, Canada (P.G.M.)
| | - Sylvia Bähring
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Germany (L.M., Y.E., M.G., T.U.P.B., S.K.F., D.N.M., S.B.)
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (M.B.M., L.M., A.S., Y.E., T.U.P.B., S.K.F., S.B., N.H., M.B.)
- Institute for Biology, University of Lübeck, Germany (M.B.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.E., M.B.M., T.P., A.S., C.S., A.A., D.Y.S.-F., P.H.D., B.I.M.F., R.W.-G., M.G., C.M., K.Z., T.L., S.S., M.T., H.N., A.H., D.C.M., S.D., F.Q., E.P., R.L., S.K.F., D.N.M., T.B., S.B., N.H., M.B., E.K.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (M.E., M.B.M., T.P., L.M., A.S., Y.E., T.U.P.B., D.C.M., S.D., S.K.F., D.N.M., N.H., M.B., E.K.)
| |
Collapse
|
10
|
Phosphodiesterase-1 in the cardiovascular system. Cell Signal 2022; 92:110251. [DOI: 10.1016/j.cellsig.2022.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
11
|
Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and Compartmentation of cAMP and cGMP Signaling in Regulation of Cardiac Contractility in Normal and Failing Hearts. Int J Mol Sci 2022; 23:2145. [PMID: 35216259 PMCID: PMC8880502 DOI: 10.3390/ijms23042145] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure.
Collapse
Affiliation(s)
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, P.O. Box 1057 Blindern, 0316 Oslo, Norway; (G.C.); (L.R.M.); (F.O.L.)
| |
Collapse
|
12
|
Yan B, Ding Z, Zhang W, Cai G, Han H, Ma Y, Cao Y, Wang J, Chen S, Ai Y. Multiple PDE3A modulators act as molecular glues promoting PDE3A-SLFN12 interaction and induce SLFN12 dephosphorylation and cell death. Cell Chem Biol 2022; 29:958-969.e5. [PMID: 35104454 DOI: 10.1016/j.chembiol.2022.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022]
Abstract
The canonical function of phosphodiesterase 3A (PDE3A) is to hydrolyze the phosphodiester bonds in second messenger molecules, such as cyclic AMP (cAMP) and cyclic guanosine monophosphate (cGMP). Recently, a phosphodiesterase-activity-independent role for PDE3A was reported. In this noncanonical function, PDE3A physically interacts with Schlafen 12 (SLFN12) upon treatment of cells with cytotoxic PDE3A modulators. Here, we confirmed that the cytotoxic PDE3A modulators act as molecular glues to initiate the association of PDE3A and SLFN12. The PDE3A-SLFN12 interaction increases the protein stability of SLFN12 located in the cytoplasm, while at the same time also inducing SLFN12 dephosphorylation (including serines 368 and 573). Mutational analysis demonstrates that dephosphorylation is required for cell death induced by cytotoxic PDE3A modulators. Finally, we found that dephosphorylation promoted the rRNA RNase activity of SLFN12 and show that this nucleolytic activity is essential for SLFN12's cell-death-inducing function. Thus, our study deepens the understanding of the biochemical mechanisms underlying SLFN12-mediated cell death.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China
| | - Zhangcheng Ding
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100871, People's Republic of China
| | - Wenbin Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China; School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Gaihong Cai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China
| | - Hui Han
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China
| | - Yan Ma
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China
| | - Yang Cao
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China
| | - Jiawen Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China
| | - She Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, People's Republic of China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100871, People's Republic of China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
13
|
Agarwal SR, Sherpa RT, Moshal KS, Harvey RD. Compartmentalized cAMP signaling in cardiac ventricular myocytes. Cell Signal 2022; 89:110172. [PMID: 34687901 PMCID: PMC8602782 DOI: 10.1016/j.cellsig.2021.110172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Activation of different receptors that act by generating the common second messenger cyclic adenosine monophosphate (cAMP) can elicit distinct functional responses in cardiac myocytes. Selectively sequestering cAMP activity to discrete intracellular microdomains is considered essential for generating receptor-specific responses. The processes that control this aspect of compartmentalized cAMP signaling, however, are not completely clear. Over the years, technological innovations have provided critical breakthroughs in advancing our understanding of the mechanisms underlying cAMP compartmentation. Some of the factors identified include localized production of cAMP by differential distribution of receptors, localized breakdown of this second messenger by targeted distribution of phosphodiesterase enzymes, and limited diffusion of cAMP by protein kinase A (PKA)-dependent buffering or physically restricted barriers. The aim of this review is to provide a discussion of our current knowledge and highlight some of the gaps that still exist in the field of cAMP compartmentation in cardiac myocytes.
Collapse
|
14
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
15
|
Zemskov EA, Wu X, Aggarwal S, Yegambaram M, Gross C, Lu Q, Wang H, Tang H, Wang T, Black SM. Nitration of protein kinase G-Iα modulates cyclic nucleotide crosstalk via phosphodiesterase 3A: Implications for acute lung injury. J Biol Chem 2021; 297:100946. [PMID: 34252457 PMCID: PMC8342797 DOI: 10.1016/j.jbc.2021.100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 12/05/2022] Open
Abstract
Phosphodiesterase 3A (PDE3A) selectively cleaves the phosphodiester bond of cAMP and is inhibited by cGMP, making it an important regulator of cAMP-cGMP signaling crosstalk in the pulmonary vasculature. In addition, the nitric oxide-cGMP axis is known to play an important role in maintaining endothelial barrier function. However, the potential role of protein kinase G-Iα (PKG-Iα) in this protective process is unresolved and was the focus of our study. We describe here a novel mechanism regulating PDE3A activity, which involves a PKG-Iα-dependent inhibitory phosphorylation of PDE3A at serine 654. We also show that this phosphorylation is critical for maintaining intracellular cAMP levels in the pulmonary endothelium and endothelial barrier integrity. In an animal model of acute lung injury (ALI) induced by challenging mice with lipopolysaccharide (LPS), an increase in PDE3 activity and a decrease in cAMP levels in lung tissue was associated with reduced PKG activity upon PKG-Iα nitration at tyrosine 247. The peroxynitrite scavenger manganese (III) tetrakis(1-methyl-4-pyridyl)porphyrin prevented this increase in PDE3 activity in LPS-exposed lungs. In addition, site-directed mutagenesis of PDE3A to replace serine 654 with alanine yielded a mutant protein that was insensitive to PKG-dependent regulation. Taken together, our data demonstrate a novel functional link between nitrosative stress induced by LPS during ALI and the downregulation of barrier-protective intracellular cAMP levels. Our data also provide new evidence that PKG-Iα is critical for endothelial barrier maintenance and that preservation of its catalytic activity may be efficacious in ALI therapy.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Saurabh Aggarwal
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | | | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Hui Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona, USA; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiyang Tang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona, USA; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Center for Translational Science, Florida International University, Port Saint Lucie, Florida, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port Saint Lucie, Florida, USA; Department of Internal Medicine, The University of Arizona, Phoenix, Arizona, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, Port Saint Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA; Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
16
|
Samidurai A, Xi L, Das A, Iness AN, Vigneshwar NG, Li PL, Singla DK, Muniyan S, Batra SK, Kukreja RC. Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Pharmacol Ther 2021; 226:107858. [PMID: 33895190 DOI: 10.1016/j.pharmthera.2021.107858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are superfamily of enzymes that regulate the spatial and temporal relationship of second messenger signaling in the cellular system. Among the 11 different families of PDEs, phosphodiesterase 1 (PDE1) sub-family of enzymes hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in a mutually competitive manner. The catalytic activity of PDE1 is stimulated by their binding to Ca2+/calmodulin (CaM), resulting in the integration of Ca2+ and cyclic nucleotide-mediated signaling in various diseases. The PDE1 family includes three subtypes, PDE1A, PDE1B and PDE1C, which differ for their relative affinities for cAMP and cGMP. These isoforms are differentially expressed throughout the body, including the cardiovascular, central nervous system and other organs. Thus, PDE1 enzymes play a critical role in the pathophysiology of diseases through the fundamental regulation of cAMP and cGMP signaling. This comprehensive review provides the current research on PDE1 and its potential utility as a therapeutic target in diseases including the cardiovascular, pulmonary, metabolic, neurocognitive, renal, cancers and possibly others.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Audra N Iness
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Navin G Vigneshwar
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|
17
|
Abstract
Cyclic nucleotide phosphodiesterases comprise an 11-member superfamily yielding near 100 isoform variants that hydrolyze cAMP or cGMP to their respective 5'-monophosphate form. Each plays a role in compartmentalized cyclic nucleotide signaling, with varying selectivity for each substrate, and conveying cell and intracellular-specific localized control. This review focuses on the 5 phosphodiesterases (PDEs) expressed in the cardiac myocyte capable of hydrolyzing cGMP and that have been shown to play a role in cardiac physiological and pathological processes. PDE1, PDE2, and PDE3 catabolize cAMP as well, whereas PDE5 and PDE9 are cGMP selective. PDE3 and PDE5 are already in clinical use, the former for heart failure, and PDE1, PDE9, and PDE5 are all being actively studied for this indication in patients. Research in just the past few years has revealed many novel cardiac influences of each isoform, expanding the therapeutic potential from their selective pharmacological blockade or in some instances, activation. PDE1C inhibition was found to confer cell survival protection and enhance cardiac contractility, whereas PDE2 inhibition or activation induces beneficial effects in hypertrophied or failing hearts, respectively. PDE3 inhibition is already clinically used to treat acute decompensated heart failure, although toxicity has precluded its long-term use. However, newer approaches including isoform-specific allosteric modulation may change this. Finally, inhibition of PDE5A and PDE9A counter pathological remodeling of the heart and are both being pursued in clinical trials. Here, we discuss recent research advances in each of these PDEs, their impact on the myocardium, and cardiac therapeutic potential.
Collapse
|
18
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
19
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
20
|
Ai Y, He H, Chen P, Yan B, Zhang W, Ding Z, Li D, Chen J, Ma Y, Cao Y, Zhu J, Li J, Ou J, Du S, Wang X, Ma J, Gao S, Qi X. An alkaloid initiates phosphodiesterase 3A-schlafen 12 dependent apoptosis without affecting the phosphodiesterase activity. Nat Commun 2020; 11:3236. [PMID: 32591543 PMCID: PMC7319972 DOI: 10.1038/s41467-020-17052-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
The promotion of apoptosis in tumor cells is a popular strategy for developing anti-cancer drugs. Here, we demonstrate that the plant indole alkaloid natural product nauclefine induces apoptosis of diverse cancer cells via a PDE3A-SLFN12 dependent death pathway. Nauclefine binds PDE3A but does not inhibit the PDE3A's phosphodiesterase activity, thus representing a previously unknown type of PDE3A modulator that can initiate apoptosis without affecting PDE3A's canonical function. We demonstrate that PDE3A's H840, Q975, Q1001, and F1004 residues-as well as I105 in SLFN12-are essential for nauclefine-induced PDE3A-SLFN12 interaction and cell death. Extending these molecular insights, we show in vivo that nauclefine inhibits tumor xenograft growth, doing so in a PDE3A- and SLFN12-dependent manner. Thus, beyond demonstrating potent cytotoxic effects of an alkaloid natural product, our study illustrates a potentially side-effect-reducing strategy for targeting PDE3A for anti-cancer therapeutics without affecting its phosphodiesterase activity.
Collapse
Affiliation(s)
- Youwei Ai
- College of Wildlife and Protected Area, Northeast Forestry University, Hexing Road, 150040, Harbin, China.
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China
| | - Peihao Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Bo Yan
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wenbin Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Zhangcheng Ding
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Dianrong Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jie Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yang Cao
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jie Zhu
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jinjie Ou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China
| | - Shan Du
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jianzhang Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Hexing Road, 150040, Harbin, China.
| | - Shuanhu Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China.
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
Maryam A, Khalid RR, Siddiqi AR, Ece A. E-pharmacophore based virtual screening for identification of dual specific PDE5A and PDE3A inhibitors as potential leads against cardiovascular diseases. J Biomol Struct Dyn 2020; 39:2302-2317. [DOI: 10.1080/07391102.2020.1748718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | | | | | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| |
Collapse
|
22
|
Wu X, Schnitzler GR, Gao GF, Diamond B, Baker AR, Kaplan B, Williamson K, Westlake L, Lorrey S, Lewis TA, Garvie CW, Lange M, Hayat S, Seidel H, Doench J, Cherniack AD, Kopitz C, Meyerson M, Greulich H. Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12. J Biol Chem 2020; 295:3431-3446. [PMID: 32005668 DOI: 10.1074/jbc.ra119.011191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Cytotoxic molecules can kill cancer cells by disrupting critical cellular processes or by inducing novel activities. 6-(4-(Diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (DNMDP) is a small molecule that kills cancer cells by generation of novel activity. DNMDP induces complex formation between phosphodiesterase 3A (PDE3A) and schlafen family member 12 (SLFN12) and specifically kills cancer cells expressing elevated levels of these two proteins. Here, we examined the characteristics and covariates of the cancer cell response to DNMDP. On average, the sensitivity of human cancer cell lines to DNMDP is correlated with PDE3A expression levels. However, DNMDP could also bind the related protein, PDE3B, and PDE3B supported DNMDP sensitivity in the absence of PDE3A expression. Although inhibition of PDE3A catalytic activity did not account for DNMDP sensitivity, we found that expression of the catalytic domain of PDE3A in cancer cells lacking PDE3A is sufficient to confer sensitivity to DNMDP, and substitutions in the PDE3A active site abolish compound binding. Moreover, a genome-wide CRISPR screen identified the aryl hydrocarbon receptor-interacting protein (AIP), a co-chaperone protein, as required for response to DNMDP. We determined that AIP is also required for PDE3A-SLFN12 complex formation. Our results provide mechanistic insights into how DNMDP induces PDE3A-SLFN12 complex formation, thereby killing cancer cells with high levels of PDE3A and SLFN12 expression.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | | | - Galen F Gao
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Brett Diamond
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Andrew R Baker
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Bethany Kaplan
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | | | | | - Selena Lorrey
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Timothy A Lewis
- Center for the Development of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142
| | - Colin W Garvie
- Center for the Development of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142
| | - Martin Lange
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - Sikander Hayat
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - Henrik Seidel
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - John Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, Massachusetts 02142
| | - Andrew D Cherniack
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Charlotte Kopitz
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - Matthew Meyerson
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Heidi Greulich
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.
| |
Collapse
|
23
|
Sucharov CC, Nakano SJ, Slavov D, Schwisow JA, Rodriguez E, Nunley K, Medway A, Stafford N, Nelson P, McKinsey TA, Movsesian M, Minobe W, Carroll IA, Taylor MRG, Bristow MR. A PDE3A Promoter Polymorphism Regulates cAMP-Induced Transcriptional Activity in Failing Human Myocardium. J Am Coll Cardiol 2020; 73:1173-1184. [PMID: 30871701 DOI: 10.1016/j.jacc.2018.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The phosphodiesterase 3A (PDE3A) gene encodes a PDE that regulates cardiac myocyte cyclic adenosine monophosphate (cAMP) levels and myocardial contractile function. PDE3 inhibitors (PDE3i) are used for short-term treatment of refractory heart failure (HF), but do not produce uniform long-term benefit. OBJECTIVES The authors tested the hypothesis that drug target genetic variation could explain clinical response heterogeneity to PDE3i in HF. METHODS PDE3A promoter studies were performed in a cloned luciferase construct. In human left ventricular (LV) preparations, mRNA expression was measured by reverse transcription polymerase chain reaction, and PDE3 enzyme activity by cAMP-hydrolysis. RESULTS The authors identified a 29-nucleotide (nt) insertion (INS)/deletion (DEL) polymorphism in the human PDE3A gene promoter beginning 2,214 nt upstream from the PDE3A1 translation start site. Transcription factor ATF3 binds to the INS and represses cAMP-dependent promoter activity. In explanted failing LVs that were homozygous for PDE3A DEL and had been treated with PDE3i pre-cardiac transplantation, PDE3A1 mRNA abundance and microsomal PDE3 enzyme activity were increased by 1.7-fold to 1.8-fold (p < 0.05) compared with DEL homozygotes not receiving PDE3i. The basis for the selective up-regulation in PDE3A gene expression in DEL homozygotes treated with PDE3i was a cAMP response element enhancer 61 nt downstream from the INS, which was repressed by INS. The DEL homozygous genotype frequency was also enriched in patients with HF. CONCLUSIONS A 29-nt INS/DEL polymorphism in the PDE3A promoter regulates cAMP-induced PDE3A gene expression in patients treated with PDE3i. This molecular mechanism may explain response heterogeneity to this drug class, and may inform a pharmacogenetic strategy for a more effective use of PDE3i in HF.
Collapse
Affiliation(s)
- Carmen C Sucharov
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado.
| | - Stephanie J Nakano
- Department of Pediatrics, University of Colorado Denver, Children's Hospital Colorado, Aurora, Colorado
| | - Dobromir Slavov
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Jessica A Schwisow
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Erin Rodriguez
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Karin Nunley
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Allen Medway
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Natalie Stafford
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Penny Nelson
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Timothy A McKinsey
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado; University of Colorado Anschutz Medical Campus Consortium for Fibrosis Research & Translation, Aurora, Colorado
| | - Matthew Movsesian
- Cardiology Section, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Internal Medicine (Cardiovascular Medicine), University of Utah School of Medicine, Salt Lake City, Utah; Department of Pharmacology & Toxicology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Wayne Minobe
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | | | - Matthew R G Taylor
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Michael R Bristow
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado; ARCA Biopharma, Westminster, Colorado
| |
Collapse
|
24
|
Guo Q, Liu J, Zhu P, Liu Y, Dong N, Shi J, Peng H. Evaluation of Drug-Related Receptors in Children With Dilated Cardiomyopathy. Front Pediatr 2019; 7:387. [PMID: 31632936 PMCID: PMC6779825 DOI: 10.3389/fped.2019.00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Effective treatments for pediatric dilated cardiomyopathy (DCM) are limited. Currently, pediatric DCM therapy mainly includes supportive heart failure (HF) treatment. While the treatment for child DCM patients is generally the same as that for adult DCM patients, few randomized prospective studies on the clinical efficacy of treatments for pediatric DCM have been published. We explored the appropriate treatments for child patients. Methods: The ultrastructure of pediatric DCM and control hearts was analyzed by electron microscopy and HE staining. Left ventricular tissues from children in the DCM and control groups were subjected to quantitative RT-PCR (qRT-PCR) to study the mRNA expression of receptors related to various treatments, including drugs targeting the renin-angiotensin-aldosterone system (RAAS) system, digoxin, milrinone, and β-receptor blockers, in child patients in the clinic. Furthermore, the differences in drug receptors in heart tissues between children and adults with DCM were analyzed. Results: Compared with the control children, the children in the DCM group showed marked abnormalities in structure and organelles. The mRNA levels of angiotensin-converting enzyme (ACE), REN, prorenin receptor (PRR), NEP, ATP1A1, and phosphodiesterase3 (PDE3A) were higher in the pediatric DCM group than the control group. Interestingly, the mRNA expression of these treatment-related receptors was much higher in children than in adults. Conclusion: ACE inhibitors, PRR or REN receptor inhibitors, PDE3 inhibitors and LCZ696 may be effective in children with DCM. However, β-receptor blockers are not valid treatments for pediatric DCM. Moreover, high receptor expression was observed in children. These data will improve the selection of drugs for DCM patients, enhance treatment, and increase the survival rate.
Collapse
Affiliation(s)
- Qing Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Liu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Liu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019; 133:57-66. [PMID: 31158360 DOI: 10.1016/j.yjmcc.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
AIMS Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to β-adrenergic receptor (β-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective β-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or β-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.
Collapse
|
26
|
Abstract
A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
27
|
Moussa M, Li MQ, Zheng HY, Yang CY, Yan SF, Yu NQ, Huang JX, Shang JH. Developmental competence of buffalo (Bubalus bubalis) denuded oocytes cocultured with cumulus cells: Protective role of cumulus cells. Theriogenology 2018; 120:40-46. [DOI: 10.1016/j.theriogenology.2018.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 11/26/2022]
|
28
|
Vandenberghe P, Hagué P, Hockman SC, Manganiello VC, Demetter P, Erneux C, Vanderwinden JM. Phosphodiesterase 3A: a new player in development of interstitial cells of Cajal and a prospective target in gastrointestinal stromal tumors (GIST). Oncotarget 2018; 8:41026-41043. [PMID: 28454120 PMCID: PMC5522287 DOI: 10.18632/oncotarget.17010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/25/2017] [Indexed: 12/19/2022] Open
Abstract
We previously identified phosphodiesterase 3A (PDE3A) as a marker for interstitial cells of Cajal (ICC) in adult mouse gut. However, PDE3A expression and function during gut development and in ICC-derived gastrointestinal stromal tumors (GIST) remained unknown. Here we found that PDE3A was expressed throughout ICC development and that ICC density was halved in PDE3A-deficient mice. In the human imatinib-sensitive GIST882 cell line, the PDE3 inhibitor cilostazol halved cell viability (IC50 0.35 μM) and this effect synergized with imatinib (Chou-Talalay's CI50 0.15). Recently the compound 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP was found to be cytotoxic selectively for cells expressing both PDE3A and Schlafen12 (SLFN12) (de Waal L et al. Nat Chem Bio 2016), identifying a new, non-catalytic, role for PDE3A. 108 out of 117 (92%) of our human GIST samples displayed both PDE3A and SLFN12 immunoreactivity. GIST882 cells express both PDE3A and SLFN12 and DNMDP decreased their viability by 90%. Our results suggest a role for PDE3A during ICC development and open novel perspectives for PDE3A in targeted GIST therapy, on one hand by the synergism between imatinib and cilostazol, a PDE3 inhibitor already in clinical use for other indications, and, on the other hand, by the neomorphic, druggable, PDE3A-SLFN12 cytotoxic interplay.
Collapse
Affiliation(s)
- Pierre Vandenberghe
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Perrine Hagué
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Steven C Hockman
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe Erneux
- IRIBHM, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Marie Vanderwinden
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
29
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
30
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
31
|
Mathematical Modelling of Nitric Oxide/Cyclic GMP/Cyclic AMP Signalling in Platelets. Int J Mol Sci 2018; 19:ijms19020612. [PMID: 29462984 PMCID: PMC5855834 DOI: 10.3390/ijms19020612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 02/04/2023] Open
Abstract
Platelet activation contributes to normal haemostasis but also to pathologic conditions like stroke and cardiac infarction. Signalling by cGMP and cAMP inhibit platelet activation and are therefore attractive targets for thrombosis prevention. However, extensive cross-talk between the cGMP and cAMP signalling pathways in multiple tissues complicates the selective targeting of their activities. We have used mathematical modelling based on experimental data from the literature to quantify the steady state behaviour of nitric oxide (NO)/cGMP/cAMP signalling in platelets. The analysis provides an assessment of NO-induced cGMP synthesis and PKG activation as well as cGMP-mediated cAMP and PKA activation though modulation of phosphodiesterase (PDE2 and 3) activities. Both one- and two-compartment models of platelet cyclic nucleotide signalling are presented. The models provide new insight for understanding how NO signalling to cGMP and indirectly cAMP, can inhibit platelet shape-change, the initial step of platelet activation. Only the two-compartment models could account for the experimental observation that NO-mediated PKA activation can occur when the bulk platelet cAMP level is unchanged. The models revealed also a potential for hierarchical interplay between the different platelet phosphodiesterases. Specifically, the models predict, unexpectedly, a strong effect of pharmacological inhibitors of cGMP-specific PDE5 on the cGMP/cAMP cross-talk. This may explain the successful use of weak PDE5-inhibitors, such as dipyridamole, in anti-platelet therapy. In conclusion, increased NO signalling or PDE5 inhibition are attractive ways of increasing cGMP-cAMP cross-talk selectively in platelets.
Collapse
|
32
|
Movsesian M, Ahmad F, Hirsch E. Functions of PDE3 Isoforms in Cardiac Muscle. J Cardiovasc Dev Dis 2018; 5:jcdd5010010. [PMID: 29415428 PMCID: PMC5872358 DOI: 10.3390/jcdd5010010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses.
Collapse
Affiliation(s)
- Matthew Movsesian
- Department of Internal Medicine/Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 841132, USA.
| | - Faiyaz Ahmad
- Vascular Biology and Hypertension Branch, Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA.
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Center for Molecular Biotechnology, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
33
|
Crassous PA, Shu P, Huang C, Gordan R, Brouckaert P, Lampe PD, Xie LH, Beuve A. Newly Identified NO-Sensor Guanylyl Cyclase/Connexin 43 Association Is Involved in Cardiac Electrical Function. J Am Heart Assoc 2017; 6:e006397. [PMID: 29269353 PMCID: PMC5778997 DOI: 10.1161/jaha.117.006397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Guanylyl cyclase, a heme-containing α1β1 heterodimer (GC1), produces cGMP in response to Nitric oxide (NO) stimulation. The NO-GC1-cGMP pathway negatively regulates cardiomyocyte contractility and protects against cardiac hypertrophy-related remodeling. We recently reported that the β1 subunit of GC1 is detected at the intercalated disc with connexin 43 (Cx43). Cx43 forms gap junctions (GJs) at the intercalated disc that are responsible for electrical propagation. We sought to determine whether there is a functional association between GC1 and Cx43 and its role in cardiac homeostasis. METHODS AND RESULTS GC1 and Cx43 immunostaining at the intercalated disc and coimmunoprecipitation from membrane fraction indicate that GC1 and Cx43 are associated. Mice lacking the α subunit of GC1 (GCα1 knockout mice) displayed a significant decrease in GJ function (dye-spread assay) and Cx43 membrane lateralization. In a cardiac-hypertrophic model, angiotensin II treatment disrupted the GC1-Cx43 association and induced significant Cx43 membrane lateralization, which was exacerbated in GCα1 knockout mice. Cx43 lateralization correlated with decreased Cx43-containing GJs at the intercalated disc, predictors of electrical dysfunction. Accordingly, an ECG revealed that angiotensin II-treated GCα1 knockout mice had impaired ventricular electrical propagation. The phosphorylation level of Cx43 at serine 365, a protein-kinase A upregulated site involved in trafficking/assembly of GJs, was decreased in these models. CONCLUSIONS GC1 modulates ventricular Cx43 location, hence GJ function, and partially protects from electrical dysfunction in an angiotensin II hypertrophy model. Disruption of the NO-cGMP pathway is associated with cardiac electrical disturbance and abnormal Cx43 phosphorylation. This previously unknown NO/Cx43 signaling could be a protective mechanism against stress-induced arrhythmia.
Collapse
Affiliation(s)
- Pierre-Antoine Crassous
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Can Huang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paul D Lampe
- Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, Newark, NJ
| | - Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ
| |
Collapse
|
34
|
Wang X, Yamada S, LaRiviere WB, Ye H, Bakeberg JL, Irazabal MV, Chebib FT, van Deursen J, Harris PC, Sussman CR, Behfar A, Ward CJ, Torres VE. Generation and phenotypic characterization of Pde1a mutant mice. PLoS One 2017; 12:e0181087. [PMID: 28750036 PMCID: PMC5531505 DOI: 10.1371/journal.pone.0181087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/15/2022] Open
Abstract
It has been proposed that a reduction in intracellular calcium causes an increase in intracellular cAMP and PKA activity through stimulation of calcium inhibitable adenylyl cyclase 6 and inhibition of phosphodiesterase 1 (PDE1), the main enzymes generating and degrading cAMP in the distal nephron and collecting duct, thus contributing to the development and progression of autosomal dominant polycystic kidney disease (ADPKD). In zebrafish pde1a depletion aggravates and overexpression ameliorates the cystic phenotype. To study the role of PDE1A in a mammalian system, we used a TALEN pair to Pde1a exon 7, targeting the histidine-aspartic acid dipeptide involved in ligating the active site Zn++ ion to generate two Pde1a null mouse lines. Pde1a mutants had a mild renal cystic disease and a urine concentrating defect (associated with upregulation of PDE4 activity and decreased protein kinase A dependent phosphorylation of aquaporin-2) on a wild-type genetic background and aggravated renal cystic disease on a Pkd2WS25/- background. Pde1a mutants additionally had lower aortic blood pressure and increased left ventricular (LV) ejection fraction, without a change in LV mass index, consistent with the high aortic and low cardiac expression of Pde1a in wild-type mice. These results support an important role of PDE1A in the renal pathogenesis of ADPKD and in the regulation of blood pressure.
Collapse
Affiliation(s)
- Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Satsuki Yamada
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wells B. LaRiviere
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hong Ye
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jason L. Bakeberg
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - María V. Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Caroline R. Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Atta Behfar
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christopher J. Ward
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (VET); (CJW)
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (VET); (CJW)
| |
Collapse
|
35
|
Weber S, Zeller M, Guan K, Wunder F, Wagner M, El-Armouche A. PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal 2017; 38:76-84. [PMID: 28668721 DOI: 10.1016/j.cellsig.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The cyclic nucleotides cAMP and cGMP are central second messengers in cardiac cells and critical regulators of cardiac physiology as well as pathophysiology. Consequently, subcellular compartmentalization allows for spatiotemporal control of cAMP/cGMP metabolism and subsequent regulation of their respective effector kinases PKA or PKG is most important for cardiac function in health and disease. While acute cAMP-mediated signalling is a mandatory prerequisite for the physiological fight-or-flight response, sustained activation of this pathway may lead to the progression of heart failure. In contrast, acute as well as sustained cGMP-mediated signalling can foster beneficial features, e.g. anti-hypertrophic and vasodilatory effects. These two signalling pathways seem to be intuitively counteracting and there is increasing evidence for a functionally relevant crosstalk between cAMP and cGMP signalling pathways on the level of cyclic nucleotide hydrolysing phosphodiesterases (PDEs). Among this diverse group of enzymes, PDE2 may fulfill a unique integrator role. Equipped with dual substrate specificity for cAMP as well as for cGMP, it is the only cAMP hydrolysing PDE, which is allosterically activated by cGMP. Recent studies have revealed strongly remodelled cAMP/cGMP microdomains and subcellular concentration profiles in different cardiac pathologies, leading to a putatively enhanced involvement of PDE2 in cAMP/cGMP breakdown and crosstalk compared to the other cardiac PDEs. This review sums up the current knowledge about molecular properties and regulation of PDE2 and explains the complex signalling network encompassing PDE2 in order to better understand the functional role of PDE2 in distinct cell types in cardiac health and disease. Moreover, this review gives an outlook in which way PDE2 may serve as a therapeutic target to treat cardiac disease.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Miriam Zeller
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Kaomei Guan
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Frank Wunder
- Drug Discovery, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| |
Collapse
|
36
|
Sube R, Ertel EA. Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells: An In-Vitro Model to Predict Cardiac Effects of Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbise.2017.1011040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Hwang H, Cheon YP. cyclic GMP Mediated Inhibition of Spontaneous Germinal Vesicle
Breakdown Both with and without Cumulus in Mouse Oocyte. Dev Reprod 2016; 20:359-365. [PMID: 28144640 PMCID: PMC5270610 DOI: 10.12717/dr.2016.20.4.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/25/2016] [Accepted: 12/19/2016] [Indexed: 12/01/2022]
Abstract
Intact germinal vesicle (GV) arrest and release are essential for maintaining the
fertility of mammals inducing human. Intact germinal vesicle release, maturation
of oocytes is maintained by very complex procedures along with folliculogenesis
and is a critical step for embryonic development. Cyclic guanosine monophosphate
(cGMP) has been suggested a key factor for meiotic arrest but so far its
mechanisms are controversy. In this study we examine the effects of cGMP on
germinal vesicle breakdown in cumulus-enclosed oocytes and denuded oocytes.
Spontaneous maturation was inhibited by a cGMP agonist, 8-Br-cGMP with
concentration dependent manners both in cumulus-enclosed oocytes and denuded
oocytes. The inhibitory effect was more severe in denuded oocytes than
cumulus-enclosed oocytes. The Rp-8-Br-cGMP and Rp-pCPT-8-Br-cGMP did not
severely block GVB compared to 8-Br-cGMP. The spontaneous GVB inhibitory effects
were different by the existence of cumulus. Based on them it is suggested that
the cumulus modulates the role of cGMP in GV arrest.
Collapse
Affiliation(s)
- Heekyung Hwang
- Department of Biology, Institute Basic Sciences, Sungshin Women’s
University, Seoul, Korea
| | - Yong-Pil Cheon
- Department of Biology, Institute Basic Sciences, Sungshin Women’s
University, Seoul, Korea
- Corresponding Author : Yong-Pil Cheon, Department
of Biology, College of Natural Sciences, Sungshin Women’s University, 249-1
Dongseon-dong 3-ga, Seongbuk-gu, Seoul 136-742, Korea, Phone : 82-2-920-7639,
Fax : 82-2-920-2093, e-mail :
| |
Collapse
|
38
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Movsesian M. Novel approaches to targeting PDE3 in cardiovascular disease. Pharmacol Ther 2016; 163:74-81. [PMID: 27108947 DOI: 10.1016/j.pharmthera.2016.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/18/2016] [Indexed: 10/24/2022]
Abstract
Inhibitors of PDE3, a family of dual-specificity cyclic nucleotide phosphodiesterases, are used clinically to increase cardiac contractility by raising intracellular cAMP content in cardiac myocytes and to reduce vascular resistance by increasing intracellular cGMP content in vascular smooth muscle myocytes. When used in the treatment of patients with heart failure, PDE3 inhibitors are effective in the acute setting but increase sudden cardiac death with long-term administration, possibly reflecting pro-apoptotic and pro-hypertrophic consequences of increased cAMP-mediated signaling in cardiac myocytes. cAMP-mediated signaling in cardiac myocytes is highly compartmentalized, and different phosphodiesterases, by controlling cAMP content in functionally discrete intracellular microcompartments, regulate different cAMP-mediated pathways. Four variants/isoforms of PDE3 (PDE3A1, PDE3A2, PDE3A3, and PDE3B) are expressed in cardiac myocytes, and new experimental results have demonstrated that these isoforms, which are differentially localized intracellularly through unique protein-protein interactions, control different physiologic responses. While the catalytic regions of these isoforms may be too similar to allow the catalytic activity of each isoform to be selectively inhibited, targeting their unique protein-protein interactions may allow desired responses to be elicited without the adverse consequences that limit the usefulness of existing PDE3 inhibitors.
Collapse
Affiliation(s)
- Matthew Movsesian
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
40
|
Uroguanylin modulates (Na++K+)ATPase in a proximal tubule cell line: Interactions among the cGMP/protein kinase G, cAMP/protein kinase A, and mTOR pathways. Biochim Biophys Acta Gen Subj 2016; 1860:1431-8. [PMID: 27102282 DOI: 10.1016/j.bbagen.2016.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND The natriuretic effect of uroguanylin (UGN) involves reduction of proximal tubule (PT) sodium reabsorption. However, the target sodium transporters as well as the molecular mechanisms involved in these processes remain poorly understood. METHODS To address the effects of UGN on PT (Na(+)+K(+))ATPase and the signal transduction pathways involved in this effect, we used LLC-PK1 cells. The effects of UGN were determined through ouabain-sensitive ATP hydrolysis and immunoblotting assays during different experimental conditions. RESULTS We observed that UGN triggers cGMP/PKG and cAMP/PKA pathways in a sequential way. The activation of PKA leads to the inhibition of mTORC2 activity, PKB phosphorylation at S473, PKB activity and, consequently, a decrease in the mTORC1/S6K pathway. The final effects are decreased expression of the α1 subunit of (Na(+)+K(+))ATPase and inhibition of enzyme activity. CONCLUSIONS These results suggest that the molecular mechanism of action of UGN on sodium reabsorption in PT cells is more complex than previously thought. We propose that PKG-dependent activation of PKA leads to the inhibition of the mTORC2/PKB/mTORC1/S6K pathway, an important signaling pathway involved in the maintenance of the PT sodium pump expression and activity. GENERAL SIGNIFICANCE The current results expand our understanding of the signal transduction pathways involved in the overall effect of UGN on renal sodium excretion.
Collapse
|
41
|
New pharmacologic interventions to increase cardiac contractility: challenges and opportunities. Curr Opin Cardiol 2015; 30:285-91. [PMID: 25807221 DOI: 10.1097/hco.0000000000000165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The most extensively studied inotropic agents in patients with heart failure are phosphodiesterase (PDE) 3 inhibitors, which increase contractility by raising intracellular cyclic adenosine monophosphate content. In clinical trials, the inotropic benefits of these agents have been outweighed by an increase in sudden cardiac death. Here, I review recent findings that help explain what are likely to be distinct mechanisms involved in the beneficial and adverse effects of PDE3 inhibition. RECENT FINDINGS The proapoptotic consequences of PDE3 inhibition are becoming more apparent. Moreover, it has also become clear that individual PDE3 isoforms in cardiac myocytes are selectively regulated to interact with different proteins in different intracellular compartments. The beneficial and adverse effects of PDE3 inhibition may thus be attributable to the inhibition of different isoforms in different intracellular domains. In particular, PDE3A1 has been shown to interact directly with sarcoplasmic/endoplasmic reticulum Ca ATPase (SERCA2) in the sarcoplasmic reticulum through a phosphorylation of a site in its unique N-terminal domain, making it possible that this isoform can be selectively targeted to increase intracellular Ca cycling. SUMMARY Conventional PDE3 inhibitors target several functionally distinct isoforms of these enzymes. Isoform-selective and/or compartment-selective targeting of PDE3, through its protein-protein interactions, may produce the inotropic benefits of PDE3 inhibition without the adverse consequences.
Collapse
|
42
|
Zhao CY, Greenstein JL, Winslow RL. Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway. J Mol Cell Cardiol 2015; 88:29-38. [PMID: 26388264 PMCID: PMC4641241 DOI: 10.1016/j.yjmcc.2015.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/20/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
In cardiac myocytes, the second messenger cAMP is synthesized within the β-adrenergic signaling pathway upon sympathetic activation. It activates Protein Kinase A (PKA) mediated phosphorylation of multiple target proteins that are functionally critical to cardiac contractility. The dynamics of cAMP are also controlled indirectly by cGMP-mediated regulation of phosphodiesterase isoenzymes (PDEs). The nature of the interactions between cGMP and the PDEs, as well as between PDE isoforms, and how these ultimately transduce the cGMP signal to regulate cAMP remains unclear. To better understand this, we have developed mechanistically detailed models of PDEs 1-4, the primary cAMP-hydrolyzing PDEs in cardiac myocytes, and integrated them into a model of the β-adrenergic signaling pathway. The PDE models are based on experimental studies performed on purified PDEs which have demonstrated that cAMP and cGMP bind competitively to the cyclic nucleotide (cN)-binding domains of PDEs 1, 2, and 3, while PDE4 regulation occurs via PKA-mediated phosphorylation. Individual PDE models reproduce experimentally measured cAMP hydrolysis rates with dose-dependent cGMP regulation. The fully integrated model replicates experimentally observed whole-cell cAMP activation-response relationships and temporal dynamics upon varying degrees of β-adrenergic stimulation in cardiac myocytes. Simulations reveal that as a result of network interactions, reduction in the level of one PDE is partially compensated for by increased activation of others. PDE2 and PDE4 exert the strongest compensatory roles among all PDEs. In addition, PDE2 competes with other PDEs to bind and hydrolyze cAMP and is a strong regulator of PDE interactions. Finally, an increasing level of cGMP gradually out-competes cAMP for the catalytic sites of PDEs 1, 2, and 3, suppresses their cAMP hydrolysis rates, and results in amplified cAMP signaling. These results provide insights into how PDEs transduce cGMP signals to regulate cAMP and how PDE interactions affect cardiac β-adrenergic response.
Collapse
MESH Headings
- Animals
- Binding Sites
- Binding, Competitive
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 1/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 2/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism
- Feedback, Physiological
- Gene Expression Regulation
- Humans
- Mice
- Models, Cardiovascular
- Myocardial Contraction/physiology
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Protein Binding
- Signal Transduction
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
43
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
44
|
Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci U S A 2015; 112:E2253-62. [PMID: 25877153 DOI: 10.1073/pnas.1416230112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although inhibition of cyclic nucleotide phosphodiesterase type 3 (PDE3) has been reported to protect rodent heart against ischemia/reperfusion (I/R) injury, neither the specific PDE3 isoform involved nor the underlying mechanisms have been identified. Targeted disruption of PDE3 subfamily B (PDE3B), but not of PDE3 subfamily A (PDE3A), protected mouse heart from I/R injury in vivo and in vitro, with reduced infarct size and improved cardiac function. The cardioprotective effect in PDE3B(-/-) heart was reversed by blocking cAMP-dependent PKA and by paxilline, an inhibitor of mitochondrial calcium-activated K channels, the opening of which is potentiated by cAMP/PKA signaling. Compared with WT mitochondria, PDE3B(-/-) mitochondria were enriched in antiapoptotic Bcl-2, produced less reactive oxygen species, and more frequently contacted transverse tubules where PDE3B was localized with caveolin-3. Moreover, a PDE3B(-/-) mitochondrial fraction containing connexin-43 and caveolin-3 was more resistant to Ca(2+)-induced opening of the mitochondrial permeability transition pore. Proteomics analyses indicated that PDE3B(-/-) heart mitochondria fractions were enriched in buoyant ischemia-induced caveolin-3-enriched fractions (ICEFs) containing cardioprotective proteins. Accumulation of proteins into ICEFs was PKA dependent and was achieved by ischemic preconditioning or treatment of WT heart with the PDE3 inhibitor cilostamide. Taken together, these findings indicate that PDE3B deletion confers cardioprotective effects because of cAMP/PKA-induced preconditioning, which is associated with the accumulation of proteins with cardioprotective function in ICEFs. To our knowledge, our study is the first to define a role for PDE3B in cardioprotection against I/R injury and suggests PDE3B as a target for cardiovascular therapies.
Collapse
|
45
|
Ahmad F, Shen W, Vandeput F, Szabo-Fresnais N, Krall J, Degerman E, Goetz F, Klussmann E, Movsesian M, Manganiello V. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem 2015; 290:6763-76. [PMID: 25593322 DOI: 10.1074/jbc.m115.638585] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a multiprotein signalosome in human sarcoplasmic reticulum (SR). Immunohistochemical staining demonstrated that PDE3A co-localizes in Z-bands of human cardiac myocytes with desmin, SERCA2, PLB, and AKAP18. In human SR fractions, cAMP increased PLB phosphorylation and SERCA2 activity; this was potentiated by PDE3 inhibition but not by PDE4 inhibition. During gel filtration chromatography of solubilized SR membranes, PDE3 activity was recovered in distinct high molecular weight (HMW) and low molecular weight (LMW) peaks. HMW peaks contained PDE3A1 and PDE3A2, whereas LMW peaks contained PDE3A1, PDE3A2, and PDE3A3. Western blotting showed that endogenous HMW PDE3A1 was the principal PKA-phosphorylated isoform. Phosphorylation of endogenous PDE3A by rPKAc increased cAMP-hydrolytic activity, correlated with shift of PDE3A from LMW to HMW peaks, and increased co-immunoprecipitation of SERCA2, cav3, PKA regulatory subunit (PKARII), PP2A, and AKAP18 with PDE3A. In experiments with recombinant proteins, phosphorylation of recombinant human PDE3A isoforms by recombinant PKA catalytic subunit increased co-immunoprecipitation with rSERCA2 and rat rAKAP18 (recombinant AKAP18). Deletion of the recombinant human PDE3A1/PDE3A2 N terminus blocked interactions with recombinant SERCA2. Serine-to-alanine substitutions identified Ser-292/Ser-293, a site unique to human PDE3A1, as the principal site regulating its interaction with SERCA2. These results indicate that phosphorylation of human PDE3A1 at a PKA site in its unique N-terminal extension promotes its incorporation into SERCA2/AKAP18 signalosomes, where it regulates a discrete cAMP pool that controls contractility by modulating phosphorylation-dependent protein-protein interactions, PLB phosphorylation, and SERCA2 activity.
Collapse
Affiliation(s)
- Faiyaz Ahmad
- From the Cardiovascular Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892,
| | - Weixing Shen
- From the Cardiovascular Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Fabrice Vandeput
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah
| | | | - Judith Krall
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah
| | - Eva Degerman
- Department of Experimental Medical Science, Division for Diabetes, Metabolism, and Endocrinology, Lund University, Lund, Sweden
| | - Frank Goetz
- Max Delbrueck Center for Molecular Medicine Berlin-Buch (MDC), 13125 Germany, and
| | - Enno Klussmann
- Max Delbrueck Center for Molecular Medicine Berlin-Buch (MDC), 13125 Germany, and DZHK, German Centre for Cardiovascular Research, 13347 Berlin, Germany
| | - Matthew Movsesian
- VA Salt Lake City Health Care System and University of Utah, Salt Lake City, Utah
| | - Vincent Manganiello
- From the Cardiovascular Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Nakano SJ, Miyamoto SD, Movsesian M, Nelson P, Stauffer BL, Sucharov CC. Age-related differences in phosphodiesterase activity and effects of chronic phosphodiesterase inhibition in idiopathic dilated cardiomyopathy. Circ Heart Fail 2014; 8:57-63. [PMID: 25278000 DOI: 10.1161/circheartfailure.114.001218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the application of proven adult heart failure therapies to children with idiopathic dilated cardiomyopathy (IDC), prognosis remains poor. Clinical experience with phosphodiesterase 3 inhibitors (PDE3i) in pediatric patients with IDC, however, demonstrates improved heart failure symptoms without the increased incidence of sudden death seen in adults treated with PDE3i. We sought to determine age-related differences in PDE activity and associated intracellular signaling responsible for the efficacy and relative safety of chronic PDE3i in pediatric heart failure. METHODS AND RESULTS cAMP levels, PDE activity, and phospholamban phosphorylation (pPLB) were determined in explanted human left ventricular myocardium (pediatric n=41; adult n=88). Adults and children with IDC (not treated with PDE3i) had lower cAMP and pPLB compared with nonfailing controls. In contrast to their adult counterparts, pediatric IDC patients chronically treated with PDE3i had elevated cAMP (P=0.0403) and pPLB (P=0.0119). In addition, total PDE- and PDE3-specific activities were not altered in pediatric IDC patients on PDE3i, whereas adult IDC patients on PDE3i demonstrated higher total PDE-specific (74.6±13.8 pmol/mg per minute) and PDE3-specific (48.2±15.9 pmol/mg per minute) activities in comparison with those of nonfailing controls (59.5±14.4 and 35.5±12.8 pmol/mg per minute, respectively). CONCLUSIONS Elevated cAMP and higher pPLB may contribute to sustained hemodynamic benefits in pediatric IDC patients treated with PDE3i. In contrast, higher total PDE and PDE3 activities in adult IDC patients treated with PDE3i may perpetuate lower myocardial cAMP and pPLB levels, limiting the potential benefits of PDE3i therapy.
Collapse
Affiliation(s)
- Stephanie J Nakano
- From the Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora (S.J.N., S.D.M.); Cardiology Section, Veterans Affairs Salt Lake City Health Care System and the Departments of Internal Medicine (Cardiology) and Pharmacology, University of Utah School of Medicine (M.M.); Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora (P.N., B.L.S., C.C.S.); and Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, CO (B.L.S.)
| | - Shelley D Miyamoto
- From the Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora (S.J.N., S.D.M.); Cardiology Section, Veterans Affairs Salt Lake City Health Care System and the Departments of Internal Medicine (Cardiology) and Pharmacology, University of Utah School of Medicine (M.M.); Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora (P.N., B.L.S., C.C.S.); and Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, CO (B.L.S.)
| | - Matthew Movsesian
- From the Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora (S.J.N., S.D.M.); Cardiology Section, Veterans Affairs Salt Lake City Health Care System and the Departments of Internal Medicine (Cardiology) and Pharmacology, University of Utah School of Medicine (M.M.); Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora (P.N., B.L.S., C.C.S.); and Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, CO (B.L.S.)
| | - Penny Nelson
- From the Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora (S.J.N., S.D.M.); Cardiology Section, Veterans Affairs Salt Lake City Health Care System and the Departments of Internal Medicine (Cardiology) and Pharmacology, University of Utah School of Medicine (M.M.); Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora (P.N., B.L.S., C.C.S.); and Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, CO (B.L.S.)
| | - Brian L Stauffer
- From the Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora (S.J.N., S.D.M.); Cardiology Section, Veterans Affairs Salt Lake City Health Care System and the Departments of Internal Medicine (Cardiology) and Pharmacology, University of Utah School of Medicine (M.M.); Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora (P.N., B.L.S., C.C.S.); and Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, CO (B.L.S.)
| | - Carmen C Sucharov
- From the Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora (S.J.N., S.D.M.); Cardiology Section, Veterans Affairs Salt Lake City Health Care System and the Departments of Internal Medicine (Cardiology) and Pharmacology, University of Utah School of Medicine (M.M.); Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora (P.N., B.L.S., C.C.S.); and Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, CO (B.L.S.).
| |
Collapse
|
47
|
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 2014; 21:e25-50. [PMID: 25056711 DOI: 10.1111/odi.12275] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
By catalyzing hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. As these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A, and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multimolecular signaling/regulatory complexes, called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners.
Collapse
Affiliation(s)
- F Ahmad
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
48
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 594] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
49
|
Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflugers Arch 2014; 466:1163-75. [PMID: 24756197 DOI: 10.1007/s00424-014-1515-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022]
Abstract
Cyclic AMP regulates a multitude of cellular responses and orchestrates a network of intracellular events. In the heart, cAMP is the main second messenger of the β-adrenergic receptor (β-AR) pathway producing positive chronotropic, inotropic, and lusitropic effects during sympathetic stimulation. Whereas short-term stimulation of β-AR/cAMP is beneficial for the heart, chronic activation of this pathway triggers pathological cardiac remodeling, which may ultimately lead to heart failure (HF). Cyclic AMP is controlled by two families of enzymes with opposite actions: adenylyl cyclases, which control cAMP production and phosphodiesterases, which control its degradation. The large number of families and isoforms of these enzymes, their different localization within the cell, and their organization in macromolecular complexes leads to a high level of compartmentation, both in space and time, of cAMP signaling in cardiac myocytes. Here, we review the expression level, molecular characteristics, functional properties, and roles of the different adenylyl cyclase and phosphodiesterase families expressed in heart muscle and the changes that occur in cardiac hypertrophy and failure.
Collapse
|
50
|
Nordgaard JC, Kruse LS, Møller M, Kruuse C. Phosphodiesterases 3 and 5 express activity in the trigeminal ganglion and co-localize with calcitonin gene-related peptide. Cephalalgia 2013; 34:503-13. [DOI: 10.1177/0333102413515345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022]
Abstract
Background Understanding of the neuropathology leading to migraine pain has centered on either a vascular or neuronal origin. Sildenafil, a specific inhibitor of phosphodiesterase 5 (PDE5), induces migraine-like headache in a human headache model without concomitant artery dilation. The presence and activity of PDE3 and PDE5 is known in cerebral arteries. However, the presence in the neuronal part of the trigeminovascular pathway, i.e. the trigeminal ganglion and the possible co-localization with calcitonin gene-related peptide (CGRP), is not known. Methods Rat trigeminal ganglia were isolated and immunohistochemistry and in situ hybridization was applied. Evaluations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) hydrolysis were performed using scintillation proximity assays. Results PDE3 and PDE5 were present and active in the trigeminal ganglia. A subset of PDE3- and PDE5-positive neurons contained CGRP. In contrast to cGMP, both sildenafil and cilostazol influenced cAMP hydrolysis. Interpretation Sildenafil may exert its effect on the neuronal part of the migraine pain pathway. In addition to the effects on cGMP signaling, sildenafil may indirectly affect cAMP signaling in the trigeminal ganglion. This result may suggest a common cAMP-related pathway for sildenafil, cilostazol, and CGRP in eliciting migraine pain.
Collapse
Affiliation(s)
- Julie C Nordgaard
- Lundbeck Foundation Center for Neurovascular signaling (LUCENS), Glostrup Research Institute, University of Copenhagen, Glostrup Hospital, Denmark
| | - Lars S Kruse
- Department of Clinical Experimental Research, Glostrup Hospital, University of Copenhagen, Denmark
| | - Morten Møller
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christina Kruuse
- Lundbeck Foundation Center for Neurovascular signaling (LUCENS), Glostrup Research Institute, University of Copenhagen, Glostrup Hospital, Denmark
- Department of Neurology, Herlev University Hospital, Denmark
| |
Collapse
|