1
|
Amodeo S, Bregy I, Ochsenreiter T. Mitochondrial genome maintenance-the kinetoplast story. FEMS Microbiol Rev 2023; 47:fuac047. [PMID: 36449697 PMCID: PMC10719067 DOI: 10.1093/femsre/fuac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/13/2022] [Accepted: 11/24/2022] [Indexed: 12/17/2023] Open
Abstract
Mitochondrial DNA replication is an essential process in most eukaryotes. Similar to the diversity in mitochondrial genome size and organization in the different eukaryotic supergroups, there is considerable diversity in the replication process of the mitochondrial DNA. In this review, we summarize the current knowledge of mitochondrial DNA replication and the associated factors in trypanosomes with a focus on Trypanosoma brucei, and provide a new model of minicircle replication for this protozoan parasite. The model assumes the mitochondrial DNA (kinetoplast DNA, kDNA) of T. brucei to be loosely diploid in nature and the replication of the genome to occur at two replication centers at the opposing ends of the kDNA disc (also known as antipodal sites, APS). The new model is consistent with the localization of most replication factors and in contrast to the current model, it does not require the assumption of an unknown sorting and transport complex moving freshly replicated DNA to the APS. In combination with the previously proposed sexual stages of the parasite in the insect vector, the new model provides a mechanism for maintenance of the mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Concepción-Acevedo J, Miller JC, Boucher MJ, Klingbeil MM. Cell cycle localization dynamics of mitochondrial DNA polymerase IC in African trypanosomes. Mol Biol Cell 2018; 29:2540-2552. [PMID: 30133333 PMCID: PMC6254582 DOI: 10.1091/mbc.e18-02-0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Trypanosoma brucei has a unique catenated mitochondrial DNA (mtDNA) network called kinetoplast DNA (kDNA). Replication of kDNA occurs once per cell cycle in near synchrony with nuclear S phase and requires the coordination of many proteins. Among these are three essential DNA polymerases (TbPOLIB, IC, and ID). Localization dynamics of these proteins with respect to kDNA replication stages and how they coordinate their functions during replication are not well understood. We previously demonstrated that TbPOLID undergoes dynamic localization changes that are coupled to kDNA replication events. Here, we report the localization of TbPOLIC, a second essential DNA polymerase, and demonstrate the accumulation of TbPOLIC foci at active kDNA replication sites (antipodal sites) during stage II of the kDNA duplication cycle. While TbPOLIC was undetectable by immunofluorescence during other cell cycle stages, steady-state protein levels measured by Western blot remained constant. TbPOLIC foci colocalized with the fraction of TbPOLID that localized to the antipodal sites. However, the partial colocalization of the two essential DNA polymerases suggests a highly dynamic environment at the antipodal sites to coordinate the trafficking of replication proteins during kDNA synthesis. These data indicate that cell cycle-dependent localization is a major regulatory mechanism for essential mtDNA polymerases during kDNA replication.
Collapse
Affiliation(s)
| | - Jonathan C Miller
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Michael J Boucher
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Michele M Klingbeil
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
3
|
Mbang-Benet DE, Sterkers Y, Crobu L, Sarrazin A, Bastien P, Pagès M. RNA interference screen reveals a high proportion of mitochondrial proteins essential for correct cell cycle progress in Trypanosoma brucei. BMC Genomics 2015; 16:297. [PMID: 25888089 PMCID: PMC4445814 DOI: 10.1186/s12864-015-1505-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/30/2015] [Indexed: 12/20/2022] Open
Abstract
Background Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei. Results A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by “high-throughput phenotyping using parallel sequencing of RNA interference targets” (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K). Conclusions These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1505-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diane-Ethna Mbang-Benet
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France.
| | - Yvon Sterkers
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France. .,Département de Parasitologie-Mycologie, CHRU (Centre Hospitalier Universitaire de Montpellier), Montpellier, France.
| | - Lucien Crobu
- CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France.
| | - Amélie Sarrazin
- Montpellier RIO Imaging Facility, Montpellier BIOCAMPUS, UMS3426, Arnaud de Villeneuve Campus Imaging Facility - Institut de Génétique Humaine-CNRS, Montpellier, France.
| | - Patrick Bastien
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France. .,Département de Parasitologie-Mycologie, CHRU (Centre Hospitalier Universitaire de Montpellier), Montpellier, France.
| | - Michel Pagès
- Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault, 34295, Montpellier, Cedex 5, France. .,CNRS 5290 - IRD 224 - Université Montpellier (UMR "MiVEGEC"), Montpellier, France.
| |
Collapse
|
4
|
Trypanosoma brucei Tb927.2.6100 is an essential protein associated with kinetoplast DNA. EUKARYOTIC CELL 2013; 12:970-8. [PMID: 23650088 DOI: 10.1128/ec.00352-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mitochondrial DNA of trypanosomatid protozoa consists of a complex, intercatenated network of tens of maxicircles and thousands of minicircles. This structure, called kinetoplast DNA (kDNA), requires numerous proteins and multiprotein complexes for replication, segregation, and transcription. In this study, we used a proteomic approach to identify proteins that are associated with the kDNA network. We identified a novel protein encoded by Tb927.2.6100 that was present in a fraction enriched for kDNA and colocalized the protein with kDNA by fluorescence microscopy. RNA interference (RNAi) knockdown of its expression resulted in a growth defect and changes in the proportion of kinetoplasts and nuclei in the cell population. RNAi also resulted in shrinkage and loss of the kinetoplasts, loss of maxicircle and minicircle components of kDNA at similar rates, and (perhaps secondarily) loss of edited and pre-edited mRNA. These results indicate that the Tb927.2.6100 protein is essential for the maintenance of kDNA.
Collapse
|
5
|
Dual functions of α-ketoglutarate dehydrogenase E2 in the Krebs cycle and mitochondrial DNA inheritance in Trypanosoma brucei. EUKARYOTIC CELL 2012; 12:78-90. [PMID: 23125353 DOI: 10.1128/ec.00269-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis.
Collapse
|
6
|
Gannavaram S, Debrabant A. Involvement of TatD nuclease during programmed cell death in the protozoan parasite Trypanosoma brucei. Mol Microbiol 2012; 83:926-35. [PMID: 22288397 DOI: 10.1111/j.1365-2958.2012.07978.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this report, we describe the involvement of TatD nuclease during programmed cell death (PCD) in the human protozoan parasite Trypanosoma brucei. T. brucei TatD nuclease showed intrinsic DNase activity, was localized in the cytoplasm and translocated to the nucleus when cells were treated with inducers previously demonstrated to cause PCD in T. brucei. Overexpression of TatD nuclease resulted in elevated PCD and conversely, loss of TatD expression by RNAi conferred significant resistance to the induction of PCD in T. brucei. Co-immunoprecipitation studies revealed that TatD nuclease interacts with endonucleaseG suggesting that these two nucleases could form a DNA degradation complex in the nucleus. Together, biochemical activity, RNAi and subcellular localization results demonstrate the role of TatD nuclease activity in DNA degradation during PCD in these evolutionarily ancient eukaryotic organisms. Further, in conjunction with endonucleaseG, TatD may represent a critical nuclease in a caspase-independent PCD pathway in trypanosomatid parasites since caspases have not been identified in these organisms.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Dynamic localization of Trypanosoma brucei mitochondrial DNA polymerase ID. EUKARYOTIC CELL 2012; 11:844-55. [PMID: 22286095 DOI: 10.1128/ec.05291-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomes contain a unique form of mitochondrial DNA called kinetoplast DNA (kDNA) that is a catenated network composed of minicircles and maxicircles. Several proteins are essential for network replication, and most of these localize to the antipodal sites or the kinetoflagellar zone. Essential components for kDNA synthesis include three mitochondrial DNA polymerases TbPOLIB, TbPOLIC, and TbPOLID). In contrast to other kDNA replication proteins, TbPOLID was previously reported to localize throughout the mitochondrial matrix. This spatial distribution suggests that TbPOLID requires redistribution to engage in kDNA replication. Here, we characterize the subcellular distribution of TbPOLID with respect to the Trypanosoma brucei cell cycle using immunofluorescence microscopy. Our analyses demonstrate that in addition to the previously reported matrix localization, TbPOLID was detected as discrete foci near the kDNA. TbPOLID foci colocalized with replicating minicircles at antipodal sites in a specific subset of the cells during stages II and III of kDNA replication. Additionally, the TbPOLID foci were stable following the inhibition of protein synthesis, detergent extraction, and DNase treatment. Taken together, these data demonstrate that TbPOLID has a dynamic localization that allows it to be spatially and temporally available to perform its role in kDNA replication.
Collapse
|
8
|
Wang J, Englund PT, Jensen RE. TbPIF8, a Trypanosoma brucei protein related to the yeast Pif1 helicase, is essential for cell viability and mitochondrial genome maintenance. Mol Microbiol 2012; 83:471-85. [PMID: 22220754 DOI: 10.1111/j.1365-2958.2011.07938.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The trypanosome mitochondrial genome, kinetoplast DNA (kDNA), is a massive network of interlocked DNA rings, including several thousand minicircles and dozens of maxicircles. The unusual complexity of kDNA would indicate that numerous proteins must be involved in its condensation, replication, segregation and gene expression. During our investigation of trypanosome mitochondrial PIF1-like helicases, we found that TbPIF8 is the smallest and most divergent. It lacks some conserved helicase domains, thus implying that unlike other mitochondrial PIF1-like helicases, this protein may have no enzymatic activity. TbPIF8 is positioned on the distal face of kDNA disk and its localization patterns vary with different kDNA replication stages. Stem-loop RNAi of TbPIF8 arrests cell growth and causes defects in kDNA segregation. RNAi of TbPIF8 causes only limited kDNA shrinkage but the networks become disorganized. Electron microcopy of thin sections of TbPIF8-depleted cells shows heterogeneous electron densities in the kinetoplast disk. Although we do not yet know its exact function, we conclude that TbPIF8 is essential for cell viability and is important for maintenance of kDNA.
Collapse
Affiliation(s)
- Jianyang Wang
- Departments of Biological Chemistry Cell Biology, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
9
|
Liu B, Wang J, Yildirir G, Englund PT. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments. PLoS Pathog 2009; 5:e1000589. [PMID: 19779567 PMCID: PMC2743194 DOI: 10.1371/journal.ppat.1000589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 08/24/2009] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments. Trypanosoma brucei is a protozoan parasite that causes human sleeping sickness in sub-Saharan Africa. Trypanosomes are primitive eukaryotes and they have many unusual biological features. One prominent example is their mitochondrial genome, known as kinetoplast DNA or kDNA. kDNA, with a structure unique in nature, is a giant network of interlocked DNA rings known as minicircles and maxicircles. kDNA superficially resembles chain mail in medieval armor. The network structure dictates an extremely complex mechanism for replication, the process by which two progeny networks, each identical to their parent, are formed. These progeny networks then segregate into the daughter cells during cell division. One feature of this replication pathway, in which discontinuously synthesized strands of minicircles are joined together in a reaction involving an enzyme known as a helicase, is the subject of this paper. Since there is nothing resembling kDNA in human or animal cells, and since kDNA is required for viability of the parasite, enzymes involved in this pathway are promising targets for chemotherapy.
Collapse
Affiliation(s)
- Beiyu Liu
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jianyang Wang
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Gokben Yildirir
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Paul T. Englund
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Liu B, Wang J, Yaffe N, Lindsay M, Zhao Z, Zick A, Shlomai J, Englund PT. Trypanosomes have six mitochondrial DNA helicases with one controlling kinetoplast maxicircle replication. Mol Cell 2009; 35:490-501. [PMID: 19646907 PMCID: PMC2763077 DOI: 10.1016/j.molcel.2009.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 05/19/2009] [Accepted: 07/14/2009] [Indexed: 11/23/2022]
Abstract
Kinetoplast DNA (kDNA), the trypanosome mitochondrial DNA, contains thousands of minicircles and dozens of maxicircles interlocked in a giant network. Remarkably, Trypanosoma brucei's genome encodes 8 PIF1-like helicases, 6 of which are mitochondrial. We now show that TbPIF2 is essential for maxicircle replication. Maxicircle abundance is controlled by TbPIF2 level, as RNAi of this helicase caused maxicircle loss, and its overexpression caused a 3- to 6-fold increase in maxicircle abundance. This regulation of maxicircle level is mediated by the TbHslVU protease. Previous experiments demonstrated that RNAi knockdown of TbHslVU dramatically increased abundance of minicircles and maxicircles, presumably because a positive regulator of their synthesis escaped proteolysis and allowed synthesis to continue. Here, we found that TbPIF2 level increases following RNAi of the protease. Therefore, this helicase is a TbHslVU substrate and an example of a positive regulator, thus providing a molecular mechanism for controlling maxicircle replication.
Collapse
Affiliation(s)
- Beiyu Liu
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Jianyang Wang
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Nurit Yaffe
- Department of Parasitology, the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Megan Lindsay
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Zhixing Zhao
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Aviad Zick
- Department of Parasitology, the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Joseph Shlomai
- Department of Parasitology, the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Paul T. Englund
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Stem-loop silencing reveals that a third mitochondrial DNA polymerase, POLID, is required for kinetoplast DNA replication in trypanosomes. EUKARYOTIC CELL 2008; 7:2141-6. [PMID: 18849470 DOI: 10.1128/ec.00199-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomes, is a catenated network containing thousands of minicircles and tens of maxicircles. The topological complexity dictates some unusual features including a topoisomerase-mediated release-and-reattachment mechanism for minicircle replication and at least six mitochondrial DNA polymerases (Pols) for kDNA transactions. Previously, we identified four family A DNA Pols from Trypanosoma brucei with similarity to bacterial DNA Pol I and demonstrated that two (POLIB and POLIC) were essential for maintaining the kDNA network, while POLIA was not. Here, we used RNA interference to investigate the function of POLID in procyclic T. brucei. Stem-loop silencing of POLID resulted in growth arrest and the progressive loss of the kDNA network. Additional defects in kDNA replication included a rapid decline in minicircle and maxicircle abundance and a transient accumulation of minicircle replication intermediates before loss of the kDNA network. These results demonstrate that POLID is a third essential DNA Pol required for kDNA replication. While other eukaryotes utilize a single DNA Pol (Pol gamma) for replication of mitochondrial DNA, T. brucei requires at least three to maintain the complex kDNA network.
Collapse
|
12
|
Li Z, Lindsay ME, Motyka SA, Englund PT, Wang CC. Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 2008; 4:e1000048. [PMID: 18421378 PMCID: PMC2277460 DOI: 10.1371/journal.ppat.1000048] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/20/2008] [Indexed: 12/03/2022] Open
Abstract
ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms. ATP-dependent protein-hydrolyzing enzyme complexes are present in all living organisms, including the 26S proteasome in eukaryotes and the HslVU complex in bacteria. A simultaneous presence of both complexes in an organism was originally deemed unlikely until some HslVU homologs were found in certain ancient eukaryotes, though their potential function in these organisms remains unclear. We characterized an HslVU complex in Trypanosoma brucei, a protozoan parasite that causes human sleeping sickness in Africa. The complex is an active enzyme localized to the mitochondria of the parasite and closely associated with the mitochondrial DNA complex, which consists of several thousand small circular DNAs and a few dozen mitochondrial genomic DNAs. Depletion of this HslVU from the parasite resulted in a continuous synthesis of the small circular DNA, which led to aberrant segregation and incessant growth of the mitochondrial DNA complex to an enormous size that eventually blocks cell division. This novel HslVU function, which has not been observed in other organisms previously, could be a potential target for anti-sleeping sickness chemotherapy.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Megan E. Lindsay
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shawn A. Motyka
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul T. Englund
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gerald NJ, Coppens I, Dwyer DM. Molecular characterization and expression of a novel kinesin which localizes with the kinetoplast in the human pathogen,Leishmania donovani. ACTA ACUST UNITED AC 2008; 65:269-80. [DOI: 10.1002/cm.20259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Effect of hydroxyurea on procyclic Trypanosoma brucei: an unconventional mechanism for achieving synchronous growth. EUKARYOTIC CELL 2007; 7:425-8. [PMID: 18083826 DOI: 10.1128/ec.00369-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Procyclic Trypanosoma brucei cells were synchronized with 0.2 mM hydroxyurea. The cells did not arrest at the G(1)/S boundary but proceeded through one round of replication and arrested near the end of S phase. The mitochondrial genome (kinetoplast DNA network) replicated, forming two progeny networks, but the repair of minicircle gaps was inhibited.
Collapse
|
15
|
Zhao Z, Lindsay ME, Roy Chowdhury A, Robinson DR, Englund PT. p166, a link between the trypanosome mitochondrial DNA and flagellum, mediates genome segregation. EMBO J 2007; 27:143-54. [PMID: 18059470 DOI: 10.1038/sj.emboj.7601956] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 11/20/2007] [Indexed: 11/09/2022] Open
Abstract
Kinetoplast DNA (kDNA), the trypanosome mitochondrial genome, is a giant network containing several thousand interlocked DNA rings. Within the mitochondrion, kDNA is condensed into a disk-shaped structure positioned near the flagellar basal body. The disk is linked to the basal body by a remarkable transmembrane filament system named the tripartite attachment complex (TAC). Following kDNA replication, the TAC mediates network segregation, pulling the progeny networks into the daughter cells by their linkage to the basal bodies. So far TAC has been characterized only morphologically with no known protein components. By screening an RNAi library, we discovered p166, a protein localizing between the kDNA and basal body in intact cells and in isolated flagellum-kDNA complexes. RNAi of p166 has only small effects on kDNA replication, but it causes profound defects in network segregation. For example, kDNA replication without segregation causes the networks to grow to enormous size. Thus, p166 is the first reported molecular component of the TAC, and its discovery will facilitate study of kDNA segregation machinery at the molecular level.
Collapse
Affiliation(s)
- Zhixing Zhao
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Kinetoplast DNA (kDNA), from trypanosomatid mitochondria, is a network containing several thousand catenated minicircles that is condensed into a disk-shaped structure in vivo. kDNA synthesis involves release of individual minicircles from the network, replication of the free minicircles and reattachment of progeny at two sites on the network periphery approximately 180 degrees apart. In Crithidia fasciculata, rotation of the kDNA disk relative to the antipodal attachment sites results in distribution of progeny minicircles in a ring around the network periphery. In contrast, Trypanosoma brucei progeny minicircles accumulate on opposite ends of the kDNA disk, a pattern that did not suggest kinetoplast motion. Thus, there seemed to be two distinct replication mechanisms. Based on fluorescence microscopy of the kDNA network undergoing replication, we now report that the T. brucei kinetoplast does move relative to the antipodal sites. Whereas the C. fasciculata kinetoplast rotates, that from T. brucei oscillates. Kinetoplast motion of either type must facilitate orderly replication of this incredibly complex structure.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD, USA
| | | |
Collapse
|
17
|
Bendich AJ. The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. Bioessays 2007; 29:474-83. [PMID: 17450598 DOI: 10.1002/bies.20576] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
From cytological examination, the size and form of the chromosomes in the eukaryotic nucleus are invariant across generations, leading to the expectation that constancy of inheritance likely depends on constancy of the chromosomal DNA molecule conveying the constant phenotype. Indeed, except for rare mutations, major phenotypic traits appear largely without change from generation to generation. Thus, when it was discovered that the inheritance of traits for bacteria, mitochondria and chloroplasts was also constant, it was assumed that chromosomes in those locations were also constant. Such has not turned out to be the case, however; those chromosomes are highly variable in structure. I propose, therefore, that only for the nucleus is there a requirement that a chromosome be "finished" (contain only fully replicated genomes) before it may segregate to daughter cells. This requirement does not apply to the variable chromosomes among chloroplasts, mitochondria and bacteria.
Collapse
Affiliation(s)
- Arnold J Bendich
- Department of Biology, University of Washington, Seattle WA 98195-5325, USA.
| |
Collapse
|
18
|
Schumacher MA, Karamooz E, Zíková A, Trantírek L, Lukes J. Crystal structures of T. brucei MRP1/MRP2 guide-RNA binding complex reveal RNA matchmaking mechanism. Cell 2006; 126:701-11. [PMID: 16923390 DOI: 10.1016/j.cell.2006.06.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/19/2006] [Accepted: 06/23/2006] [Indexed: 11/19/2022]
Abstract
The mitochondrial RNA binding proteins MRP1 and MRP2 form a heteromeric complex that functions in kinetoplastid RNA editing. In this process, MRP1/MRP2 serves as a matchmaker by binding to guide RNAs and facilitating their hybridization with cognate preedited mRNAs. To understand the mechanism by which this complex performs RNA matchmaking, we determined structures of Trypanosoma brucei apoMRP1/MRP2 and an MRP1/MRP2-gRNA complex. The structures show that MRP1/MRP2 is a heterotetramer and, despite little sequence homology, each MRP subunit exhibits the same "Whirly" transcription-factor fold. The gRNA molecule binds to the highly basic beta sheet surface of the MRP complex via nonspecific, electrostatic contacts. Strikingly, while the gRNA stem/loop II base is anchored to the basic surface, stem/loop I (the anchor sequence) is unfolded and its bases exposed to solvent. Thus, MRP1/MRP2 acts as an RNA matchmaker by stabilizing the RNA molecule in an unfolded conformation suitable for RNA-RNA hybridization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Crystallography, X-Ray
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Folding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Trypanosoma brucei brucei/chemistry
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, Houston, 77030, USA.
| | | | | | | | | |
Collapse
|
19
|
Liu B, Molina H, Kalume D, Pandey A, Griffith JD, Englund PT. Role of p38 in replication of Trypanosoma brucei kinetoplast DNA. Mol Cell Biol 2006; 26:5382-93. [PMID: 16809774 PMCID: PMC1592711 DOI: 10.1128/mcb.00369-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.
Collapse
Affiliation(s)
- Beiyu Liu
- Department of Biological Chemistry, Johns Hopkins Medical School, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|