1
|
Ramsay H, Yu L, Alousi FF, Alli AA. Small Extracellular Vesicles with a High Sphingomyelin Content Isolated from Hypertensive Diabetic db/db Mice Inhibits Calcium Mobilization and Augments Amiloride-Sensitive Epithelial Sodium Channel Activity. BIOLOGY 2025; 14:252. [PMID: 40136509 PMCID: PMC11939694 DOI: 10.3390/biology14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) contain bioactive lipids that play a key role in pathophysiology. We hypothesized that EVs released from salt-loaded hypertensive diabetic db/db mice have increased bioactive lipid content that inhibits intracellular calcium mobilization and increases the activity of renal epithelial sodium channels (ENaC). An enrichment of sphingomyelins (SMs) was found in small urinary EVs (uEVs) isolated from salt-loaded hypertensive diabetic db/db mice (n = 4) compared to non-salt loaded db/db mice with diabetes alone (n = 4). Both groups of mice were included in the same cohort to control for variability. Cultured mouse cortical collecting duct (mpkCCD) cells loaded with a calcium reporter dye and challenged with small uEVs from hypertensive diabetic db/db mice showed a decrease in calcium mobilization when compared to cells treated with small uEVs from diabetic db/db mice. The amiloride-sensitive transepithelial current was increased in mpkCCD cells treated with small uEVs with abundant sphingomyelin content from hypertensive diabetic db/db mice in a dose- and time-dependent manner. Similar results were observed in mpkCCD cells and Xenopus 2F3 cells treated with exogenous sphingomyelin in a time-dependent manner. Single-channel patch clamp studies showed a decrease in ENaC activity in cells transiently transfected with sphingomyelin synthase 1/2 specific siRNA compared to non-targeting siRNA. These data suggest EVs with high sphingomyelin content positively regulate renal ENaC activity in a mechanism involving an inhibition of calcium mobilization.
Collapse
Affiliation(s)
- Hunter Ramsay
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ling Yu
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Faisal F. Alousi
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdel A. Alli
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Nickerson AJ, Sheng S, Cox NA, Szekely KG, Marciszyn AL, Lam T, Chen J, Gingras S, Kashlan OB, Kirabo A, Hughey RP, Ray EC, Kleyman TR. Loss of the alpha subunit distal furin cleavage site blunts ENaC activation following Na + restriction. J Physiol 2024; 602:4309-4326. [PMID: 39196791 PMCID: PMC11384278 DOI: 10.1113/jp286559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/30/2024] Open
Abstract
Epithelial Na+ channels (ENaCs) are activated by proteolysis of the α and γ subunits at specific sites flanking embedded inhibitory tracts. To examine the role of α subunit proteolysis in channel activation in vivo, we generated mice lacking the distal furin cleavage site in the α subunit (αF2M mice). On a normal Na+ control diet, no differences in ENaC protein abundance in kidney or distal colon were noted between wild-type (WT) and αF2M mice. Patch-clamp analyses revealed similar levels of ENaC activity in kidney tubules, while no physiologically relevant differences in blood chemistry or aldosterone levels were detected. Male αF2M mice did exhibit diminished ENaC activity in the distal colon, as measured by amiloride-sensitive short-circuit current (ISC). Following dietary Na+ restriction, WT and αF2M mice had similar natriuretic and colonic ISC responses to amiloride. However, single-channel activity was significantly lower in kidney tubules from Na+-restricted αF2M mice compared with WT littermates. ENaC α and γ subunit expression in kidney and distal colon were also enhanced in Na+-restricted αF2M vs. WT mice, in association with higher aldosterone levels. These data provide evidence that disrupting α subunit proteolysis impairs ENaC activity in vivo, requiring compensation in response to Na+ restriction. KEY POINTS: The epithelial Na+ channel (ENaC) is activated by proteolytic cleavage in vitro, but key questions regarding the role of ENaC proteolysis in terms of whole-animal physiology remain to be addressed. We studied the in vivo importance of this mechanism by generating a mouse model with a genetic disruption to a key cleavage site in the ENaC's α subunit (αF2M mice). We found that αF2M mice did not exhibit a physiologically relevant phenotype under normal dietary conditions, but have impaired ENaC activation (channel open probability) in the kidney during salt restriction. ENaC function at the organ level was preserved in salt-restricted αF2M mice, but this was associated with higher aldosterone levels and increased expression of ENaC subunits, suggesting compensation was required to maintain homeostasis. These results provide the first evidence that ENaC α subunit proteolysis is a key regulator of channel activity in vivo.
Collapse
Affiliation(s)
- Andrew J Nickerson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natalie A Cox
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kennedy G Szekely
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tracey Lam
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ossama B Kashlan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Nickerson AJ, Mutchler SM, Sheng S, Cox NA, Ray EC, Kashlan OB, Carattino MD, Marciszyn AL, Winfrey A, Gingras S, Kirabo A, Hughey RP, Kleyman TR. Mice lacking γENaC palmitoylation sites maintain benzamil-sensitive Na+ transport despite reduced channel activity. JCI Insight 2023; 8:e172051. [PMID: 37707951 PMCID: PMC10721255 DOI: 10.1172/jci.insight.172051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.
Collapse
Affiliation(s)
| | | | | | | | | | - Ossama B. Kashlan
- Department of Medicine
- Department of Computational and Systems Biology
| | | | | | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Thomas R. Kleyman
- Department of Medicine
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Buncha V, Cherezova A, Alexander S, Baranovskaya I, Coleman KA, Cherian-Shaw M, Brands MW, Sullivan JC, O'Connor PM, Mamenko M. Aldosterone Antagonism Is More Effective at Reducing Blood Pressure and Excessive Renal ENaC Activity in AngII-Infused Female Rats Than in Males. Hypertension 2023; 80:2196-2208. [PMID: 37593894 PMCID: PMC10528186 DOI: 10.1161/hypertensionaha.123.21287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND AngII (angiotensin II)-dependent hypertension causes comparable elevations of blood pressure (BP), aldosterone levels, and renal ENaC (epithelial Na+ channel) activity in male and female rodents. Mineralocorticoid receptor (MR) antagonism has a limited antihypertensive effect associated with insufficient suppression of renal ENaC in male rodents with AngII-hypertension. While MR blockade effectively reduces BP in female mice with salt-sensitive and leptin-induced hypertension, MR antagonism has not been studied in female rodents with AngII-hypertension. We hypothesize that overstimulation of renal MR signaling drives redundant ENaC-mediated Na+ reabsorption and BP increase in female rats with AngII-hypertension. METHODS We employ a combination of physiological, pharmacological, biochemical, and biophysical approaches to compare the effect of MR inhibitors on BP and ENaC activity in AngII-infused male and female Sprague Dawley rats. RESULTS MR blockade markedly attenuates AngII-hypertension in female rats but has only a marginal effect in males. Spironolactone increases urinary sodium excretion and urinary sodium-to-potassium ratio in AngII-infused female, but not male, rats. The expression of renal MR and HSD11β2 (11β-hydroxysteroid dehydrogenase type 2) that determines the availability of MR to aldosterone is significantly higher in AngII-infused female rats than in males. ENaC activity is ≈2× lower in spironolactone-treated AngII-infused female rats than in males. Reduced ENaC activity in AngII-infused female rats on spironolactone correlates with increased interaction with ubiquitin ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2), targeting ENaC for degradation. CONCLUSIONS MR-ENaC axis is the primary determinant of excessive renal sodium reabsorption and an attractive antihypertensive target in female rats with AngII-hypertension, but not in males.
Collapse
Affiliation(s)
- Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Sati Alexander
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Irina Baranovskaya
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Kathleen A Coleman
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Mary Cherian-Shaw
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta University
| | | | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University
| |
Collapse
|
5
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
6
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
7
|
Yue Q, Al-Khalili O, Moseley A, Yoshigi M, Wynne BM, Ma H, Eaton DC. PIP 2 Interacts Electrostatically with MARCKS-like Protein-1 and ENaC in Renal Epithelial Cells. BIOLOGY 2022; 11:biology11121694. [PMID: 36552204 PMCID: PMC9774185 DOI: 10.3390/biology11121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1's strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 -binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
Collapse
Affiliation(s)
- Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Masaaki Yoshigi
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Brandi Michele Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Douglas C. Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-4533; Fax: +1-404-727-3425
| |
Collapse
|
8
|
Zhang J, Yuan HK, Chen S, Zhang ZR. Detrimental or beneficial: Role of endothelial ENaC in vascular function. J Cell Physiol 2021; 237:29-48. [PMID: 34279047 DOI: 10.1002/jcp.30505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
In the past, it was believed that the expression of the epithelial sodium channel (ENaC) was restricted to epithelial tissues, such as the distal nephron, airway, sweat glands, and colon, where it is critical for sodium homeostasis. Over the past two decades, this paradigm has shifted due to the finding that ENaC is also expressed in various nonepithelial tissues, notably in vascular endothelial cells. In this review, the recent findings of the expression, regulation, and function of the endothelial ENaC (EnNaC) are discussed. The expression of EnNaC subunits is reported in a variety of endothelial cell lines and vasculatures, but this is controversial across different species and vessels and is not a universal finding in all vascular beds. The expression density of EnNaC is very faint compared to ENaC in the epithelium. To date, little is known about the regulatory mechanism of EnNaC. Through it can be regulated by aldosterone, the detailed downstream signaling remains elusive. EnNaC responds to increased extracellular sodium with the feedforward activation mechanism, which is quite different from the Na+ self-inhibition mechanism of ENaC. Functionally, EnNaC was shown to be a determinant of cellular mechanics and vascular tone as it can sense shear stress, and its activation or insertion into plasma membrane causes endothelial stiffness and reduced nitric oxide production. However, in some blood vessels, EnNaC is essential for maintaining the integrity of endothelial barrier function. In this context, we discuss the possible reasons for the distinct role of EnNaC in vasculatures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Kai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
9
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Rooj AK, Cormet-Boyaka E, Clark EB, Qadri YJ, Lee W, Boddu R, Agarwal A, Tambi R, Uddin M, Parpura V, Sorscher EJ, Fuller CM, Berdiev BK. Association of cystic fibrosis transmembrane conductance regulator with epithelial sodium channel subunits carrying Liddle's syndrome mutations. Am J Physiol Lung Cell Mol Physiol 2021; 321:L308-L320. [PMID: 34037494 DOI: 10.1152/ajplung.00298.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The association of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) in the pathophysiology of cystic fibrosis (CF) is controversial. Previously, we demonstrated a close physical association between wild-type (WT) CFTR and WT ENaC. We have also shown that the F508del CFTR fails to associate with ENaC unless the mutant protein is rescued pharmacologically or by low temperature. In this study, we present the evidence for a direct physical association between WT CFTR and ENaC subunits carrying Liddle's syndrome mutations. We show that all three ENaC subunits bearing Liddle's syndrome mutations (both point mutations and the complete truncation of the carboxy terminus), could be coimmunoprecipitated with WT CFTR. The biochemical studies were complemented by fluorescence lifetime imaging microscopy (FLIM), a distance-dependent approach that monitors protein-protein interactions between fluorescently labeled molecules. Our measurements revealed significantly increased fluorescence resonance energy transfer between CFTR and all tested ENaC combinations as compared with controls (ECFP and EYFP cotransfected cells). Our findings are consistent with the notion that CFTR and ENaC are within reach of each other even in the setting of Liddle's syndrome mutations, suggestive of a direct intermolecular interaction between these two proteins.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Edlira B Clark
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Yawar J Qadri
- Department of Anesthesiology, The Emory University School of Medicine, Atlanta, Georgia
| | - William Lee
- Department of Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Ravindra Boddu
- Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Anupam Agarwal
- Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Richa Tambi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Eric J Sorscher
- Department of Pediatrics, The Emory University School of Medicine, Atlanta, Georgia
| | - Cathy M Fuller
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Bakhrom K Berdiev
- Department of Cell, Developmental & Integrative Biology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The main goal of this article is to discuss the role of the epithelial sodium channel (ENaC) in extracellular fluid and blood pressure regulation. RECENT FINDINGS Besides its role in sodium handling in the kidney, recent studies have found that ENaC expressed in other cells including immune cells can influence blood pressure via extra-renal mechanisms. Dendritic cells (DCs) are activated and contribute to salt-sensitive hypertension in an ENaC-dependent manner. We discuss recent studies on how ENaC is regulated in both the kidney and other sites including the vascular smooth muscles, endothelial cells, and immune cells. We also discuss how this extra-renal ENaC can play a role in salt-sensitive hypertension and its promise as a novel therapeutic target. The role of ENaC in blood pressure regulation in the kidney has been well studied. Recent human gene sequencing efforts have identified thousands of variants among the genes encoding ENaC, and research efforts to determine if these variants and their expression in extra-renal tissue play a role in hypertension will advance our understanding of the pathogenesis of ENaC-mediated cardiovascular disease and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ashley L Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Justin P Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN, 37232, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Olivença DV, Voit EO, Pinto FR. ENaC regulation by phospholipids and DGK explained through mathematical modeling. Sci Rep 2020; 10:13952. [PMID: 32811866 PMCID: PMC7435262 DOI: 10.1038/s41598-020-70630-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Cystic fibrosis is a condition caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). It is also thought to increase the activity of epithelial sodium channels (ENaC). The altered function of these ion channels is one of the causes of the thick dehydrated mucus that characterizes the disease and is partially responsible for recurrent pulmonary infections and inflammation events that ultimately destroy the lungs of affected subjects. Phosphoinositides are signaling lipids that regulate numerous cellular processes and membrane proteins, including ENaC. Inhibition of diacylglycerol kinase (DGK), an enzyme of the phosphoinositide pathway, reduces ENaC function. We propose a computational analysis that is based on the combination of two existing mathematical models: one representing the dynamics of phosphoinositides and the other explaining how phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) influences ENaC activity and, consequently, airway surface liquid. This integrated model permits, for the first time, a detailed assessment of the intricate interactions between DGK and ENaC and is consistent with available literature data. In particular, the computational approach allows comparisons of two competing hypotheses regarding the regulation of ENaC. The results strongly suggest that the regulation of ENaC is primarily exerted through the control of PI(4,5)P2 production by type-I phosphatidylinositol-4-phosphate 5-kinase (PIP5KI), which in turn is controlled by phosphatidic acid (PA), the product of the DGK reaction.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Faculty of Sciences, BioISI – Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisbon, Portugal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332-2000 USA
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332-2000 USA
| | - Francisco R. Pinto
- Faculty of Sciences, BioISI – Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
13
|
Song C, Yue Q, Moseley A, Al-Khalili O, Wynne BM, Ma H, Wang L, Eaton DC. Myristoylated alanine-rich C kinase substrate-like protein-1 regulates epithelial sodium channel activity in renal distal convoluted tubule cells. Am J Physiol Cell Physiol 2020; 319:C589-C604. [PMID: 32639874 DOI: 10.1152/ajpcell.00218.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial sodium channel (ENaC) regulates blood pressure by fine-tuning distal nephron sodium reabsorption. Our previous work has shown that ENaC gating is regulated by anionic phospholipid phosphates, including phosphatidylinositol 4,5-bisphosphate (PIP2). The PIP2-dependent regulation of ENaC is mediated by the myristoylated alanine-rich protein kinase C substrate-like protein-1 (MLP-1). MLP-1 binds to and is a reversible source of PIP2 at the plasma membrane. We examined MLP-1 regulation of ENaC in distal convoluted tubule clonal cell line DCT-15 cells. Wild-type MLP-1 runs at an apparent molecular mass of 52 kDa despite having a predicted molecular mass of 21 kDa. Native MLP-1 consists of several distinct structural elements: an effector domain that is highly positively charged, sequesters PIP2, contains serines that are the target of PKC, and controls MLP-1 association with the membrane; a myristoylation domain that promotes association with the membrane; and a multiple homology 2 domain of previously unknown function. To further examine MLP-1 in DCT-15 cells, we constructed several MLP-1 mutants: WT, a full-length wild-type protein; S3A, three substitutions in the effector domain to prevent phosphorylation; S3D mimicked constitutive phosphorylation by replacing three serines with aspartates; and GA replaced the myristoylation site glycine with alanine, so GA could not be myristoylated. Each mutant was tagged with either NH2-terminal 3XFLAG or COOH-terminal mCherry or V5. Transfection with MLP mutants modified ENaC activity in DCT-15 cells: activity was highest in S3A and lowest in S3D, and the activity after transfection with either construct was significantly different from WT. In Western blots, when transfected with 3XFLAG-tagged MLP-1 mutants, the expression of the full length of MLP-1 at 52 kDa increased in mutant S3A-MLP-1-transfected DCT-15 cells and decreased in S3D-MLP-1-transfected DCT-15 cells. Several lower molecular mass bands were also detected that correspond to potential presumptive calpain cleavage products. Confocal imaging shows that the different mutants localize in different subcellular compartments consistent with their preferred location in the membrane or in the cytosol. Activation of protein kinase C increases phosphorylation of endogenous MLP-1 and reduces ENaC activity. Our results suggest a complicated role for proteolytic processing in MLP-1 regulation of ENaC.
Collapse
Affiliation(s)
- Chang Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia.,Department of Physiology, Emory University, Atlanta, Georgia
| | - Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Brandi M Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Grant GJ, Liou TG, Paine R, Helms MN. High-mobility group box-1 increases epithelial sodium channel activity and inflammation via the receptor for advanced glycation end products. Am J Physiol Cell Physiol 2020; 318:C570-C580. [PMID: 31913693 DOI: 10.1152/ajpcell.00291.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis (CF) lung disease persists and remains life-limiting for many patients. Elevated high-mobility group box-1 protein (HMGB-1) levels and epithelial sodium channel hyperactivity (ENaC) are hallmark features of the CF lung. The objective of this study was to better understand the pathogenic role of HMGB-1 signaling and ENaC in CF airway cells. We hypothesize that HMGB-1 links airway inflammation [via signaling to the receptor for advanced glycation end products (RAGE)] and airway surface liquid dehydration (via upregulation of ENaC) in the CF lung. We calculated equivalent short-current (Isc) and single-channel ENaC open probability (Po) in normal and CF human small airway epithelial cells (SAEC) in the presence and absence of human HMGB-1 peptide (0.5 μg/mL). In normal SAECs, HMGB-1 increased amiloride-sensitive Isc and elevated ENaC Po from 0.15 ± 0.03 to 0.28 ± 0.04 (P < 0.01). In CF SAECs, ENaC Po increased from 0.45 ± 0.06 to 0.73 ± 0.04 (P < 0.01). Pretreatment with 1 μM FPS-ZM1 (a RAGE inhibitor) attenuated all HMGB-1 effects on ENaC current in normal and CF SAECs. Confocal analysis of SAECs indicates that nuclear size and HMBG-1 localization can be impacted by ENaC dysfunction. Masson's trichrome labeling of mouse lung showed that intraperitoneally injected HMGB-1 significantly increased pulmonary fibrosis. Bronchoalveolar lavage fluid from HMGB-1-treated mice showed significant increases in IL-1β, IL-10, IL-6, IL-27, IL-17A, IFN-β, and granulocyte-macrophage colony-stimulating factor compared with vehicle-injected mice (P < 0.05). These studies put forth a new model in which HMGB-1 signaling to RAGE plays an important role in perpetuating ENaC dysfunction and inflammation in the CF lung.
Collapse
Affiliation(s)
- Garett J Grant
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Theodore G Liou
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
15
|
Kleyman TR, Eaton DC. Regulating ENaC's gate. Am J Physiol Cell Physiol 2020; 318:C150-C162. [PMID: 31721612 PMCID: PMC6985836 DOI: 10.1152/ajpcell.00418.2019] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Epithelial Na+ channels (ENaCs) are members of a family of cation channels that function as sensors of the extracellular environment. ENaCs are activated by specific proteases in the biosynthetic pathway and at the cell surface and remove embedded inhibitory tracts, which allows channels to transition to higher open-probability states. Resolved structures of ENaC and an acid-sensing ion channel revealed highly organized extracellular regions. Within the periphery of ENaC subunits are unique domains formed by antiparallel β-strands containing the inhibitory tracts and protease cleavage sites. ENaCs are inhibited by Na+ binding to specific extracellular site(s), which promotes channel transition to a lower open-probability state. Specific inositol phospholipids and channel modification by Cys-palmitoylation enhance channel open probability. How these regulatory factors interact in a concerted manner to influence channel open probability is an important question that has not been resolved. These various factors are reviewed, and the impact of specific factors on human disorders is discussed.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, and Departments of Cell Biology and of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
16
|
Mutchler SM, Kleyman TR. New insights regarding epithelial Na+ channel regulation and its role in the kidney, immune system and vasculature. Curr Opin Nephrol Hypertens 2019; 28:113-119. [PMID: 30585851 PMCID: PMC6349474 DOI: 10.1097/mnh.0000000000000479] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review describes recent findings regarding the epithelial Na channel (ENaC) and its roles in physiologic and pathophysiologic states. We discuss new insights regarding ENaC's structure, its regulation by various factors, its potential role in hypertension and nephrotic syndrome, and its roles in the immune system and vasculature. RECENT FINDINGS A recently resolved structure of ENaC provides clues regarding mechanisms of ENaC activation by proteases. The use of amiloride in nephrotic syndrome, and associated complications are discussed. ENaC is expressed in dendritic cells and contributes to immune system activation and increases in blood pressure in response to NaCl. ENaC is expressed in endothelial ENaC and has a role in regulating vascular tone. SUMMARY New findings have emerged regarding ENaC and its role in the kidney, immune system, and vasculature.
Collapse
Affiliation(s)
- Stephanie M. Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
17
|
Hermidorff MM, de Assis LVM, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev 2018; 22:65-89. [PMID: 27942913 DOI: 10.1007/s10741-016-9591-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.
Collapse
Affiliation(s)
- Milla Marques Hermidorff
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
18
|
Mansley MK, Watt GB, Francis SL, Walker DJ, Land SC, Bailey MA, Wilson SM. Dexamethasone and insulin activate serum and glucocorticoid-inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells. Physiol Rep 2016; 4:4/10/e12792. [PMID: 27225626 PMCID: PMC4886164 DOI: 10.14814/phy2.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 01/12/2023] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is a protein kinase that contributes to the hormonal control of renal Na(+) retention by regulating the abundance of epithelial Na(+) channels (ENaC) at the apical surface of the principal cells of the cortical collecting duct (CCD). Although glucocorticoids and insulin stimulate Na(+) transport by activating SGK1, the responses follow different time courses suggesting that these hormones act by different mechanisms. We therefore explored the signaling pathways that allow dexamethasone and insulin to stimulate Na(+) transport in mouse CCD cells (mpkCCDcl4). Dexamethasone evoked a progressive augmentation of electrogenic Na(+) transport that became apparent after ~45 min latency and was associated with increases in SGK1 activity and abundance and with increased expression of SGK1 mRNA Although the catalytic activity of SGK1 is maintained by phosphatidylinositol-OH-3-kinase (PI3K), dexamethasone had no effect upon PI3K activity. Insulin also stimulated Na(+) transport but this response occurred with no discernible latency. Moreover, although insulin also activated SGK1, it had no effect upon SGK1 protein or mRNA abundance. Insulin did, however, evoke a clear increase in cellular PI3K activity. Our data are consistent with earlier work, which shows that glucocorticoids regulate Na(+) retention by inducing sgk1 gene expression, and also establish that this occurs independently of increased PI3K activity. Insulin, on the other hand, stimulates Na(+) transport via a mechanism independent of sgk1 gene expression that involves PI3K activation. Although both hormones act via SGK1, our data show that they activate this kinase by distinct physiological mechanisms.
Collapse
Affiliation(s)
- Morag K Mansley
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - Gordon B Watt
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sarah L Francis
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - David J Walker
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Stephen C Land
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Stuart M Wilson
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| |
Collapse
|
19
|
Frindt G, Palmer LG. Acute effects of aldosterone on the epithelial Na channel in rat kidney. Am J Physiol Renal Physiol 2014; 308:F572-8. [PMID: 25520012 DOI: 10.1152/ajprenal.00585.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acute effects of aldosterone administration on epithelial Na channels (ENaC) in rat kidney were examined using electrophysiology and immunodetection. Animals received a single injection of aldosterone (20 μg/kg body wt), which reduced Na excretion over the next 3 h. Channel activity was assessed in principal cells of cortical collecting ducts as amiloride-sensitive whole cell clamp current (INa). INa averaged 100 pA/cell, 20-30% of that reported for the same preparation under conditions of chronic stimulation. INa was negligible in control animals that did not receive hormone. The acute physiological response correlated with changes in ENaC processing and trafficking. These effects included increases in the cleaved forms of α-ENaC and γ-ENaC, assessed by Western blot, and increases in the surface expression of β-ENaC and γ-ENaC measured after surface protein biotinylation. These changes were qualitatively and quantitatively similar to those of chronic stimulation. This suggests that altered trafficking to or from the apical membrane is an early response to the hormone and that later increases in channel activity require stimulation of channels residing at the surface.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
20
|
Liu BC, Yang LL, Lu XY, Song X, Li XC, Chen G, Li Y, Yao X, Humphrey DR, Eaton DC, Shen BZ, Ma HP. Lovastatin-Induced Phosphatidylinositol-4-Phosphate 5-Kinase Diffusion from Microvilli Stimulates ROMK Channels. J Am Soc Nephrol 2014; 26:1576-87. [PMID: 25349201 DOI: 10.1681/asn.2013121326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
We recently showed that lovastatin attenuates cyclosporin A (CsA)-induced damage of cortical collecting duct (CCD) principal cells by reducing intracellular cholesterol. Previous studies showed that, in cell expression models or artificial membranes, exogenous cholesterol directly inhibits inward rectifier potassium channels, including Kir1.1 (Kcnj1; the gene locus for renal outer medullary K(+) [ROMK1] channels). Therefore, we hypothesized that lovastatin might stimulate ROMK1 by reducing cholesterol in CCD cells. Western blots showed that mpkCCDc14 cells express ROMK1 channels with molecular masses that approximate the molecular masses of ROMK1 in renal tubules detected before and after treatment with DTT. Confocal microscopy showed that ROMK1 channels were not in the microvilli, where cholesterol-rich lipid rafts are located, but rather, the planar regions of the apical membrane of mpkCCDc14 cells. Furthermore, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], an activator of ROMK channels, was detected mainly in the microvilli under resting conditions along with the kinase responsible for PI(4,5)P2 synthesis, phosphatidylinositol-4-phosphate 5-kinase, type I γ [PI(4)P5K I γ], which may explain the low basal open probability and increased sensitivity to tetraethylammonium observed here for this channel. Notably, lovastatin induced PI(4)P5K I γ diffusion into planar regions and elevated PI(4,5)P2 and ROMK1 open probability in these regions through a cholesterol-associated mechanism. However, exogenous cholesterol alone did not induce these effects. These results suggest that lovastatin stimulates ROMK1 channels, at least in part, by inducing PI(4,5)P2 synthesis in planar regions of the renal CCD cell apical membrane, suggesting that lovastatin could reduce cyclosporin-induced nephropathy and associated hyperkalemia.
Collapse
Affiliation(s)
- Bing-Chen Liu
- Departments of Radiology and Cardiology, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Physiology and
| | - Li-Li Yang
- Departments of Radiology and Department of Physiology and Molecular Imaging Center, Harbin Medical University, Harbin, Heilongjiang, China; and
| | - Xiao-Yu Lu
- Departments of Radiology and Cardiology, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Physiology and
| | - Xiang Song
- Cardiology, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Physiology and
| | | | | | - Yichao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Douglas C Eaton
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Bao-Zhong Shen
- Departments of Radiology and Molecular Imaging Center, Harbin Medical University, Harbin, Heilongjiang, China; and
| | - He-Ping Ma
- Department of Physiology and Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Thai TL, Yu L, Eaton DC, Duke BJ, Al-Khalili O, Lam HYC, Ma H, Bao HF. Basolateral P2X₄channels stimulate ENaC activity in Xenopus cortical collecting duct A6 cells. Am J Physiol Renal Physiol 2014; 307:F806-13. [PMID: 25100278 DOI: 10.1152/ajprenal.00350.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The polarized nature of epithelial cells allows for different responses to luminal or serosal stimuli. In kidney tubules, ATP is produced luminally in response to changes in luminal flow. Luminal increases in ATP have been previously shown to inhibit the renal epithelial Na⁺ channel (ENaC). On the other hand, ATP is increased basolaterally in renal epithelia in response to aldosterone. We tested the hypothesis that basolateral ATP can stimulate ENaC function through activation of the P2X₄receptor/channel. Using single channel cell-attached patch-clamp techniques, we demonstrated the existence of a basolaterally expressed channel stimulated by the P2X₄agonist 2-methylthio-ATP (meSATP) in Xenopus A6 cells, a renal collecting duct principal cell line. This channel had a similar reversal potential and conductance to that of P2X₄channels. Cell surface biotinylation of the basolateral side of these cells confirmed the basolateral presence of the P2X4 receptor. Basolateral addition of meSATP enhanced the activity of ENaC in single channel patch-clamp experiments, an effect that was absent in cells transfected with a dominant negative P2X₄receptor construct, indicating that activation of P2X₄channels stimulates ENaC activity in these cells. The effect of meSATP on ENaC activity was reduced after chelation of basolateral Ca²⁺ with EGTA or inhibition of phosphatidylinositol 3-kinase with LY-294002. Overall, our results show that ENaC is stimulated by P2X₄receptor activation and that the stimulation is dependent on increases in intracellular Ca²⁺ and phosphatidylinositol 3-kinase activation.
Collapse
Affiliation(s)
- Tiffany L Thai
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Ling Yu
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Billie Jean Duke
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Otor Al-Khalili
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Ho Yin Colin Lam
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Hui-Fang Bao
- Department of Physiology, Emory University, Atlanta, Georgia; and
| |
Collapse
|
22
|
Eaton AF, Yue Q, Eaton DC, Bao HF. ENaC activity and expression is decreased in the lungs of protein kinase C-α knockout mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L374-85. [PMID: 25015976 DOI: 10.1152/ajplung.00040.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a PKC-α knockout model to investigate the regulation of alveolar epithelial Na(+) channels (ENaC) by PKC. Primary alveolar type II (ATII) cells were subjected to cell-attached patch clamp. In the absence of PKC-α, the open probability (Po) of ENaC was decreased by half compared with wild-type mice. The channel density (N) was also reduced in the knockout mice. Using in vivo biotinylation, membrane localization of all three ENaC subunits (α, β, and γ) was decreased in the PKC-α knockout lung, compared with the wild-type. Confocal microscopy of lung slices showed elevated levels of reactive oxygen species (ROS) in the lungs of the PKC-α knockout mice vs. the wild-type. High levels of ROS in the knockout lung can be explained by a decrease in both cytosolic and mitochondrial superoxide dismutase activity. Elevated levels of ROS in the knockout lung activates PKC-δ and leads to reduced dephosphorylation of ERK1/2 by MAP kinase phosphatase, which in turn causes increased internalization of ENaC via ubiquitination by the ubiquitin-ligase Nedd4-2. In addition, in the knockout lung, PKC-δ activates ERK, causing a decrease in ENaC density at the apical alveolar membrane. PKC-δ also phosphorylates MARCKS, leading to a decrease in ENaC Po. The effects of ROS and PKC-δ were confirmed with patch-clamp experiments on isolated ATII cells in which the ROS scavenger, Tempol, or a PKC-δ-specific inhibitor added to patches reversed the observed decrease in ENaC apical channel density and Po. These results explain the decrease in ENaC activity in PKC-α knockout lung.
Collapse
Affiliation(s)
- Amity F Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Qiang Yue
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Hui-Fang Bao
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
23
|
Phosphoinositide 3-kinase pathway mediates early aldosterone action on morphology and epithelial sodium channel in mammalian renal epithelia. J Membr Biol 2014; 247:461-8. [PMID: 24723072 DOI: 10.1007/s00232-014-9647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
Abstract
Involvement of phosphoinositide 3-kinases (PI3Ks) in early aldosterone action on epithelial sodium channel (ENaC) in mammalian renal epithelia was investigated by hopping probe ion conductance microscopy combined with patch-clamping in this study. Aldosterone treatment enlarged the cell volume and elevated the apical membrane of renal mpkCCDc14 epithelia, which resulted in enhancing the open probability of ENaC. Inhibition of PI3K pathway by LY294002 obviously suppressed these aldosterone-induced changes in both cell morphology and ENaC activity. These results indicated the important role of PI3K pathway in early aldosterone action and the close relationship between cell morphology and ENaC activity in mammalian renal epithelia.
Collapse
|
24
|
Bao HF, Thai TL, Yue Q, Ma HP, Eaton AF, Cai H, Klein JD, Sands JM, Eaton DC. ENaC activity is increased in isolated, split-open cortical collecting ducts from protein kinase Cα knockout mice. Am J Physiol Renal Physiol 2014; 306:F309-20. [PMID: 24338818 PMCID: PMC3920049 DOI: 10.1152/ajprenal.00519.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na channel (ENaC) is negatively regulated by protein kinase C (PKC) as shown using PKC activators in a cell culture model. To determine whether PKCα influences ENaC activity in vivo, we examined the regulation of ENaC in renal tubules from PKCα⁻/⁻ mice. Cortical collecting ducts were dissected and split open, and the exposed principal cells were subjected to cell-attached patch clamp. In the absence of PKCα, the open probability (P₀) of ENaC was increased three-fold vs. wild-type SV129 mice (0.52 ± 0.04 vs. 0.17 ± 0.02). The number of channels per patch was also increased. Using confocal microscopy, we observed an increase in membrane localization of α-, β-, and γ-subunits of ENaC in principal cells in the cortical collecting ducts of PKCα⁻/⁻ mice compared with wild-type mice. To confirm this increase, one kidney from each animal was perfused with biotin, and membrane protein was pulled down with streptavidin. The nonbiotinylated kidney was used to assess total protein. While total ENaC protein did not change in PKCα⁻/⁻ mice, membrane localization of all the ENaC subunits was increased. The increase in membrane ENaC could be explained by the observation that ERK1/2 phosphorylation was decreased in the knockout mice. These results imply a reduction in ENaC membrane accumulation and P₀ by PKCα in vivo. The PKC-mediated increase in ENaC activity was associated with an increase in blood pressure in knockout mice fed a high-salt diet.
Collapse
Affiliation(s)
- Hui-Fang Bao
- Emory Univ. School of Medicine, Dept. of Physiology, Whitehead Biomedical Research Bldg., 615 Michael St., Atlanta, GA 30322.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 2014; 10:146-57. [PMID: 24419567 DOI: 10.1038/nrneph.2013.275] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 34294-0007, USA
| | - Kristina Kusche-Vihrog
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Antoine Tarjus
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Shaohu Sheng
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Hans Oberleithner
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Thomas R Kleyman
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Frederic Jaisser
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
26
|
Liu BC, Song X, Lu XY, Fang CZ, Wei SP, Alli AA, Eaton DC, Shen BZ, Li XQ, Ma HP. Lovastatin attenuates effects of cyclosporine A on tight junctions and apoptosis in cultured cortical collecting duct principal cells. Am J Physiol Renal Physiol 2013; 305:F304-13. [PMID: 23720343 DOI: 10.1152/ajprenal.00074.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We used mouse cortical collecting duct principal cells (mpkCCDc14 cell line) as a model to determine whether statins reduce the harmful effects of cyclosporine A (CsA) on the distal nephron. The data showed that treatment of cells with CsA increased transepithelial resistance and that the effect of CsA was abolished by lovastatin. Scanning ion conductance microscopy showed that CsA significantly increased the height of cellular protrusions near tight junctions. In contrast, lovastatin eliminated the protrusions and even caused a modest depression between cells. Western blot analysis and confocal microscopy showed that lovastatin also abolished CsA-induced elevation of both zonula occludens-1 and cholesterol in tight junctions. In contrast, a high concentration of CsA induced apoptosis, which was also attenuated by lovastatin, elevated intracellular ROS via activation of NADPH oxidase, and increased the expression of p47phox. Sustained treatment of cells with lovastatin also induced significant apoptosis, which was attenuated by CsA, but did not elevate intracellular ROS. These results indicate that both CsA and lovastatin are harmful to principal cells of the distal tubule, but via ROS-dependent and ROS-independent apoptotic pathways, respectively, and that they counteract probably via mobilization of cellular cholesterol levels.
Collapse
Affiliation(s)
- Bing-Chen Liu
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 2013; 304:F1231-42. [PMID: 23515717 DOI: 10.1152/ajprenal.00557.2012] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states such as hypertension and diabetes and has been found to mediate both increases and decreases in blood pressure. High levels of TNF-α decrease blood pressure, whereas moderate increases in TNF-α have been associated with increased NaCl retention and hypertension. The explanation for these disparate effects is not clear but could simply be due to different concentrations of TNF-α within the kidney, the physiological status of the subject, or the type of stimulus initiating the inflammatory response. TNF-α alters renal hemodynamics and nephron transport, affecting both activity and expression of transporters. It also mediates organ damage by stimulating immune cell infiltration and cell death. Here we will summarize the available findings and attempt to provide plausible explanations for such discrepancies.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | |
Collapse
|
28
|
Bao HF, Song JZ, Duke BJ, Ma HP, Denson DD, Eaton DC. Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species. Am J Physiol Cell Physiol 2012; 303:C1129-38. [PMID: 22895258 PMCID: PMC3530770 DOI: 10.1152/ajpcell.00139.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
Abstract
Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (P(o)) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC P(o) and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde.
Collapse
Affiliation(s)
- Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
29
|
Alli AA, Bao HF, Alli AA, Aldrugh Y, Song JZ, Ma HP, Yu L, Al-Khalili O, Eaton DC. Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. Am J Physiol Renal Physiol 2012; 303:F800-11. [PMID: 22791334 PMCID: PMC3468524 DOI: 10.1152/ajprenal.00703.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/06/2012] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP(2). Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Monet M, Francoeur N, Boulay G. Involvement of phosphoinositide 3-kinase and PTEN protein in mechanism of activation of TRPC6 protein in vascular smooth muscle cells. J Biol Chem 2012; 287:17672-17681. [PMID: 22493444 DOI: 10.1074/jbc.m112.341354] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry after the stimulation of a G(q)-protein-coupled or tyrosine-kinase receptor. TRPC6 translocates to the plasma membrane upon stimulation and remains there as long as the stimulus is present. However, the mechanism that regulates the trafficking and activation of TRPC6 are unclear. In this study we showed phosphoinositide 3-kinase and its antagonistic phosphatase, PTEN, are involved in the activation of TRPC6. The inhibition of PI3K by PIK-93, LY294002, or wortmannin decreased carbachol-induced translocation of TRPC6 to the plasma membrane and carbachol-induced net Ca(2+) entry into T6.11 cells. Conversely, a reduction of PTEN expression did not affect carbachol-induced externalization of TRPC6 but increased Ca(2+) entry through TRPC6 in T6.11 cells. We also showed that the PI3K/PTEN pathway regulates vasopressin-induced translocation of TRPC6 to the plasma membrane and vasopressin-induced Ca(2+) entry into A7r5 cells, which endogenously express TRPC6. In summary, we provided evidence that the PI3K/PTEN pathway plays an important role in the translocation of TRPC6 to the plasma membrane and may thus have a significant impact on Ca(2+) signaling in cells that endogenously express TRPC6.
Collapse
Affiliation(s)
- Michaël Monet
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Nancy Francoeur
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Guylain Boulay
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
31
|
Dooley R, Harvey BJ, Thomas W. Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol 2012; 350:223-34. [PMID: 21801805 DOI: 10.1016/j.mce.2011.07.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid 'non-genomic' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.
Collapse
Affiliation(s)
- Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
32
|
Qadri YJ, Cormet-Boyaka E, Rooj AK, Lee W, Parpura V, Fuller CM, Berdiev BK. Low temperature and chemical rescue affect molecular proximity of DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC). J Biol Chem 2012; 287:16781-90. [PMID: 22442149 DOI: 10.1074/jbc.m111.332031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina 27511, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Goodson P, Kumar A, Jain L, Kundu K, Murthy N, Koval M, Helms MN. Nadph oxidase regulates alveolar epithelial sodium channel activity and lung fluid balance in vivo via O⁻₂ signaling. Am J Physiol Lung Cell Mol Physiol 2011; 302:L410-9. [PMID: 22160304 DOI: 10.1152/ajplung.00260.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To define roles for reactive oxygen species (ROS) and epithelial sodium channel (ENaC) in maintaining lung fluid balance in vivo, we used two novel whole animal imaging approaches. Live X-ray fluoroscopy enabled quantification of air space fluid content of C57BL/6J mouse lungs challenged by intratracheal (IT) instillation of saline; results were confirmed by using conventional lung wet-to-dry weight ratios and Evans blue as measures of pulmonary edema. Visualization and quantification of ROS produced in lungs was performed in mice that had been administered a redox-sensitive dye, hydro-Cy7, by IT instillation. We found that inhibition of NADPH oxidase with a Rac-1 inhibitor, NSC23766, resulted in alveolar flooding, which correlated with a decrease in lung ROS production in vivo. Consistent with a role for Nox2 in alveolar fluid balance, Nox2(-/-) mice showed increased retention of air space fluid compared with wild-type controls. Interestingly, fluoroscopic analysis of C57BL/6J lungs IT instilled with LPS showed an acute stimulation of lung fluid clearance and ROS production in vivo that was abrogated by the ROS scavenger tetramethylpiperidine-N-oxyl (TEMPO). Acute application of LPS increased the activity of 20 pS nonselective ENaC channels in rat type 1 cells; the average number of channel and single-channel open probability (NPo) increased from 0.14 ± 0.04 to 0.62 ± 0.23. Application of TEMPO to the same cell-attached recording caused an immediate significant decrease in ENaC NPo to 0.04 ± 0.03. These data demonstrate that, in vivo, ROS has the capacity to stimulate lung fluid clearance by increasing ENaC activity.
Collapse
Affiliation(s)
- Preston Goodson
- Department of Physiology, Center for Developmental Lung Biology at Children's Healthcare of Atlanta, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Gumz ML, Cheng KY, Lynch IJ, Stow LR, Greenlee MM, Cain BD, Wingo CS. Regulation of αENaC expression by the circadian clock protein Period 1 in mpkCCD(c14) cells. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:622-9. [PMID: 20868778 PMCID: PMC2975761 DOI: 10.1016/j.bbagrm.2010.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 07/23/2010] [Accepted: 09/15/2010] [Indexed: 11/24/2022]
Abstract
The epithelial sodium channel (ENaC) mediates the fine-tuned regulation of external sodium (Na) balance. The circadian clock protein Period 1 (Per1) is an aldosterone-induced gene that regulates mRNA expression of the rate-limiting alpha subunit of ENaC (αENaC). In the present study, we examined the effect of Per1 on αENaC in the cortex, the site of greatest ENaC activity in the collecting duct, and examined the mechanism of Per1 action on αENaC. Compared to wild type mice, Per1 knockout mice exhibited a 50% reduction of steady state αENaC mRNA levels in the cortex. Importantly, siRNA-mediated knockdown of Per1 decreased total αENaC protein levels in mpkCCD(c14) cells, a widely used model of the murine cortical collecting duct (CCD). Per1 regulated basal αENaC expression and participated in the aldosterone-mediated regulation of αENaC in mpkCCD(c14) cells. Because circadian clock proteins mediate their effects as part of multi-protein complexes at E-box response elements in the promoters of target genes, the ability of Per1 to interact with these sequences from the αENaC promoter was tested. For the first time, we show that Per1 and Clock are present at an E-box response element found in the αENaC promoter. Together these data support an important role for the circadian clock protein Per1 in the direct regulation of αENaC transcription and have important implications for understanding the role of the circadian clock in the regulation of renal function.
Collapse
|
35
|
Pondugula SR, Raveendran NN, Marcus DC. Ion transport regulation by P2Y receptors, protein kinase C and phosphatidylinositol 3-kinase within the semicircular canal duct epithelium. BMC Res Notes 2010; 3:100. [PMID: 20398257 PMCID: PMC2862037 DOI: 10.1186/1756-0500-3-100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 04/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ionic composition of the luminal fluid in the vestibular labyrinth is maintained within tight limits by the many types of epithelial cells bounding the lumen. Regulatory mechanisms include systemic, paracrine and autocrine hormones along with their associated intracellular signal pathways. The epithelium lining the semicircular canal duct (SCCD) is a tissue that is known to absorb sodium and calcium and to secrete chloride. FINDINGS Transport function was assessed by measurements of short circuit current (Isc) and gene transcript expression was evaluated by microarray. Neither ATP nor UTP (100 microM) on the apical side of the epithelium had any effect on Isc. By contrast, basolateral ATP transiently increased Isc and transepithelial resistance dropped significantly after basolateral ATP and UTP. P2Y2 was the sole UTP-sensitive purinergic receptor expressed. Isc was reduced by 42%, 50% and 63% after knockdown of alpha-ENaC, stimulation of PKC and inhibition of PI3-K, while the latter two increased the transepithelial resistance. PKCdelta, PKCgamma and PI3-K were found to be expressed. CONCLUSIONS These observations demonstrate that ion transport by the SCCD is regulated by P2Y2 purinergic receptors on the basolateral membrane that may respond to systemic or local agonists, such as ATP and/or UTP. The sodium absorption from endolymph mediated by ENaC in SCCD is regulated by signal pathways that include the kinases PKC and PI3-K. These three newly-identified regulatory components may prove to be valuable drug targets in the control of pathologic vestibular conditions involving dysfunction of transport homeostasis in the ear, such as Meniere's disease.
Collapse
|
36
|
Eaton DC, Malik B, Bao HF, Yu L, Jain L. Regulation of epithelial sodium channel trafficking by ubiquitination. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2010; 7:54-64. [PMID: 20160149 PMCID: PMC3137150 DOI: 10.1513/pats.200909-096js] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/02/2009] [Indexed: 01/13/2023]
Abstract
Amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC) play a crucial role in Na(+) transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na(+) transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends upon a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits, alpha, beta, and gamma. The C-terminal domain of all three subunits is intracellular and contains a proline rich motif (PPxY). Mutations or deletion of this PPxY motif in the beta and gamma subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein (Nedd4-2) to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when MDCK cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected epithelial cells (A6) expressing endogenous ENaC, ENaC appears to be degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by the rate of Nedd4-2-mediated ENaC ubiquitination. Controlling the rate of degradation is apparently important enough to have multiple, redundant pathways to control Nedd4-2 and ENaC ubiquitination.
Collapse
Affiliation(s)
- Douglas C Eaton
- Department of Physiology, Whitehead Biomedical Research Building, 615 Micheal Street, Suite 601, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
37
|
Arendt KL, Royo M, Fernández-Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 2009; 13:36-44. [PMID: 20010819 PMCID: PMC2810846 DOI: 10.1038/nn.2462] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/04/2009] [Indexed: 12/05/2022]
Abstract
Despite their low abundance, phosphoinositides are critical regulators of intracellular signaling and membrane compartmentalization. However, little is known of phosphoinositide function at the postsynaptic membrane. Here we show that continuous synthesis and availability of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) at the postsynaptic terminal is necessary for sustaining synaptic function in rat hippocampal neurons. This requirement is specific for synaptic, but not for extrasynaptic, AMPA receptors, nor NMDA receptors. We found that PIP3 down-regulation impairs PSD-95 accumulation in spines. Concomitantly, AMPA receptors become more mobile and migrate from the postsynaptic density towards the perisynaptic membrane within the spine, leading to synaptic depression. Interestingly, these effects are only revealed after prolonged inhibition of PIP3 synthesis or by direct quenching of this phosphoinositide at the postsynaptic cell. Therefore, we conclude that a slow, but constant turnover of PIP3 at synapses is required for maintaining AMPA receptor clustering and synaptic strength under basal conditions.
Collapse
Affiliation(s)
- Kristin L Arendt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Anionic phospholipids differentially regulate the epithelial sodium channel (ENaC) by interacting with alpha, beta, and gamma ENaC subunits. Pflugers Arch 2009; 459:377-87. [PMID: 19763606 DOI: 10.1007/s00424-009-0733-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Anionic phospholipids (APs) present a variety of lipids in the cytoplasmic leaflet of the plasma membrane, including phosphatidylinositol (PI), PI-4-phosphate (PI(4)P), phosphatidylserine (PS), PI-4,5-bisphosphate (PI(4,5)P(2)), PI-3,4,5-trisphosphate (PI(3,4,5)P(3)), and phosphatidic acid (PA). We previously showed that PI(4,5)P(2) and PI(3,4,5)P(3) upregulate the renal epithelial sodium channel (ENaC). Further studies from others suggested that PI(4,5)P(2) and PI(3,4,5)P(3) respectively target beta- and gamma-ENaC subunit. To determine whether PI(4,5)P(2) and PI(3,4,5)P(3) selectively bind to beta and gamma subunit, we performed lipid-protein overlay experiments. Surprisingly, the results reveal that most APs, including PI(4)P, PS, PI(4,5)P(2), PI(3,4,5)P(3), and PA, but not PI, non-selectively bind to not only beta and gamma but also alpha subunit. To determine how these APs regulate ENaC, we performed inside-out patch-clamp experiments and found that PS, but not PI or PI(4)P, maintained ENaC activity, that PI(4,5)P(2) and PI(3,4,5)P(3) stimulated ENaC, and that PA, however, inhibited ENaC. These data together suggest that APs differentially regulate ENaC by physically interacting with alpha-, beta-, and gamma-ENaC. Further, the data from cell-attached patch-clamp and confocal microscopy experiments indicate that PA, a product of phospholipase D, may provide one of the pathways for inhibition of ENaC by endothelin receptors.
Collapse
|
39
|
Huang S, Zhang A, Ding G, Chen R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol Renal Physiol 2009; 296:F1323-33. [DOI: 10.1152/ajprenal.90428.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aldosterone (Aldo) stimulates glomerular mesangial cell (MC) proliferation, in part, through an ERK1/2-dependent pathway. In this study, we examined whether Aldo activation of ERK1/2 in MC is mediated through redox-dependent EGF receptor (EGFR) transactivation, as well as the involvement of other signaling mechanisms in Aldo-induced MC proliferation. Aldo increased human MC proliferation, as determined by [3H]thymidine incorporation and cell counts. This increase in proliferation was blocked by inhibition of the mineralocorticoid receptor (MR). Continuing our observations downstream in the signaling pathway, we examined the ability of Aldo to activate both the Ras/MAPK and the PI3K signaling pathways. Aldo increased Ki-RasA and Ki-RasA:GTP levels, and sequentially phosphorylated c-Raf, MAPK kinase (MEK1/2), and ERK1/2. Ki-RasA small interfering RNA (siRNA), the c-Raf inhibitor GW5074, and the MEK1/2 inhibitor PD98059 reduced Aldo-induced cell proliferation by ∼65%. Aldo also increased phosphorylation of PI3K, Akt, the mammalian target of rapamycin (mTOR), and the 70-kDa ribosomal S6 kinase (p70S6K1). Inhibition of the PI3K pathways by the selective PI3K inhibitor LY 294002, an Akt inhibitor, or the mTOR inhibitor rapamycin reduced cell proliferation by 51%. Combining LY 294002 and PD98059 completely blocked Aldo-induced MC proliferation. Next, we confirmed that Aldo exerts its effect on MAPK and PI3K activation, as well as on cell proliferation, by activating the EGFR. Pretreatment with the EGFR antagonist AG1478 inhibited MC proliferation, as well as the activation of Ras/MAPK and PI3K/Akt, suggesting that Ras/MAPK and PI3K/Akt activation occur downstream of EGFR activation. Finally, we examined the role of reactive oxygen species (ROS) in Aldo-induced transactivation of the EGFR. Aldo-induced ROS were predominantly generated by mitochondria. Pretreatment with the antioxidant N-acetyl-l-cysteine, catalase, SOD, mitochondrial respiratory chain complex I inhibitor rotenone (Rot), NADPH oxidase inhibitor apocynin, and DPI significantly inhibited Aldo-stimulated MC proliferation as well as EGFR transactivation. However, Rot reduced MC proliferation more potently than apocynin and DPI. In conclusion, Aldo stimulated cell proliferation through MR-mediated, redox-sensitive EGFR transactivation, which was dependent on the Ki-RasA/c-Raf/MEK/ERK and PI3K/Akt/mTOR/p70S6K1 signaling pathways in human MCs.
Collapse
|
40
|
Markadieu N, Crutzen R, Boom A, Erneux C, Beauwens R. Inhibition of insulin-stimulated hydrogen peroxide production prevents stimulation of sodium transport in A6 cell monolayers. Am J Physiol Renal Physiol 2009; 296:F1428-38. [PMID: 19297450 DOI: 10.1152/ajprenal.90397.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-stimulated sodium transport across A6 cell (derived from amphibian distal nephron) monolayers involves the activation of a phosphatidylinositol (PI) 3-kinase. We previously demonstrated that exogenous addition of H2O2 to the incubation medium of A6 cell monolayers provokes an increase in PI 3-kinase activity and a subsequent rise in sodium transport (Markadieu N, Crutzen R, Blero D, Erneux C, Beauwens R. Am J Physiol Renal Physiol 288: F1201-F1212, 2005). We therefore questioned whether insulin would produce an intracellular burst of H2O2 leading to PI 3-kinase activation and subsequent increase in sodium transport. An acute production of reactive oxygen species (ROS) in A6 cells incubated with the oxidation-sensitive fluorescent probe 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate was already detected after 2 min of insulin stimulation. This fluorescent signal and the increase in sodium transport were completely inhibited in monolayers incubated with peggylated catalase, indicating that H2O2 is the main intracellular ROS produced upon insulin stimulation. Similarly, preincubation of monolayers with different chelators of either superoxide (O2(*-); nitro blue tetrazolium, 100 microM) or H2O2 (50 microM ebselen), or blockers of NADPH oxidase (Nox) enzymes (diphenyleneiodonium, 5 microM; phenylarsine oxide, 1 microM and plumbagin, 30 microM) prevented both insulin-stimulated H2O2 production and insulin-stimulated sodium transport. Furthermore, diphenyleneiodonium pretreatment inhibited the recruitment of the p85 PI 3-kinase regulatory subunit in an anti-phosphotyrosine immunoprecipitate in insulin-stimulated cells. In contrast, PI-103, an inhibitor of class IA PI 3-kinase, inhibited insulin-stimulated sodium transport but did not significantly reduce insulin-stimulated H2O2 production. Taken together, our data suggest that insulin induces an acute burst of H2O2production which participates in an increase in phosphatidylinositol 3,4,5-trisphosphate production and subsequently stimulation of sodium transport.
Collapse
Affiliation(s)
- Nicolas Markadieu
- Laboratory of Cell and Molecular Physiology, Campus Erasme CP 611, Université Libre de Bruxelles, Bât E1, niv 6, local 214, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
41
|
Eaton DC, Helms MN, Koval M, Bao HF, Jain L. The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol 2009; 71:403-23. [PMID: 18831683 DOI: 10.1146/annurev.physiol.010908.163250] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amiloride-sensitive epithelial sodium channels (ENaC) play an important role in lung sodium transport. Sodium transport is closely regulated to maintain an appropriate fluid layer on the alveolar surface. Both alveolar type I and II cells have several different sodium-permeable channels in their apical membranes that play a role in normal lung physiology and pathophysiology. In many epithelial tissues, ENaC is formed from three subunit proteins: alpha, beta, and gamma ENaC. Part of the diversity of sodium-permeable channels in lung arises from assembling different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. Thus, lung epithelium has enormous flexibility to alter the magnitude of salt and water transport. In lung, ENaC is regulated by many transmitter and hormonal agents. Regulation depends upon the type of sodium channel but involves controlling the number of apical channels and/or the activity of individual channels.
Collapse
Affiliation(s)
- Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
42
|
Clarke JH, Emson PC, Irvine RF. Localization of phosphatidylinositol phosphate kinase IIgamma in kidney to a membrane trafficking compartment within specialized cells of the nephron. Am J Physiol Renal Physiol 2008; 295:F1422-30. [PMID: 18753295 PMCID: PMC2584910 DOI: 10.1152/ajprenal.90310.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PIP4Ks (type II phosphatidylinositol 4-phosphate kinases) are phosphatidylinositol 5-phosphate (PtdIns5P) 4-kinases, believed primarily to regulate cellular PtdIns5P levels. In this study, we investigated the expression, localization, and associated biological activity of the least-studied PIP4K isoform, PIP4Kγ. Quantitative RT-PCR and in situ hybridization revealed that compared with PIP4Kα and PIP4Kβ, PIP4Kγ is expressed at exceptionally high levels in the kidney, especially the cortex and outer medulla. A specific antibody was raised to PIP4Kγ, and immunohistochemistry with this and with antibodies to specific kidney cell markers showed a restricted expression, primarily distributed in epithelial cells in the thick ascending limb and in the intercalated cells of the collecting duct. In these cells, PIP4Kγ had a vesicular appearance, and transfection of kidney cell lines revealed a partial Golgi localization (primarily the matrix of the cis-Golgi) with an additional presence in an unidentified vesicular compartment. In contrast to PIP4Kα, bacterially expressed recombinant PIP4Kγ was completely inactive but did have the ability to associate with active PIP4Kα in vitro. Overall our data suggest that PIP4Kγ may have a function in the regulation of vesicular transport in specialized kidney epithelial cells.
Collapse
Affiliation(s)
- Jonathan H Clarke
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | | | |
Collapse
|
43
|
Brown SG, Gallacher M, Olver RE, Wilson SM. The regulation of selective and nonselective Na+ conductances in H441 human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 294:L942-54. [PMID: 18310228 DOI: 10.1152/ajplung.00240.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Analysis of membrane currents recorded from hormone-deprived H441 cells showed that the membrane potential (V(m)) in single cells (approximately -80 mV) was unaffected by lowering [Na+]o or [Cl(-)]o, indicating that cellular Na+ and Cl(-) conductances (GNa and GCl, respectively) are negligible. Although insulin (20 nM, approximately 24 h) and dexamethasone (0.2 microM, approximately 24 h) both depolarized Vm by approximately 20 mV, the response to insulin reflected a rise in GCl mediated via phosphatidylinositol 3-kinase (PI3K) whereas dexamethasone acted by inducing a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent rise in GNa. Although insulin stimulation/PI3K-P110 alpha expression did not directly increase GNa, these maneuvers augmented the dexamethasone-induced conductance. The glucocorticoid/SGK1-induced GNa in single cells discriminated poorly between Na+ and K+ (PNa/PK approximately 0.6), was insensitive to amiloride (1 mM), but was partially blocked by LaCl3 (La3+; 1 mM, approximately 80%), pimozide (0.1 mM, approximately 40%), and dichlorobenzamil (15 microM, approximately 15%). Cells growing as small groups, on the other hand, expressed an amiloride-sensitive (10 microM), selective GNa that displayed the same pattern of hormonal regulation as the nonselective conductance in single cells. These data therefore 1) confirm that H441 cells can express selective or nonselective GNa (14, 48), 2) show that these conductances are both induced by glucocorticoids/SGK1 and subject to PI3K-dependent regulation, and 3) establish that cell-cell contact is vitally important to the development of Na+ selectivity and amiloride sensitivity.
Collapse
Affiliation(s)
- Sean G Brown
- Lung Membrane Transport Group, Division of Maternal and Child Health Sciences, Ninewells Hospital and Medical School, Univ. of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | |
Collapse
|
44
|
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is a minority phospholipid of the inner leaflet of plasma membranes. Many plasma membrane ion channels and ion transporters require PIP2 to function and can be turned off by signaling pathways that deplete PIP2. This review discusses the dependence of ion channels on phosphoinositides and considers possible mechanisms by which PIP2 and analogues regulate ion channel activity.
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Physiology and Biophysics University of Washington School of Medicine, Seattle, Washington 98195
| | - Bertil Hille
- Department of Physiology and Biophysics University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
45
|
Shumilina E, Zahir N, Xuan NT, Lang F. Phosphoinositide 3-kinase dependent regulation of Kv channels in dendritic cells. Cell Physiol Biochem 2007; 20:801-8. [PMID: 17982262 DOI: 10.1159/000110440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2007] [Indexed: 12/17/2022] Open
Abstract
The phosphoinositide 3 (PI3) kinase plays a pivotal role in the regulation of dendritic cells (DCs), antigen-presenting cells that are able to initiate primary immune responses and to establish immunological memory. PI3 kinase is an endogenous suppressor of interleukin 12 (IL-12) production in DCs that is triggered by Toll-like receptor signaling. Inhibition of IL-12 production limits T helper 1 (Th1) polarization. On the other hand, PI3 kinase is an important regulator of various ion channels. The present study aimed to explore whether ion channels in DCs are regulated by PI3 kinase and whether they are important for DC function. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by patch clamp. As a result, DCs express voltage-gated K(+) channels (Kv), which are blocked by Stichodactyla helianthus toxin (ShK, 2.5 nM). A significant upregulation of Kv currents was observed upon maturation of DCs as induced by stimulation of the cells with lipopolysaccharide (LPS, 0.1 microg/ml, 48 h). A dramatic increase of Kv current amplitude was observed following preincubation of the cells with LY294002 (100 nM), a specific inhibitor of PI3 kinase. PI3 kinase inhibitor wortmannin (100 nM) similarly increased Kv current. LY294002 treatment was further followed by a significant increase of IL-12 production. ShK (100 nM) significantly blunted the stimulation of IL-12 release by LPS but not when the cells were first pretreated with LY294002. The observations point to Kv channel sensitive and Kv channel insensitive regulation of DC function.
Collapse
|
46
|
Berdiev BK, Cormet-Boyaka E, Tousson A, Qadri YJ, Oosterveld-Hut HMJ, Hong JS, Gonzales PA, Fuller CM, Sorscher EJ, Lukacs GL, Benos DJ. Molecular proximity of cystic fibrosis transmembrane conductance regulator and epithelial sodium channel assessed by fluorescence resonance energy transfer. J Biol Chem 2007; 282:36481-8. [PMID: 17913705 DOI: 10.1074/jbc.m708089200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present the evidence for a direct physical association of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), two major ion channels implicated in the pathophysiology of cystic fibrosis, a devastating inherited disease. We employed fluorescence resonance energy transfer, a distance-dependent imaging technique with capability to detect molecular complexes with near angstrom resolution, to estimate the proximity of CFTR and ENaC, an essential variable for possible physical interaction to occur. Fluorescence resonance energy transfer studies were complemented with a classic biochemical approach: coimmunoprecipitation. Our results place CFTR and ENaC within reach of each other, suggestive of a direct interaction between these two proteins.
Collapse
Affiliation(s)
- Bakhrom K Berdiev
- Department of Physiology & Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee IH, Dinudom A, Sanchez-Perez A, Kumar S, Cook DI. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2. J Biol Chem 2007; 282:29866-73. [PMID: 17715136 DOI: 10.1074/jbc.m701923200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC) plays an important role in transepithelial Na(+) absorption; hence its function is essential for maintaining Na(+) and fluid homeostasis and regulating blood pressure. Insulin is one of the hormones that regulates activity of ENaC. In this study, we investigated the contribution of two related protein kinases, Akt (also known as protein kinase B) and the serum- and glucocorticoid-dependent kinase (Sgk), on insulin-induced ENaC activity in Fisher rat thyroid cells expressing ENaC. Overexpression of Akt1 or Sgk1 significantly increased ENaC activity, whereas expression of a dominant-negative construct of Akt1, Akt1(K179M), decreased basal activity of ENaC. Inhibition of the endogenous expression of Akt1 and Sgk1 by short interfering RNA not only inhibited ENaC but also disrupted the stimulatory effect on ENaC of insulin and of the downstream effectors of insulin, phosphatidylinositol 3-kinase and PDK1. Conversely, overexpression of Akt1 or Sgk1 increased expression of ENaC at the cell membrane and overcame the inhibitory effect of Nedd4-2 on ENaC. Furthermore, mutation of consensus phosphorylation sites on Nedd4-2 for Akt1 and Sgk1, Ser(342) and Ser(428), completely abolished the inhibitory effect of Sgk1 and Akt1 on Nedd4-2 action. Together these data suggest that both Akt and Sgk are components of an insulin signaling pathway that increases Na(+) absorption by up-regulating membrane expression of ENaC via a regulatory system that involves inhibition of Nedd4-2.
Collapse
Affiliation(s)
- Il-Ha Lee
- Discipline of Physiology, School of Medical Science, Faculty of Medicine, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
48
|
Bao HF, Zhang ZR, Liang YY, Ma JJ, Eaton DC, Ma HP. Ceramide mediates inhibition of the renal epithelial sodium channel by tumor necrosis factor-alpha through protein kinase C. Am J Physiol Renal Physiol 2007; 293:F1178-86. [PMID: 17634398 DOI: 10.1152/ajprenal.00153.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To determine whether ceramide mediates regulation of the renal epithelial sodium channel (ENaC) by tumor necrosis factor-alpha (TNF-alpha), confocal microscopy and patch-clamp experiments were performed in A6 distal nephron cells. We found that TNF-alpha (100 ng/ml) had no effect on ENaC activity and ceramide level when the cells were grown in the presence of aldosterone, but significantly inhibited ENaC and induced ceramide production after the cells were pretreated with LY 294002, an inhibitor of phosphatidylinositol 3-kinase, for 24 h. The inhibition of ENaC induced by TNF-alpha was mimicked by exogenous sphingomyelinase (0.1 U/ml) and C(2)-ceramide (50 microM), but neither C(2)-dihydroceramide, a membrane-impermeable analog of C(2)-ceramide, nor choline, and abolished by pretreatment with GF109203X, a protein kinase C (PKC) inhibitor. C(2)-ceramide failed to affect ENaC in the cells pretreated with GF109203X, but not in the cells pretreated with PD-98059, a mitogen-activated protein kinase kinase inhibitor. C(2)-ceramide induced the externalization of phosphatidylserine (PS) in control A6 cells, but not in the cells pretreated with GF109203X. Together with our previous finding that cytosolic PS maintains ENaC activity in A6 cells, these data suggest that ceramide mediates TNF-alpha inhibition of the renal ENaC via a pathway associated with PKC-dependent externalization of PS.
Collapse
Affiliation(s)
- Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
49
|
Bengrine A, Li J, Hamm LL, Awayda MS. Indirect activation of the epithelial Na+ channel by trypsin. J Biol Chem 2007; 282:26884-26896. [PMID: 17627947 DOI: 10.1074/jbc.m611829200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested the hypothesis that the serine protease trypsin can indirectly activate the epithelial Na(+) channel (ENaC). Experiments were carried out in Xenopus oocytes and examined the effects on the channel formed by all three human ENaC subunits and that formed by Xenopus epsilon and human beta and gamma subunits (epsilonbetagammaENaC). Low levels of trypsin (1-10 ng/ml) were without effects on the oocyte endogenous conductances and were specifically used to test the effects on ENaC. Addition of 1 ng/ml trypsin for 60 min stimulated the amiloride-sensitive human ENaC conductance (g(Na)) by approximately 6-fold. This effect on the g(Na) was [Na(+)]-independent, thereby ruling out an interaction with channel feedback inhibition by Na(+). The indirect nature of this activation was confirmed in cell-attached patch clamp experiments with trypsin added to the outside of the pipette. Trypsin was comparatively ineffective at activating epsilonbetagammaENaC, a channel that exhibited a high spontaneous open probability. These observations, in combination with surface binding experiments, indicated that trypsin indirectly activated membrane-resident channels. Activation by trypsin was also dependent on catalytic activity of this protease but was not accompanied by channel subunit proteolysis. Channel activation was dependent on downstream activation of G-proteins and was blocked by G-protein inhibition by injection of guanyl-5'-yl thiophosphate and by pre-stimulation of phospholipase C. These data indicate a receptor-mediated activation of ENaC by trypsin. This trypsin-activated receptor is distinct from that of protease-activated receptor-2, because the response to trypsin was unaffected by protease-activated receptor-2 overexpression or knockdown.
Collapse
Affiliation(s)
- Abderrahmane Bengrine
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214
| | - Jinqing Li
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214
| | - L Lee Hamm
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Mouhamed S Awayda
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214.
| |
Collapse
|
50
|
Ma HP, Chou CF, Wei SP, Eaton DC. Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Arch 2007; 455:169-80. [PMID: 17605040 DOI: 10.1007/s00424-007-0294-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies suggest that the activity of epithelial sodium channels (ENaC) is increased by phosphatidylinositides, especially phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)). Stimulation of phospholipase C by either adenosine triphosphate (ATP)-activation of purinergic P2Y receptors or epidermal growth factor (EGF)-activation of EGF receptors reduces membrane PI(4,5)P(2), and consequently decreases ENaC activity. Since ATP and EGF may be trapped in cysts formed by the distal tubule, it is possible that ENaC inhibition induced by ATP and EGF facilitates cyst formation in polycystic kidney diseases (PKD). However, some results suggest that ENaC activity is increased in PKD. In contrast to P2Y and EGF receptors, stimulation of insulin-like growth factor-1 (IGF-1) receptor by aldosterone or insulin produces PI(3,4,5)P(3), and consequently increases ENaC activity. The acute effect of aldosterone on ENaC activity through PI(3,4,5)P(3) possibly accounts for the initial feedback for blood volume recovery after hypovolemic hypotension. PI(4,5)P(2) and PI(3,4,5)P(3), respectively, interacts with the N terminus of beta-ENaC and the C terminus of gamma-ENaC. However, whether ENaC selectively binds to PI(4,5)P(2) and PI(3,4,5)P(3) over other anionic phospholipids remains unclear.
Collapse
Affiliation(s)
- He-Ping Ma
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1530 Third Avenue South, ZRB 510, Birmingham, AL, 35294, USA.
| | | | | | | |
Collapse
|