1
|
Jing C, Fu R, Liu X, Zang G, Zhu X, Wang C, Zhang W. A comprehensive cuproptosis score and associated gene signatures reveal prognostic and immunological features of idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1268141. [PMID: 38035073 PMCID: PMC10682708 DOI: 10.3389/fimmu.2023.1268141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cuproptosis, the most recently identified and regulated cell death, depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in IPF remains unclear. Methods We identified three cuproptosis patterns based on ten cuproptosis-related genes using unsupervised consensus clustering. We quantified these patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA were used to analyze the functional differences in different molecular patterns. Drug susceptibility prediction based on cuproptosis scores and meaningful gene markers was eventually screened in combination with external public data sets,in vitro experiments and our cases. Results Of the three types of cuproptosis-related clusters identified in the study, patients in the clusterA, geneclusterB, and score-high groups showed improved prognoses. Moreover, each cluster exhibited differential immune characteristics, with the subtype showing a poorer prognosis associated with an immune overreaction. Cuproptosis score can be an independent risk factor for predicting the prognosis of IPF patients. GSEA showed a significant functional correlation between the score and cuproptosis. The genes AKAP9, ANK3, C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures in IPF patients. The functional role of immune regulation in IPF was further explored by correlating essential genes with immune factors. Also, the nomogram constructed by cumulative information from gene markers and cuproptosis score showed reliable clinical application. Conclusions Cuproptosis patterns differ significantly in the prognosis and immune characteristics of IPF patients. The cuproptosis score and five gene signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
Collapse
Affiliation(s)
- Chuanqing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Guodong Zang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xue Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Roles and mechanisms of ankyrin-G in neuropsychiatric disorders. Exp Mol Med 2022; 54:867-877. [PMID: 35794211 PMCID: PMC9356056 DOI: 10.1038/s12276-022-00798-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
Ankyrin proteins act as molecular scaffolds and play an essential role in regulating cellular functions. Recent evidence has implicated the ANK3 gene, encoding ankyrin-G, in bipolar disorder (BD), schizophrenia (SZ), and autism spectrum disorder (ASD). Within neurons, ankyrin-G plays an important role in localizing proteins to the axon initial segment and nodes of Ranvier or to the dendritic shaft and spines. In this review, we describe the expression patterns of ankyrin-G isoforms, which vary according to the stage of brain development, and consider their functional differences. Furthermore, we discuss how posttranslational modifications of ankyrin-G affect its protein expression, interactions, and subcellular localization. Understanding these mechanisms leads us to elucidate potential pathways of pathogenesis in neurodevelopmental and psychiatric disorders, including BD, SZ, and ASD, which are caused by rare pathogenic mutations or changes in the expression levels of ankyrin-G in the brain. Mutations affecting the production, distribution, or function of the ankyrin-G protein may contribute to a variety of different neuropsychiatric disorders. Ankyrin-G is typically observed at the synapses between neurons, and contributes to intercellular adhesion and signaling along with other important functions. Peter Penzes and colleagues at Northwestern University, Chicago, USA, review the biology of this protein and identify potential mechanisms by which ankyrin-G mutations might impair healthy brain development. Mutations in the gene encoding this protein are strongly linked with bipolar disorder, but have also been tentatively connected to autism spectrum disorders and schizophrenia. The authors highlight physiologically important interactions with a diverse array of other brain proteins, which can in turn be modulated by various chemical modifications to ankyrin-G, and conclude that drugs that influence these modifications could have potential therapeutic value.
Collapse
|
3
|
The Emerging Role of Rab5 in Membrane Receptor Trafficking and Signaling Pathways. Biochem Res Int 2020; 2020:4186308. [PMID: 32104603 PMCID: PMC7036122 DOI: 10.1155/2020/4186308] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Ras analog in brain (Rab) proteins are small guanosine triphosphatases (GTPases) that belong to the Ras-like GTPase superfamily, and they can regulate vesicle trafficking. Rab proteins alternate between an activated (GTP-bound) state and an inactivated (GDP-bound) state. Early endosome marker Rab5 GTPase, a key member of the Rab family, plays a crucial role in endocytosis and membrane transport. The activated-state Rab5 recruits its effectors and regulates the internalization and trafficking of membrane receptors by regulating vesicle fusion and receptor sorting in the early endosomes. In this review, we summarize the role of small Rab GTPases Rab5 in membrane receptor trafficking and the activation of signaling pathways, such as Ras/MAPK and PI3K/Akt, which ultimately affect cell growth, apoptosis, tumorigenesis, and tumor development. This review may provide some insights for our future research and novel therapeutic targets for diseases.
Collapse
|
4
|
Wu J, Jin S, Gu W, Wan F, Zhang H, Shi G, Qu Y, Ye D. Construction and Validation of a 9-Gene Signature for Predicting Prognosis in Stage III Clear Cell Renal Cell Carcinoma. Front Oncol 2019; 9:152. [PMID: 30941304 PMCID: PMC6433707 DOI: 10.3389/fonc.2019.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Aim of this study was to develop a multi-gene signature to help better predict prognosis for stage III renal cell carcinoma (RCC) patients. Methods: Fourteen pairs of stage III tumor and normal tissues mRNA expression data from GSE53757 and 16 pairs mRNA expression data from TCGA clear cell RCC database were used to analyze differentially expressed genes between tumor and normal tissues. Common different expressed genes in both datasets were used for further modeling. Lasso Cox regression analysis was performed to select and build prognostic multi-gene signature in TCGA stage III kidney cancer patients (N = 122). Then, the multi-gene signature was validated in stage III renal cancer cases in Fudan University Shanghai Cancer Center (N = 77). C-index and time-dependent ROC were used to test the efficiency of this signature in predicting overall survival. Results: In total, 1,370 common different expressed genes were found between tumor and normal tissues in both datasets. After Lasso Cox modeling, nine mRNAs were finally identified to build a classifier. Using this classifier, we could classify stage III clear cell RCC patients into high-risk group and low-risk group. Prognosis was significantly different between these groups in discovery TCGA cohort, validation FUSCC cohort and entire set (All P < 0.001). Multivariate cox regression in entire set (N = 199) revealed that risk group classified by 9-gene signature, age of diagnosis, pN stage and ISUP grade were independent prognostic factor of overall survival in stage III kidney cancer patients. Conclusion: We developed a robust multi-gene classifier that can effectively classify stage III RCC patients into groups with low and high risk of poor prognosis. This signature may help select high-risk patients who require more aggressive adjuvant target therapy or immune therapy.
Collapse
Affiliation(s)
- Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijie Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Cheng H, Schwell V, Curtis BR, Fazlieva R, Roder H, Campbell KS. Conformational Changes in the Cytoplasmic Region of KIR3DL1 upon Interaction with SHP-2. Structure 2019; 27:639-650.e2. [PMID: 30773397 DOI: 10.1016/j.str.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
KIR3DL1 is an inhibitory killer cell immunoglobulin-like receptor (KIR) that negatively regulates natural killer cell cytotoxicity. The KIR3DL1 cytoplasmic region (3DL1-cyto) is disordered and can be dissected into three segments: (I) H340-V351; (II) M352-D371; and (III) P372-P423. NMR studies indicate that segment II can dynamically adopt a loop-like conformation, and segments I and III can form dynamic helices that may mediate binding to membranes, particularly in the region around the N-terminal (N) immunoreceptor tyrosine-based inhibitory motif (ITIM), consistent with its role in signaling. Furthermore, individual SH2 domains of SHP-2 strongly engage with the unphosphorylated N-ITIM of 3DL1-cyto, while binding of the tandem SHP-2 SH2 domains to the bis-phosphorylated ITIMs results in more extensive conformational changes in segments I and III. The findings enhance our understanding of KIR function and how ITIMs in a target receptor operate in concert to engage the tandem SH2 domains of SHP-2.
Collapse
Affiliation(s)
- Hong Cheng
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Vered Schwell
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Brett R Curtis
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Ruzaliya Fazlieva
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Heinrich Roder
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Kerry S Campbell
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
McKenna B, Koomar T, Vervier K, Kremsreiter J, Michaelson JJ. Whole-genome sequencing in a family with twin boys with autism and intellectual disability suggests multimodal polygenic risk. Cold Spring Harb Mol Case Stud 2018; 4:a003285. [PMID: 30559312 PMCID: PMC6318775 DOI: 10.1101/mcs.a003285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023] Open
Abstract
Over the past decade, a focus on de novo mutations has rapidly accelerated gene discovery in autism spectrum disorder (ASD), intellectual disability (ID), and other neurodevelopmental disorders (NDDs). However, recent studies suggest that only a minority of cases are attributable to de novo mutations, and instead these disorders often result from an accumulation of various forms of genetic risk. Consequently, we adopted an inclusive approach to investigate the genetic risk contributing to a case of male monozygotic twins with ASD and ID. At the time of the study, the probands were 7 yr old and largely nonverbal. Medical records indicated a history of motor delays, sleep difficulties, and significant cognitive deficits. Through whole-genome sequencing of the probands and their parents, we uncovered elevated common polygenic risk, a coding de novo point mutation in CENPE, an ultra-rare homozygous regulatory variant in ANK3, inherited rare variants in NRXN3, and a maternally inherited X-linked deletion situated in a noncoding regulatory region between ZNF81 and ZNF182 Although each of these genes has been directly or indirectly associated with NDDs, evidence suggests that no single variant adequately explains the probands' phenotype. Instead, we propose that the probands' condition is due to the confluence of multiple rare variants in the context of a high-risk genetic background. This case emphasizes the multifactorial nature of genetic risk underlying most instances of NDDs and aligns with the "female protective model" of ASD.
Collapse
Affiliation(s)
- Brooke McKenna
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Department of Psychology, Emory University, Atlanta, Georgia 30322, USA
| | - Tanner Koomar
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Kevin Vervier
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Jamie Kremsreiter
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| |
Collapse
|
7
|
Smith KR, Penzes P. Ankyrins: Roles in synaptic biology and pathology. Mol Cell Neurosci 2018; 91:131-139. [PMID: 29730177 DOI: 10.1016/j.mcn.2018.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Ankyrins are broadly expressed adaptors that organize diverse membrane proteins into specialized domains and link them to the sub-membranous cytoskeleton. In neurons, ankyrins are known to have essential roles in organizing the axon initial segment and nodes of Ranvier. However, recent studies have revealed novel functions for ankyrins at synapses, where they organize and stabilize neurotransmitter receptors, modulate dendritic spine morphology and control adhesion to the presynaptic site. Ankyrin genes have also been highly associated with a range of neurodevelopmental and psychiatric diseases, including bipolar disorder, schizophrenia and autism, which all demonstrate overlap in their genetics, mechanisms and phenotypes. This review discusses the novel synaptic functions of ankyrin proteins in neurons, and places these exciting findings in the context of ANK genes as key neuropsychiatric disorder risk-factors.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Glaser K, Dickie P, Neilson D, Osborn A, Dickie BH. Linkage of Metabolic Defects to Activated PIK3CA Alleles in Endothelial Cells Derived from Lymphatic Malformation. Lymphat Res Biol 2018; 16:43-55. [PMID: 29346025 DOI: 10.1089/lrb.2017.0033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lymphatic endothelial cells (LECs) derived from lymphatic malformations (LMs) bear activated PIK3CA alleles yet display an inflammatory gene expression profile. A basis for the inflammatory phenotype was sought by screening for coexisting somatic mutations. METHODS AND RESULTS Fourteen independent LEC populations bearing activated PIK3CA alleles were isolated from LM. These were characterized by the expression of growth and inflammatory genes (VEGFC, IL-6, COX-2, IL-8, HO-1, E-SEL) by qRT-PCR. Most commonly upregulated gene products were VEGFC, COX2, HO-1, and ANGPTL4. The specific inhibition of PI3K reduced VEGFC expression without resolving inflammation. Whole exome sequencing of six LM-LEC populations identified five novel somatically acquired alleles coexisting with activated PIK3CA alleles. Two affected genes regulate lipid droplet metabolism (FITM2 and ATG2A), two are gene regulators (MTA1 and TAF1L), and the fifth is an isoform of ANK3 (an endosomal/lysosomal protein). Inhibition of AMPK implicated its involvement in regulating COX-2 and HO-1 overexpression. ANGPTL4 expression was independent of AMPK and PI3K activity and reflected lipid stress demonstrated in normal LECs. AMPK activation with AICAR had a selective growth-limiting effect in a subset of LM-LEC isolates. CONCLUSIONS Inflammatory stress displayed by LM-LECs is consistent with errors in lipid metabolism that may be linked to acquired mutations. The acquisition of PIK3CA alleles may be a permissive event that antagonizes inflammation and metabolic defect.
Collapse
Affiliation(s)
- Kathryn Glaser
- 1 Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital and Medical Center , Cincinnati, Ohio
| | - Peter Dickie
- 1 Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital and Medical Center , Cincinnati, Ohio
| | - Derek Neilson
- 2 Division of Human Genetics, Cincinnati Children's Hospital and Medical Center , Cincinnati, Ohio
| | - Alexander Osborn
- 1 Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital and Medical Center , Cincinnati, Ohio
| | - Belinda Hsi Dickie
- 1 Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital and Medical Center , Cincinnati, Ohio
- 3 Department of Surgery, Harvard Medical School, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
9
|
Tang Y, Qian SW, Wu MY, Wang J, Lu P, Li X, Huang HY, Guo L, Sun X, Xu CJ, Tang QQ. BMP4 mediates the interplay between adipogenesis and angiogenesis during expansion of subcutaneous white adipose tissue. J Mol Cell Biol 2016; 8:302-12. [DOI: 10.1093/jmcb/mjw019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/25/2015] [Indexed: 11/14/2022] Open
|
10
|
Ankyrin G expression is associated with androgen receptor stability, invasiveness, and lethal outcome in prostate cancer patients. J Mol Med (Berl) 2016; 94:1411-1422. [PMID: 27534968 DOI: 10.1007/s00109-016-1458-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Ankyrin G (ANK3) is a member of the Ankyrin family, which functions to provide cellular stability by anchoring the cytoskeleton to the plasma membrane. Deregulation of ANK3 expression has been observed in multiple human cancers but its mechanism remains unknown. ANK3 expression in relation to disease progression and patients' outcome was investigated in two cohorts of prostate cancer (PCA). Mechanistic studies were carried out in vitro and in vivo using several PCA cell lines and the avian embryo model. Silencing ANK3 resulted in significant reduction of cell proliferation through an AR-independent mechanism. Decreased ANK3 expression delayed S phase to G2/M cell cycle transition and reduced the expression of cyclins A and B. However, cells with knocked-down ANK3 exhibited significant increase in cell invasion through an AR-dependent mechanism. Furthermore, we found that ANK3 is a regulator of AR protein stability. ANK3 knockdown also promoted cancer cell invasion and extravasations in vivo using the avian embryo model (p < 0.01). In human samples, ANK3 expression was dramatically upregulated in high grade intraepithelial neoplasia (HGPIN) and localized PCA (p < 0.0001). However, it was downregulated castration resistant stage (p < 0.0001) and showed inverse relation to Gleason score (p < 0.0001). In addition, increased expression of ANK3 in cancer tissues was correlated with better cancer-specific survival of PCA patients (p = 0.012). KEY MESSAGE Silencing ANK3 results in significant reduction of cell proliferation through an AR-independent mechanism. ANK3 knockdown results in significant increase in cell invasion through an AR-dependent mechanism. ANK3 is a regulator of AR protein stability. ANK3 knockdown also promotes cancer cell invasion and extravasation in vivo using the avian embryo model.
Collapse
|
11
|
Rangaraju S, Levey DF, Nho K, Jain N, Andrews KD, Le-Niculescu H, Salomon DR, Saykin AJ, Petrascheck M, Niculescu AB. Mood, stress and longevity: convergence on ANK3. Mol Psychiatry 2016; 21:1037-49. [PMID: 27217151 PMCID: PMC9798616 DOI: 10.1038/mp.2016.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/01/2023]
Abstract
Antidepressants have been shown to improve longevity in C. elegans. It is plausible that orthologs of genes involved in mood regulation and stress response are involved in such an effect. We sought to understand the underlying biology. First, we analyzed the transcriptome from worms treated with the antidepressant mianserin, previously identified in a large-scale unbiased drug screen as promoting increased lifespan in worms. We identified the most robust treatment-related changes in gene expression, and identified the corresponding human orthologs. Our analysis uncovered a series of genes and biological pathways that may be at the interface between antidepressant effects and longevity, notably pathways involved in drug metabolism/degradation (nicotine and melatonin). Second, we examined which of these genes overlap with genes which may be involved in depressive symptoms in an aging non-psychiatric human population (n=3577), discovered using a genome-wide association study (GWAS) approach in a design with extremes of distribution of phenotype. Third, we used a convergent functional genomics (CFG) approach to prioritize these genes for relevance to mood disorders and stress. The top gene identified was ANK3. To validate our findings, we conducted genetic and gene-expression studies, in C. elegans and in humans. We studied C. elegans inactivating mutants for ANK3/unc-44, and show that they survive longer than wild-type, particularly in older worms, independently of mianserin treatment. We also show that some ANK3/unc-44 expression is necessary for the effects of mianserin on prolonging lifespan and survival in the face of oxidative stress, particularly in younger worms. Wild-type ANK3/unc-44 increases in expression with age in C. elegans, and is maintained at lower youthful levels by mianserin treatment. These lower levels may be optimal in terms of longevity, offering a favorable balance between sufficient oxidative stress resistance in younger worms and survival effects in older worms. Thus, ANK3/unc-44 may represent an example of antagonistic pleiotropy, in which low-expression level in young animals are beneficial, but the age-associated increase becomes detrimental. Inactivating mutations in ANK3/unc-44 reverse this effect and cause detrimental effects in young animals (sensitivity to oxidative stress) and beneficial effect in old animals (increased survival). In humans, we studied if the most significant single nucleotide polymorphism (SNP) for depressive symptoms in ANK3 from our GWAS has a relationship to lifespan, and show a trend towards longer lifespan in individuals with the risk allele for depressive symptoms in men (odds ratio (OR) 1.41, P=0.031) but not in women (OR 1.08, P=0.33). We also examined whether ANK3, by itself or in a panel with other top CFG-prioritized genes, acts as a blood gene-expression biomarker for biological age, in two independent cohorts, one of live psychiatric patients (n=737), and one of suicide completers from the coroner's office (n=45). We show significantly lower levels of ANK3 expression in chronologically younger individuals than in middle age individuals, with a diminution of that effect in suicide completers, who presumably have been exposed to more severe and acute negative mood and stress. Of note, ANK3 was previously reported to be overexpressed in fibroblasts from patients with Hutchinson-Gilford progeria syndrome, a form of accelerated aging. Taken together, these studies uncover ANK3 and other genes in our dataset as biological links between mood, stress and longevity/aging, that may be biomarkers as well as targets for preventive or therapeutic interventions. Drug repurposing bioinformatics analyses identified the relatively innocuous omega-3 fatty acid DHA (docosahexaenoic acid), piracetam, quercetin, vitamin D and resveratrol as potential longevity promoting compounds, along with a series of existing drugs, such as estrogen-like compounds, antidiabetics and sirolimus/rapamycin. Intriguingly, some of our top candidate genes for mood and stress-modulated longevity were changed in expression in opposite direction in previous studies in the Alzheimer disease. Additionally, a whole series of others were changed in expression in opposite direction in our previous studies on suicide, suggesting the possibility of a "life switch" actively controlled by mood and stress.
Collapse
Affiliation(s)
- S Rangaraju
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - DF Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - KD Andrews
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - DR Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - AJ Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M Petrascheck
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - AB Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
12
|
Del Vecchio F, Gallo F, Di Marco A, Mastroiaco V, Caianiello P, Zazzeroni F, Alesse E, Tessitore A. Bioinformatics approach to predict target genes for dysregulated microRNAs in hepatocellular carcinoma: study on a chemically-induced HCC mouse model. BMC Bioinformatics 2015; 16:408. [PMID: 26652480 PMCID: PMC4676132 DOI: 10.1186/s12859-015-0836-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive epithelial tumor which shows very poor prognosis and high rate of recurrence, representing an urgent problem for public healthcare. MicroRNAs (miRNAs/miRs) are a class of small, non-coding RNAs that attract great attention because of their role in regulation of processes such as cellular growth, proliferation, apoptosis. Because of the thousands of potential interactions between a single miR and target mRNAs, bioinformatics prediction tools are very useful to facilitate the task for individuating and selecting putative target genes. In this study, we present a chemically-induced HCC mouse model to identify differential expression of miRNAs during the progression of the hepatic injury up to HCC onset. In addition, we describe an established bioinformatics approach to highlight putative target genes and protein interaction networks where they are involved. Results We describe four miRs (miR-125a-5p, miR-27a, miR-182, miR-193b) which showed to be differentially expressed in the chemically-induced HCC mouse model. The miRs were subjected to four of the most used predictions tools and 15 predicted target genes were identified. The expression of one (ANK3) among the 15 predicted targets was further validated by immunoblotting. Then, enrichment annotation analysis was performed revealing significant clusters, including some playing a role in ion transporter activity, regulation of receptor protein serine/threonine kinase signaling pathway, protein import into nucleus, regulation of intracellular protein transport, regulation of cell adhesion, growth factor binding, and regulation of TGF-beta/SMAD signaling pathway. A network construction was created and links between the selected miRs, the predicted targets as well as the possible interactions among them and other proteins were built up. Conclusions In this study, we combined miRNA expression analysis, obtained by an in vivo HCC mouse model, with a bioinformatics-based workflow. New genes, pathways and protein interactions, putatively involved in HCC initiation and progression, were identified and explored. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0836-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Francesco Gallo
- Department of Computer Engineering and Science, and Mathematics, University of L'Aquila, Via Vetoio, Coppito 1, L'Aquila, 67100, Italy.
| | - Antinisca Di Marco
- Department of Computer Engineering and Science, and Mathematics, University of L'Aquila, Via Vetoio, Coppito 1, L'Aquila, 67100, Italy.
| | - Valentina Mastroiaco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Pasquale Caianiello
- Department of Computer Engineering and Science, and Mathematics, University of L'Aquila, Via Vetoio, Coppito 1, L'Aquila, 67100, Italy.
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| |
Collapse
|
13
|
Adung'a VO, Gadelha C, Field MC. Proteomic analysis of clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic 2013; 14:440-57. [PMID: 23305527 DOI: 10.1111/tra.12040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/07/2013] [Accepted: 01/10/2012] [Indexed: 01/09/2023]
Abstract
Endocytosis is a vital cellular process maintaining the cell surface, modulating signal transduction and facilitating nutrient acquisition. In metazoa, multiple endocytic modes are recognized, but for many unicellular organisms the process is likely dominated by the ancient clathrin-mediated pathway. The endocytic system of the highly divergent trypanosomatid Trypanosoma brucei exhibits many unusual features, including a restricted site of internalization, dominance of the plasma membrane by GPI-anchored proteins, absence of the AP2 complex and an exceptionally high rate. Here we asked if the proteins subtending clathrin trafficking in trypanosomes are exclusively related to those of higher eukaryotes or if novel, potentially taxon-specific proteins operate. Co-immunoprecipitation identified twelve T. brucei clathrin-associating proteins (TbCAPs), which partially colocalized with clathrin. Critically, eight TbCAPs are restricted to trypanosomatid genomes and all of these are required for robust cell proliferation. A subset, TbCAP100, TbCAP116, TbCAP161 and TbCAP334, were implicated in distinct endocytic steps by detailed analysis of knockdown cells. Coupled with the absence of orthologs for many metazoan and fungal endocytic factors, these data suggest that clathrin interactions in trypanosomes are highly lineage-specific, and indicate substantial evolutionary diversity within clathrin-mediated endocytosis mechanisms across the eukaryotes.
Collapse
Affiliation(s)
- Vincent O Adung'a
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | |
Collapse
|
14
|
Leussis MP, Madison JM, Petryshen TL. Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:18. [PMID: 23025490 PMCID: PMC3492013 DOI: 10.1186/2045-5380-2-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/20/2012] [Indexed: 11/26/2022]
Abstract
Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.
Collapse
Affiliation(s)
- Melanie P Leussis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
15
|
Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 2011; 441:23-37. [DOI: 10.1042/bj20111164] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α–p110 and p85α–PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α–PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.
Collapse
|
16
|
Identification of genes involved in the regulation of 14-deoxy-11,12-didehydroandrographolide-induced toxicity in T-47D mammary cells. Food Chem Toxicol 2011; 50:431-44. [PMID: 22101062 DOI: 10.1016/j.fct.2011.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/30/2011] [Accepted: 11/03/2011] [Indexed: 12/19/2022]
Abstract
14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
Collapse
|
17
|
Chamberlain MD, Oberg JC, Furber LA, Poland SF, Hawrysh AD, Knafelc SM, McBride HM, Anderson DH. Deregulation of Rab5 and Rab4 proteins in p85R274A-expressing cells alters PDGFR trafficking. Cell Signal 2010; 22:1562-75. [PMID: 20570729 DOI: 10.1016/j.cellsig.2010.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/27/2010] [Accepted: 05/30/2010] [Indexed: 01/30/2023]
Abstract
Activated receptor tyrosine kinases recruit many signaling proteins to activate downstream cell proliferation and survival pathways, including phosphatidylinositol 3-kinase (PI3K) consisting of a p85 regulatory protein and a p110 catalytic protein. We have recently shown the p85alpha protein also has in vitro GTPase activating protein (GAP) activity towards Rab5 and Rab4, small GTPases that regulate vesicle trafficking events for activated receptors. Expression of a GAP-defective mutant, p85R274A, resulted in sustained levels of activated platelet-derived growth factor receptors (PDGFRs) and enhanced downstream signaling. In this report we have characterized Rab5- and Rab4-mediated PDGFR trafficking in cells expressing wild type p85 and GAP-defective mutant p85R274A. Wild type p85 overexpressing cells had slower PDGFR trafficking consistent with enhanced GAP activity deactivating Rab5 and Rab4 to block their vesicle trafficking functions. Mutant p85R274A expression increased the internalization rate of PDGFRs, a Rab5-dependent process, without preventing PDGFR ubiquitination. Immunofluorescence studies further demonstrated that p85R274A-expressing cells showed Rab5 accumulation at intracellular locations. Pull-down and FRAP (fluorescence recovery after photobleaching) experiments indicate this is likely membrane-associated Rab5-GTP, sustained due to decreased p85 GAP activity for the p85R274A mutant. These cells also had substantial amounts of activated PDGFRs in Rab4-positive recycling endosomes, a compartment that usually contains primarily deactivated/dephosphorylated receptors. Our results suggest that the PDGFR-associated GAP activity of p85 regulates both Rab5 and Rab4 functions in cells to influence the movement of activated PDGFR through endosomal compartments. Disruption of this regulation by p85R274A expression impacts PDGFR phosphorylation/dephosphorylation, degradation kinetics and downstream signaling by altering the time receptors spend in specific intracellular endosomal compartments. These results demonstrate that the p85alpha protein is an important regulator of Rab-mediated PDGFR trafficking, which significantly impacts receptor signaling and degradation.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chamberlain MD, Chan T, Oberg JC, Hawrysh AD, James KM, Saxena A, Xiang J, Anderson DH. Disrupted RabGAP function of the p85 subunit of phosphatidylinositol 3-kinase results in cell transformation. J Biol Chem 2008; 283:15861-8. [PMID: 18387942 DOI: 10.1074/jbc.m800941200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab proteins regulate vesicle fusion events during the endocytosis, recycling, and degradation of activated receptor tyrosine kinases. The p85alpha subunit of phosphatidylinositol 3-kinase has GTPase-activating protein activity toward Rab5 and Rab4, an activity severely reduced by a single point mutation (p85-R274A). Expression of p85-R274A resulted in increased platelet-derived growth factor receptor (PDGFR) activation and downstream signaling (Akt and MAPK) and in decreased PDGFR degradation. We now report that the biological consequences of p85-R274A expression cause cellular transformation as determined by the following: aberrant morphological phenotype, loss of contact inhibition, growth in soft agar, and tumor formation in nude mice. Immunohistochemistry shows that the tumors contain activated PDGFR and high levels of activated Akt. Coexpression of a dominant negative Rab5-S34N mutant attenuated these transformed properties. Our results demonstrate that disruption of the RabGAP function of p85alpha due to a single point mutation (R274A) is sufficient to cause cellular transformation via a phosphatidylinositol 3-kinase-independent mechanism partially reversed by Rab5-S34N expression. This critical new role for p85 in the regulation of Rab function suggests a novel role for p85 in controlling receptor signaling and trafficking through its effects on Rab GTPases.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liang X, Fonnum G, Hajivandi M, Stene T, Kjus NH, Ragnhildstveit E, Amshey JW, Predki P, Pope RM. Quantitative comparison of IMAC and TiO2 surfaces used in the study of regulated, dynamic protein phosphorylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1932-44. [PMID: 17870612 DOI: 10.1016/j.jasms.2007.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 05/17/2023]
Abstract
Protein phosphorylation regulates many aspects of cellular function, including cell proliferation, migration, and signal transduction. An efficient strategy to isolate phosphopeptides from a pool of unphosphorylated peptides is essential to global characterization using mass spectrometry. We describe an approach employing isotope tagging reagents for relative and absolute quantification (iTRAQ) labeling to compare quantitatively commercial and prototypal immobilized metal affinity chelate (IMAC) and metal oxide resins. Results indicate a prototype iron chelate resin coupled to magnetic beads outperforms either the Ga(3+)-coupled analog, Fe(3+), or Ga(3+)-loaded, iminodiacetic acid (IDA)-coated magnetic particles, Ga(3+)-loaded Captivate beads, Fe(3+)-loaded Poros 20MC, or zirconium-coated ProteoExtract magnetic beads. For example, compared with Poros 20MC, the magnetic metal chelate (MMC) studied here improved phosphopeptide recovery by 20% and exhibited 60% less contamination from unphosphorylated peptides. With respect to efficiency and contamination, MMC performed as well as prototypal magnetic metal oxide-coated (TiO(2)) beads (MMO) or TiO(2) chromatographic spheres, even if the latter were used with 2,5-dihydroxybenzoic acid (DHB) procedures. Thus far, the sensitivity of the new prototypes reaches 50 fmol, which is comparable to TiO(2) spheres. In an exploration of natural proteomes, tryptic (phospho)peptides captured from stable isotopic labeling with amino acids in cell culture (SILAC)-labeled immunocomplexes following EGF-treatment of 5 x 10(7) HeLa cells were sufficient to quantify stimulated response of over 60 proteins and identify 20 specific phosphorylation sites.
Collapse
Affiliation(s)
- Xiquan Liang
- Invitrogen Corporation, Carlsbad, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Valbuena A, Vega FM, Blanco S, Lazo PA. p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol 2006; 26:4782-93. [PMID: 16782868 PMCID: PMC1489172 DOI: 10.1128/mcb.00069-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable accumulation of p53 is detrimental to the cell because it blocks cell growth and division. Therefore, increases in p53 levels are tightly regulated, mainly by its transcriptional target, mdm2, that downregulates p53. Elucidation of new signaling pathways requires the characterization of the members and the nature of their connection. Vaccinia-related kinase 1 (VRK1) contributes to p53 stabilization by partly interfering with its mdm2-mediated degradation, among other mechanisms; therefore, it is likely that some form of autoregulation between VRK1 and p53 must occur. We report here the identification of an autoregulatory loop between p53 and its stabilizing VRK1. There is an inverse correlation between VRK1 and p53 levels in cell lines, and induction of p53 by UV light downregulates VRK1 in fibroblasts. As the amount of p53 protein increases, there is a downregulation of the VRK1 protein level independent of its promoter. This effect is indirect but requires a transcriptionally active p53. The three most common transcriptionally inactive mutations detected in hereditary (Li-Fraumeni syndrome) and sporadic human cancer, p53(R175H), p53(R248W), and p53(R273H), as well as p53(R280K), are unable to induce downregulation of VRK1 protein. The p53 isoforms Delta40p53 and p53beta, lacking the transactivation and oligomerization domains, respectively, do not downregulate VRK1. VRK1 downregulation induced by p53 is independent of mdm2 activity and proteasome-mediated degradation since it occurs in the presence of proteasome inhibitors and in mdm2-deficient cells. The degradation of VRK1 is sensitive to chloroquine, an inhibitor of the late endosome-lysosome transport, and to serine protease inhibitors of the lysosomal pathway.
Collapse
Affiliation(s)
- Alberto Valbuena
- IBMCC-Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | |
Collapse
|