1
|
Chen TY, Chen YR, Hsu ML, Liao YT, Wu CH, Yao CA, Yang WC, Lin W, Lin Y. Homoplantaginin Antagonizes N-Methyl-d-aspartate Receptor and Extracellular Signal-Regulated Kinase Signaling in Aβ Oligomers-Induced Neuropathology/Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28294-28304. [PMID: 39661093 DOI: 10.1021/acs.jafc.4c07659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Extracts from plants/herbals are great resources of drugs and nutrients. Baicalein, a component present in Scutellaria baicalensis, was previously found to alleviate the abnormal depolarization brought about by Aβ oligomers. We extended this promising outcome by screening baicalein derivatives, and a natural compound named homoplantaginin was pinpointed. In this study, we aimed to investigate the effects of homoplantaginin on animal behavior and explore its neuronal functioning/mechanism. In behavior tests, impairments of novel object recognition and of spatial learning/memory were reversed by homoplantaginin in a J20 Alzheimer's disease (AD) mouse model. Utilizing primary glutamatergic neurons, homoplantaginin was found to prevent the Aβ oligomer-induced increase in ERK phosphorylation. Furthermore, homoplantaginin inhibits both AMPA-insult and NMDA-insult depolarization; this was assessed using DiBAC4(3), a membrane potential sensitive dye. Finally, homoplantaginin blocks both Aβ oligomer-induced and NMDA-induced calcium influx, which was assessed by intracellular calcium measurement using Fura2/AM. Interestingly, homoplantaginin immediately blunts the steady state calcium influx caused by NMDA. Taken together, homoplantaginin is capable of inhibiting Aβ oligomer-induced pathophysiology, in particular at the receptor level. This pure compound has great potential to be developed as a clinical therapeutic drug.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Department of Life Science, National Taiwan Normal University, Taipei 116325, Taiwan
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan
| | - Ming-Lung Hsu
- Department of Life Science, National Taiwan Normal University, Taipei 116325, Taiwan
| | - Yueh-Ting Liao
- Department of Life Science, National Taiwan Normal University, Taipei 116325, Taiwan
| | - Chia-Hsuan Wu
- Department of Life Science, National Taiwan Normal University, Taipei 116325, Taiwan
| | - Chien-An Yao
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan
| | - Yenshou Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116325, Taiwan
| |
Collapse
|
2
|
Kazemi S, Safari S, Komaki S, Karimi SA, Golipoor Z, Komaki A. The effects of carvacrol and p-cymene on Aβ 1-42 -induced long-term potentiation deficit in male rats. CNS Neurosci Ther 2024; 30:e14459. [PMID: 37727020 PMCID: PMC10916422 DOI: 10.1111/cns.14459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is the most common type of dementia in which oxidative stress plays an important role. In this disease, learning and memory and the cellular mechanism associated with it, long-term potentiation (LTP), are impaired. Considering the beneficial effects of carvacrol (CAR) and p-cymene against AD, their effect was assessed on in vivo hippocampal LTP in the perforant pathway (PP)-dentate gyrus (DG) pathway in an Aβ1-42 -induced rat model of AD. METHODS Male Wistar rats were randomly assigned to five groups: sham: intracerebroventricular (ICV) injection of phosphate-buffered saline, Aβ: ICV Aβ1-42 injections, Aβ + CAR (50 mg/kg), Aβ + p-cymene (50 mg/kg), and Aβ + CAR + p-cymene. Administration of CAR and p-cymene was done by gavage daily 4 weeks before and 4 weeks after the Aβ injection. The population spike (PS) amplitude and field excitatory postsynaptic potentials (fEPSP) slope were determined in DG against the applied stimulation to the PP. RESULTS Aβ-treated rats exhibited impaired LTP induction in the PP-DG synapses, resulting in significant reduction in both fEPSP slope and PS amplitude compared to the sham animals. Aβ-treated rats consumed either CAR or p-cymene separately (but not their combination), and showed an enhancement in fEPSP slope and PS amplitude of the DG granular cells. CONCLUSIONS These data indicate that CAR or p-cymene can ameliorate Aβ-associated changes in synaptic plasticity. Surprisingly, the combination of CAR and p-cymene did not yield the same effect, suggesting a potential interaction between the two substances.
Collapse
Affiliation(s)
- Sahifeh Kazemi
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
| | - Samaneh Safari
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Somayeh Komaki
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Zoleikha Golipoor
- Cellular and Molecular Research Center, Faculty of MedicineGuilan University of Medical SciencesRashtIran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
3
|
Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer's disease and diabetes. Ageing Res Rev 2023; 90:101999. [PMID: 37414154 DOI: 10.1016/j.arr.2023.101999] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Accumulation of amyloid-β in the central nervous system is a common feature of Alzheimer's disease (AD) and diabetes-related cognitive impairment. Since the insulin-degrading enzyme (IDE) can break down amyloid-β plaques, there is considerable interest in using this enzyme to treat both neurological disorders. In this review, we have summarized the pre-clinical and clinical research on the potential application of IDE for the improvement of cognitive impairment. Furthermore, we have presented an overview of the main pathways that can be targeted to mitigate the progression of AD and the cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
4
|
Hong DD, Thom LT, Ha NC, Thu NTH, Hien HTM, Tam LT, Dat NM, Duc TM, Tru NV, Hang NTM, Ambati RR. Isolation of Fucoxanthin from Sargassum oligocystum Montagne, 1845 Seaweed in Vietnam and Its Neuroprotective Activity. Biomedicines 2023; 11:2310. [PMID: 37626806 PMCID: PMC10452663 DOI: 10.3390/biomedicines11082310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Fucoxanthin extracted and purified from Vietnamese Sargassum oligocystum Montagne, 1845 exhibits various biological activities. In this study, the ability of fucoxanthin to inhibit acetylcholinesterase (AChE), the antioxidant activities, and the expression of antioxidant enzymes were investigated. Fucoxanthin isolated from Vietnamese S. oligocystum showed no cytotoxic effects; moreover, it exhibited AChE inhibitory activity (with an IC50 value of 130.12 ± 6.65 μg mL-1) and antioxidant activity (with an IC50 value of 3.42 ± 0.15 mg mL-1). At concentrations of 50 and 100 µg mL-1, fucoxanthin provided protection against amyloid β-protein fragment 25-35-induced neurotoxicity in a C6 neuronal cell line, and the survival of C6 cells was higher than 81.01% and 80.98%, respectively, compared to the control group (59%). Moreover, antioxidant enzyme activity and quantitative PCR analysis suggested that the neuroprotective effect of fucoxanthin resulted from regulation of the gene expression of antioxidant enzymes (CAT and GPx) and ER pathways (caspase-3 and Bax), as well as the promotion of expression of genes involved in PI3K/Akt signaling (GSK-3β), autophagy (p62 and ATG5), and the biosynthesis of ACh (VAChT and ChAT). Therefore, fucoxanthin extracted from the seaweed S. oligocystum in Vietnam is a potential feedstock source for the production of health foods that exert neuroprotective effects.
Collapse
Affiliation(s)
- Dang Diem Hong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
- Department of Microbiology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Le Thi Thom
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
| | - Nguyen Cam Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
| | - Ngo Thi Hoai Thu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
| | - Hoang Thi Minh Hien
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
| | - Luu Thi Tam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
| | - Nguyen Manh Dat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
| | - Tran Mai Duc
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 57100, Vietnam;
| | - Nguyen Van Tru
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam; (L.T.T.); (N.C.H.); (N.T.H.T.); (H.T.M.H.); (L.T.T.); (N.M.D.); (N.V.T.)
| | - Nguyen Thi Minh Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam;
| | - Ranga Rao Ambati
- Department of Biotechnology, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research (Deemed to Be University), Vadlamudi, Guntur 522213, India;
| |
Collapse
|
5
|
Hossain MS, Ramasamy VS, Park IS. Involvement of calcium ions in amyloid-β-induced lamin fragmentation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119383. [PMID: 36302464 DOI: 10.1016/j.bbamcr.2022.119383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Amyloid-β (Aβ) peptide, the main pathogenic peptide in Alzheimer's disease, has been shown to induce an increase in cytoplasmic calcium concentration (CCC). In the current study, we explored the cytotoxic signal transduction pathway in 42-amino-acid Aβ (Aβ42)-treated HeLa cells in relation to the increase in CCC. The increase in CCC was prominent in cells treated twice with oligomeric Aβ42. We previously showed that double treatment also promoted Aβ-induced lamin fragmentation (AILF), which appears to be mediated by cathepsin L. Apoptotic caspase activation was a downstream event of AILF. The Ca2+ chelator BAPTA-AM suppressed cell death, cathepsin L activation, AILF, and caspase activation in Aβ-treated cells. These results indicate that Aβ42 induces an increase in CCC, which is an event upstream of the cytotoxic processes. The products of AILF are different from those produced by other cell death-inducing agents, such as staurosporine, which induces caspase-6-mediated lamin fragmentation (CMLF). CMLF was unaffected by BAPTA-AM and was not detected in cells treated with Aβ42, indicating that Aβ42 peptide induced a specific cytotoxic pathway involving AILF via increased CCC. We confirmed that the same processes (except caspase activation) operated in Aβ42-treated neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Md Selim Hossain
- Department of Biomedical Sciences, Chosun University, Gwangju, Republic of Korea
| | | | - Il-Seon Park
- Department of Biomedical Sciences, Chosun University, Gwangju, Republic of Korea; Department of Cellular and Molecular Medicine, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
6
|
Mori W, Kawakami R, Niko Y, Haruta T, Imamura T, Shiraki K, Zako T. Differences in interaction lead to the formation of different types of insulin amyloid. Sci Rep 2022; 12:8556. [PMID: 35595809 PMCID: PMC9123177 DOI: 10.1038/s41598-022-12212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Insulin balls, localized insulin amyloids formed at the site of repeated insulin injections in patients with diabetes, cause poor glycemic control and cytotoxicity. Our previous study has shown that insulin forms two types of amyloids; toxic amyloid formed from the intact insulin ((i)-amyloid) and less-toxic amyloid formed in the presence of the reducing reagent TCEP ((r)-amyloid), suggesting insulin amyloid polymorphism. However, the differences in the formation mechanism and cytotoxicity expression are still unclear. Herein, we demonstrate that the liquid droplets, which are stabilized by electrostatic interactions, appear only in the process of toxic (i)-amyloid formation, but not in the less-toxic (r)-amyloid formation process. The effect of various additives such as arginine, 1,6-hexanediol, and salts on amyloid formation was also examined to investigate interactions that are important for amyloid formation. Our results indicate that the maturation processes of these two amyloids were significantly different, whereas the nucleation by hydrophobic interactions was similar. These results also suggest the difference in the formation mechanism of two different insulin amyloids is attributed to the difference in the intermolecular interactions and could be correlated with the cytotoxicity.
Collapse
Affiliation(s)
- Wakako Mori
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Ehime, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi, Japan
| | | | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Ehime, Japan.
| |
Collapse
|
7
|
Ren X, Zhang J, Zhao Y, Sun L. Senegenin Inhibits Aβ 1-42-Induced PC12 Cells Apoptosis and Oxidative Stress via Activation of the PI3K/Akt Signaling Pathway. Neuropsychiatr Dis Treat 2022; 18:513-524. [PMID: 35280979 PMCID: PMC8904946 DOI: 10.2147/ndt.s346238] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Apoptosis and oxidative stress have been considered as key events in the pathogenesis of Alzheimer's disease (AD). Senegenin (Sen), the major and most effective ingredient of Radix Polygalae, which has anti-apoptotic and anti-oxidative effects. The aim of this study was to investigate the anti-apoptotic and anti-oxidant effects of Sen on Aβ1-42-induced PC12 cells apoptosis and oxidative stress as well as its possible signaling pathway. METHODS Rat pheochromocytoma (PC12) cells were treated by 20 μM Aβ1-42 and then divided into 5 different treatment groups (Control; Aβ1-42 20 μM; Aβ1-42 20 μM + Sen 10 μM; Aβ1-42 20 μM + Sen 30 μM; Aβ1-42 20μM + Sen 60 μM). PC12 cells activity was detected by MTT assay. Colony formation assay was performed to assess the clonogenic ability of cells. The cell apoptosis was detected by Annexin-V/PI staining. The pro-apoptotic protein (Bax), anti-apoptotic protein (Bcl-2), anti-oxidative stress factor (HO-1, Nuclear Nrf2, Total Nrf2) and pathway-related protein (Akt, P-Akt, PI3K, P-PI3K) were tested by Western blot. The reactive oxygen species (ROS) level was assessed with a DCFH-DA probe. RESULTS The results indicated that Sen dose-dependently increased cell viability and reduced the number of apoptotic cells. The ratio of P-PI3K/PI3K and P-Akt/Akt increased in a dose-dependent manner under the treatment of Sen, suggesting that Sen might activate the PI3K/Akt signaling pathway. Moreover, Sen upregulates the ratio of Bcl-2/Bax. Further study revealed that Sen can play an antioxidant role in enhancing HO-1, promoting Nrf2 nuclear translocation and reducing ROS accumulation to reduce oxidative stress. CONCLUSION Sen is effective in inhibiting apoptosis and oxidative stress in Aβ1-42-induced PC12 cells, which likely contribute to the development of novel therapies for AD.
Collapse
Affiliation(s)
- Xing Ren
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Jiwei Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Yunnan Zhao
- Editorial Office of Journal of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Lingzhi Sun
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| |
Collapse
|
8
|
MEK1/2 inhibition rescues neurodegeneration by TFEB-mediated activation of autophagic lysosomal function in a model of Alzheimer's Disease. Mol Psychiatry 2022; 27:4770-4780. [PMID: 35948663 PMCID: PMC9734062 DOI: 10.1038/s41380-022-01713-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder, which is characterized by cognitive deficit due to synaptic loss and neuronal death. Extracellular amyloid β plaques are one of the pathological hallmarks of AD. The autophagic lysosomal pathway is the essential mechanism to maintain cellular homeostasis by driving clearance of protein aggregates and is dysfunctional in AD. Here, we showed that inhibiting MEK/ERK signaling using a clinically available MEK1/2 inhibitor, trametinib (GSK1120212, SNR1611), induces the protection of neurons through autophagic lysosomal activation mediated by transcription factor EB (TFEB) in a model of AD. Orally administered trametinib recovered impaired neural structures, cognitive functions, and hippocampal long-term potentiation (LTP) in 5XFAD mice. Trametinib also reduced Aβ deposition via induction of autophagic lysosomal activation. RNA-sequencing analysis revealed upregulation of autophagic lysosomal genes by trametinib administration. In addition, trametinib inhibited TFEB phosphorylation at Ser142 and promoted its nuclear translocation, which in turn induced autophagic lysosomal related genes, indicating that trametinib activates the autophagic lysosomal process through TFEB activation. From these observations, we concluded that MEK inhibition provides neuronal protection from the Aβ burden by increasing autophagic lysosomal activity. Thus, MEK inhibition may be an effective therapeutic strategy for AD.
Collapse
|
9
|
Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. Front Neurosci 2021; 15:718188. [PMID: 34594185 PMCID: PMC8477582 DOI: 10.3389/fnins.2021.718188] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The accumulation of protein aggregates in human tissues is a hallmark of more than 40 diseases called amyloidoses. In seven of these disorders, the aggregation is associated with neurodegenerative processes in the central nervous system such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The aggregation occurs when certain soluble proteins lose their physiological function and become toxic amyloid species. The amyloid assembly consists of protein filament interactions, which can form fibrillar structures rich in β-sheets. Despite the frequent incidence of these diseases among the elderly, the available treatments are limited and at best palliative, and new therapeutic approaches are needed. Among the many natural compounds that have been evaluated for their ability to prevent or delay the amyloidogenic process is epigallocatechin-3-gallate (EGCG), an abundant and potent polyphenolic molecule present in green tea that has extensive biological activity. There is evidence for EGCG’s ability to inhibit the aggregation of α-synuclein, amyloid-β, and huntingtin proteins, respectively associated with PD, AD, and HD. It prevents fibrillogenesis (in vitro and in vivo), reduces amyloid cytotoxicity, and remodels fibrils to form non-toxic amorphous species that lack seed propagation. Although it is an antioxidant, EGCG in an oxidized state can promote fibrils’ remodeling through formation of Schiff bases and crosslinking the fibrils. Moreover, microparticles to drug delivery were synthesized from oxidized EGCG and loaded with a second anti-amyloidogenic molecule, obtaining a synergistic therapeutic effect. Here, we describe several pre-clinical and clinical studies involving EGCG and neurodegenerative diseases and their related mechanisms.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thyago R Cardim-Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Tiwari A, Rahi S, Mehan S. Elucidation of Abnormal Extracellular Regulated Kinase (ERK) Signaling and Associations with Syndromic and Non-syndromic Autism. Curr Drug Targets 2021; 22:1071-1086. [PMID: 33081671 DOI: 10.2174/1389450121666201020155010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
Autism is a highly inherited and extremely complex disorder in which results from various cases indicate chromosome anomalies, unusual single-gene mutations, and multiplicative effects of particular gene variants, characterized primarily by impaired speech and social interaction and restricted behavior. The precise etiology of Autism Spectrum Disorder (ASD) is currently unclear. The extracellular signal-regulated kinase (ERK) signaling mechanism affects neurogenesis and neuronal plasticity during the development of the central nervous mechanism. In this regard, the pathway of ERK has recently gained significant interest in the pathogenesis of ASD. The mutation occurs in a few ERK components. Besides, the ERK pathway dysfunction lies in the upstream of modified translation and contributes to synapse pathology in syndromic types of autism. In this review, we highlight the ERK pathway as a target for neurodevelopmental disorder autism. In addition, we summarize the regulation of the ERK pathway with ERK inhibitors in neurological disorders. In conclusion, a better understanding of the ERK signaling pathway provides a range of therapeutic options for autism spectrum disorder.
Collapse
Affiliation(s)
- Aarti Tiwari
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Saloni Rahi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
11
|
Ma WH, Chen AF, Xie XY, Huang YS. Sigma ligands as potent inhibitors of Aβ and AβOs in neurons and promising therapeutic agents of Alzheimer's disease. Neuropharmacology 2021; 190:108342. [PMID: 33045243 DOI: 10.1016/j.neuropharm.2020.108342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease and characterized by dementia, memory decline, loss of learning and cognitive disorder. The main pathological features of AD are the deposition of amyloid plaques and the formation of neurofibrillary tangles (NFTs) in the brain. The current anti-AD drugs have shown unsatisfactory therapeutic results. Due to the complications and unclear pathogenesis, AD is still irreversible and incurable. Among several hypotheses proposed by the academic community, the amyloid cascade is widely recognized by scholars and supported by a large amount of evidences. However, controversy over pathogenic factors has also been ongoing. Increasing evidence has shown that amyloid-β (Aβ) and especially amyloid-β oligomers (AβOs) are highly neurotoxic and pathogenic agents that damage neurons, mediate various receptors in the downstream pathways, and ultimately lead to learning and cognitive dysfunction. However, efforts in developing inhibitors of Aβ or amyloid-β precursor protein (APP) have all failed to yield good clinical results. More recently, it has been demonstrated that sigma receptors, including sigma-1 and sigma-2 subtypes, may play critical roles in the regulation of binding and metabolism of AβOs in neuron cells and the pathophysiology of AD. Thus, sigma receptor ligands are being recognized as promising therapeutic agents for treating or ameliorating AD. This article will review the pathophysiology of AD and highlight the sigma ligands that display the capability of preventing or even reversing Aβ- and AβOs-induced neurotoxicity and blocking the signal transduction caused by AβOs.
Collapse
Affiliation(s)
- Wen-Hui Ma
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Ai-Fang Chen
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Xiao-Yang Xie
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China
| | - Yun-Sheng Huang
- School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China; Dongguan Key Laboratory for Drug Design & Formulation, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong 523808, China.
| |
Collapse
|
12
|
Amyloid-beta oligomers induce Parkin-mediated mitophagy by reducing Miro1. Biochem J 2021; 477:4581-4597. [PMID: 33155636 DOI: 10.1042/bcj20200488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with the accumulation of amyloid-beta oligomers (AβO). Recent studies have demonstrated that mitochondria-specific autophagy (mitophagy) contributes to mitochondrial quality control by selectively eliminating the dysfunctional mitochondria. Mitochondria motility, which is regulated by Miro1, is also associated with neuronal cell functions. However, the role played by Miro1 in the mitophagy mechanism, especially relative to AβO and neurodegenerative disorders, remains unknown. In this study, AβO induced mitochondrial dysfunction, enhanced Parkin-mediated mitophagy, and reduced mitochondrial quantities in hippocampal neuronal cells (HT-22 cells). We demonstrated that AβO-induced mitochondrial fragmentation could be rescued to the elongated mitochondrial form and that mitophagy could be mitigated by the stable overexpression of Miro1 or by pretreatment with N-acetylcysteine (NAC)-a reactive oxygen species (ROS) scavenger-as assessed by immunocytochemistry. Moreover, using time-lapse imaging, under live cell-conditions, we verified that mitochondrial motility was rescued by the Miro1 overexpression. Finally, in hippocampus from amyloid precursor protein (APP)/presenilin 1 (PS1)/Tau triple-transgenic mice, we noted that the co-localization between mitochondria and LC3B puncta was increased. Taken together, these results indicated that up-regulated ROS, induced by AβO, increased the degree of mitophagy and decreased the Miro1 expression levels. In contrast, the Miro1 overexpression ameliorated AβO-mediated mitophagy and increased the mitochondrial motility. In AD model mice, AβO induced mitophagy in the hippocampus. Thus, our results would improve our understanding of the role of mitophagy in AD toward facilitating the development of novel therapeutic agents for the treatment of AβO-mediated diseases.
Collapse
|
13
|
Jang YN, Jang H, Kim GH, Noh JE, Chang KA, Lee KJ. RAPGEF2 mediates oligomeric Aβ-induced synaptic loss and cognitive dysfunction in the 3xTg-AD mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 47:625-639. [PMID: 33345400 PMCID: PMC8359155 DOI: 10.1111/nan.12686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
AIMS Amyloid-β (Aβ) oligomers trigger synaptic degeneration that precedes plaque and tangle pathology. However, the signalling molecules that link Aβ oligomers to synaptic pathology remain unclear. Here, we addressed the potential role of RAPGEF2 as a novel signalling molecule in Aβ oligomer-induced synaptic and cognitive impairments in human-mutant amyloid precursor protein (APP) mouse models of Alzheimer's disease (AD). METHODS To investigate the role of RAPGEF2 in Aβ oligomer-induced synaptic and cognitive impairments, we utilised a combination of approaches including biochemistry, molecular cell biology, light and electron microscopy, behavioural tests with primary neuron cultures, multiple AD mouse models and post-mortem human AD brain tissue. RESULTS We found significantly elevated RAPGEF2 levels in the post-mortem human AD hippocampus. RAPGEF2 levels also increased in the transgenic AD mouse models, generating high levels of Aβ oligomers before exhibiting synaptic and cognitive impairment. RAPGEF2 upregulation activated the downstream effectors Rap2 and JNK. In cultured hippocampal neurons, oligomeric Aβ treatment increased the fluorescence intensity of RAPGEF2 and reduced the number of dendritic spines and the intensities of synaptic marker proteins, while silencing RAPGEF2 expression blocked Aβ oligomer-induced synapse loss. Additionally, the in vivo knockdown of RAPGEF2 expression in the AD hippocampus prevented cognitive deficits and the loss of excitatory synapses. CONCLUSIONS These findings demonstrate that the upregulation of RAPGEF2 levels mediates Aβ oligomer-induced synaptic and cognitive disturbances in the AD hippocampus. We propose that an early intervention regarding RAPGEF2 expression may have beneficial effects on early synaptic pathology and memory loss in AD.
Collapse
Affiliation(s)
- You-Na Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - HoChung Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeong-Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
14
|
Nong W, Wei ZQ, Mo XN, Wu L, Tang N. miR-137 overexpression protects neurons from Aβ-induced neurotoxicity via ERK1/2. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1932612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Wei Nong
- Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zhi-quan Wei
- Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Xue-Ni Mo
- Guangxi Key Laboratory of Basic Research in Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Lin Wu
- Guangxi Key Laboratory of Basic Research in Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Nong Tang
- Guangxi Key Laboratory of Basic Research in Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
15
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Zhang ZY, Zhang CH, Yang JJ, Xu PP, Yi PJ, Hu ML, Peng WJ. Genome-wide analysis of hippocampal transfer RNA-derived small RNAs identifies new potential therapeutic targets of Bushen Tiansui formula against Alzheimer's disease. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:135-143. [PMID: 33334712 DOI: 10.1016/j.joim.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Bushen Tiansui formula (BSTSF), a traditional Chinese medicine prescription, has been widely used to treat Alzheimer's disease (AD). However, the mechanisms underlying its effects remain largely unknown. In this study, a rat AD model was used to study the effects of BSTSF on cognitive performance and expression of transfer RNA-derived small RNAs (tsRNAs) in the hippocampus, to determine whether treatment of AD with BSTSF could regulate the expression of tsRNAs, a novel small non-coding RNA. METHODS To generate a validated AD model, oligomeric amyloid-β1-42 (Aβ1-42) was injected intracerebroventricularly into rats. The Morris water maze (MWM) test was used to evaluate rat cognitive performance, and tsRNA-sequencing was conducted to examine tsRNA expression in the rat hippocampus. Potential targets were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic analyses were conducted to investigate the biological function of candidate tsRNAs. RESULTS The learning and memory deficits of Aβ1-42-induced AD rats, assessed by MWM tests, were clearly ameliorated by BSTSF treatment. A total of 387 tsRNAs were detected in the rat hippocampus. Among them, 13 were significantly dysregulated in AD rats compared with sham control rats, while 57 were markedly altered by BSTSF treatment, relative to untreated AD rats (fold change ≥ 2 and P < 0.05). Moreover, six BSTSF treatment-related tsRNAs were identified and validated by qRT-PCR. Bioinformatic analyses indicated that the six treatment-related tsRNAs had potential therapeutic roles, via multiple signaling pathways and Gene Ontology biological functions, including cyclic adenosine monophosphate and retrograde endocannabinoid signaling. CONCLUSION This study identified a previously uncharacterized mechanism underlying the effects of BSTSF in alleviating the learning and memory deficits in Aβ1-42-induced AD rats, demonstrating that tsRNAs are potential therapeutic targets of BSTSF in the treatment of AD.
Collapse
Affiliation(s)
- Zhe-Yu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Chun-Hu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jing-Jing Yang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pan-Pan Xu
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Peng-Ji Yi
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Mu-Li Hu
- Department of Scientific Research, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei-Jun Peng
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
17
|
Yang T, Tran KC, Zeng AY, Massa SM, Longo FM. Small molecule modulation of the p75 neurotrophin receptor inhibits multiple amyloid beta-induced tau pathologies. Sci Rep 2020; 10:20322. [PMID: 33230162 PMCID: PMC7683564 DOI: 10.1038/s41598-020-77210-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Longitudinal preclinical and clinical studies suggest that Aβ drives neurite and synapse degeneration through an array of tau-dependent and independent mechanisms. The intracellular signaling networks regulated by the p75 neurotrophin receptor (p75NTR) substantially overlap with those linked to Aβ and to tau. Here we examine the hypothesis that modulation of p75NTR will suppress the generation of multiple potentially pathogenic tau species and related signaling to protect dendritic spines and processes from Aβ-induced injury. In neurons exposed to oligomeric Aβ in vitro and APP mutant mouse models, modulation of p75NTR signaling using the small-molecule LM11A-31 was found to inhibit Aβ-associated degeneration of neurites and spines; and tau phosphorylation, cleavage, oligomerization and missorting. In line with these effects on tau, LM11A-31 inhibited excess activation of Fyn kinase and its targets, tau and NMDA-NR2B, and decreased Rho kinase signaling changes and downstream aberrant cofilin phosphorylation. In vitro studies with pseudohyperphosphorylated tau and constitutively active RhoA revealed that LM11A-31 likely acts principally upstream of tau phosphorylation, and has effects preventing spine loss both up and downstream of RhoA activation. These findings support the hypothesis that modulation of p75NTR signaling inhibits a broad spectrum of Aβ-triggered, tau-related molecular pathology thereby contributing to synaptic resilience.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Kevin C Tran
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Anne Y Zeng
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Stephen M Massa
- Department of Neurology, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, 4150 Clement St., San Francisco, CA, 94121, USA.
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Islam MI, Hossain MS, Park IS. Differential involvement of caspase-6 in amyloid-β-induced fragmentation of lamin A and B. Biochem Biophys Rep 2020; 24:100839. [PMID: 33145443 PMCID: PMC7591731 DOI: 10.1016/j.bbrep.2020.100839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Amyloid-β (Aβ), a peptide implicated in Alzheimer's disease, was shown to cause specific fragmentation of lamin proteins, which was mediated by an unidentified protease named nuclear scaffold protease (NSP) independently of caspase-6. Because caspase-6 is responsible for the fragmentation process in many other damage-induced apoptosis, here we further investigated possible involvement of caspase-6 in Aβ-induced lamin fragmentation under various conditions. We found that lamin A fragment generated by NSP (named fragment b) disappeared in cells incubated with Aβ42 for prolonged periods and this product was preserved by a caspase-6 inhibitor. Furthermore, caspase-6 could remove fragment b in nuclei isolated from Aβ42-treated cells (ANU). Lamin B in ANU was fragmented by caspase-6 only after treatment with an alkaline phosphatase. The caspase-mediated fragmentation of lamin B was also achieved with nuclei isolated from cells incubated with Aβ42 plus a Cdk5 inhibitor. The results indicate that Aβ42 induces NSP-mediated fragmentation of lamin A and the following removal process of fragment b by caspase-6 and an Aβ-induced phosphorylation prevents the fragmentation of lamin B by caspase-6. The pathway leading to lamin protein fragmentation in this investigation appears to be specific for Aβ and thus the data will provide novel insights into the toxicity of the peptide. Aβ42 induces nuclear scaffold protease (NSP)-mediated fragmentation of lamin A. The produced fragment of lamin A is subsequently removed by caspase-6. Aβ42 also induced NSP-mediated lamin B fragmentation. Caspase-6-mediated fragmentation of lamin B protein is absent. The absence appears to be due to phosphorylation of lamin B.
Collapse
Affiliation(s)
| | | | - Il-Seon Park
- Department of Medical Sciences, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University, Gwanju, 501-759, Republic of Korea
| |
Collapse
|
19
|
Humpel C. Organotypic Brain Slices of ADULT Transgenic Mice: A Tool to Study Alzheimer's Disease. Curr Alzheimer Res 2020; 16:172-181. [PMID: 30543174 DOI: 10.2174/1567205016666181212153138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023]
Abstract
Transgenic mice have been extensively used to study the Alzheimer pathology. In order to reduce, refine and replace (3Rs) the number of animals, ex vivo cultures are used and optimized. Organotypic brain slices are the most potent ex vivo slice culture models, keeping the 3-dimensional structure of the brain and being closest to the in vivo situation. Organotypic brain slice cultures have been used for many decades but were mainly prepared from postnatal (day 8-10) old rats or mice. More recent work (including our lab) now aims to culture organotypic brain slices from adult mice including transgenic mice. Especially in Alzheimer´s disease research, brain slices from adult transgenic mice will be useful to study beta-amyloid plaques, tau pathology and glial activation. This review will summarize the studies using organotypic brain slice cultures from adult mice to mimic Alzheimer's disease and will highlight advantages and also pitfalls using this technique.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Pang J, Hou J, Zhou Z, Ren M, Mo Y, Yang G, Qu Z, Hu Y. Safflower Yellow Improves Synaptic Plasticity in APP/PS1 Mice by Regulating Microglia Activation Phenotypes and BDNF/TrkB/ERK Signaling Pathway. Neuromolecular Med 2020; 22:341-358. [DOI: 10.1007/s12017-020-08591-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/02/2020] [Indexed: 02/08/2023]
|
21
|
Yin P, Wang S, Wei Y, Wang X, Zhang J, Yin X, Feng J, Zhu M. Maresin1 Decreased Microglial Chemotaxis and Ameliorated Inflammation Induced by Amyloid-β42 in Neuron-Microglia Co-Culture Models. J Alzheimers Dis 2020; 73:503-515. [PMID: 31796671 DOI: 10.3233/jad-190682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Shuang Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafen Wei
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jingdian Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Mendell AL, Creighton SD, Wilson HA, Jardine KH, Isaacs L, Winters BD, MacLusky NJ. Inhibition of 5α Reductase Impairs Cognitive Performance, Alters Dendritic Morphology and Increases Tau Phosphorylation in the Hippocampus of Male 3xTg-AD Mice. Neuroscience 2020; 429:185-202. [PMID: 31954826 DOI: 10.1016/j.neuroscience.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Recent work has suggested that 5α-reduced metabolites of testosterone may contribute to the neuroprotection conferred by their parent androgen, as well as to sex differences in the incidence and progression of Alzheimer's disease (AD). This study investigated the effects of inhibiting 5α-reductase on object recognition memory (ORM), hippocampal dendritic morphology and proteins involved in AD pathology, in male 3xTg-AD mice. Male 6-month old wild-type or 3xTg-AD mice received daily injections of finasteride (50 mg/kg i.p.) or vehicle (18% β-cyclodextrin, 1% v/b.w.) for 20 days. Female wild-type and 3xTg-AD mice received only the vehicle. Finasteride treatment differentially impaired ORM in males after short-term (3xTg-AD only) or long-term (3xTg-AD and wild-type) retention delays. Dendritic spine density and dendritic branching of pyramidal neurons in the CA3 hippocampal subfield were significantly lower in 3xTg-AD females than in males. Finasteride reduced CA3 dendritic branching and spine density in 3xTg-AD males, to within the range observed in vehicle-treated females. In the CA1 hippocampal subfield, dendritic branching and spine density were reduced in both male and female 3xTg-AD mice, compared to wild type controls. Hippocampal amyloid β levels were substantially higher in 3xTg-AD females compared to both vehicle and finasteride-treated 3xTg-AD males. Site-specific Tau phosphorylation was higher in 3xTg-AD mice compared to sex-matched wild-type controls, increasing slightly after finasteride treatment. These results suggest that 5α-reduced neurosteroids may play a role in testosterone-mediated neuroprotection and may contribute to sex differences in the development and severity of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyer D Winters
- Psychology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
23
|
Croft CL, Futch HS, Moore BD, Golde TE. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Mol Neurodegener 2019; 14:45. [PMID: 31791377 PMCID: PMC6889333 DOI: 10.1186/s13024-019-0346-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 01/30/2023] Open
Abstract
Organotypic slice cultures of brain or spinal cord have been a longstanding tool in neuroscience research but their utility for understanding Alzheimer's disease (AD) and other neurodegenerative proteinopathies has only recently begun to be evaluated. Organotypic brain slice cultures (BSCs) represent a physiologically relevant three-dimensional model of the brain. BSCs support all the central nervous system (CNS) cell types and can be produced from brain areas involved in neurodegenerative disease. BSCs can be used to better understand the induction and significance of proteinopathies underlying the development and progression of AD and other neurodegenerative disorders, and in the future may serve as bridging technologies between cell culture and in vivo experiments for the development and evaluation of novel therapeutic targets and strategies. We review the initial development and general use of BSCs in neuroscience research and highlight the advantages of these cultures as an ex vivo model. Subsequently we focus on i) BSC-based modeling of AD and other neurodegenerative proteinopathies ii) use of BSCs to understand mechanisms underlying these diseases and iii) how BSCs can serve as tools to screen for suitable therapeutics prior to in vivo investigations. Finally, we will examine i) open questions regarding the use of such cultures and ii) how emerging technologies such as recombinant adeno-associated viruses (rAAV) may be combined with these models to advance translational research relevant to neurodegenerative disorders.
Collapse
Affiliation(s)
- C L Croft
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - H S Futch
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - B D Moore
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - T E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Amadoro G, Latina V, Corsetti V, Calissano P. N-terminal tau truncation in the pathogenesis of Alzheimer's disease (AD): Developing a novel diagnostic and therapeutic approach. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165584. [PMID: 31676377 DOI: 10.1016/j.bbadis.2019.165584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
Tau truncation occurs at early stages during the development of human Alzheimer's disease (AD) and other tauopathy dementias. Tau cleavage, particularly in its N-terminal projection domain, is able to drive per se neurodegeneration, regardless of its pro-aggregative pathway(s) and in fragment(s)-dependent way. In this short review, we highlight the pathological relevance of the 20-22 kDa NH2-truncated tau fragment which is endowed with potent neurotoxic "gain-of-function" action(s), both in vitro and in vivo. An extensive comment on its clinical value as novel progression/diagnostic biomarker and potential therapeutic target in the context of tau-mediated neurodegeneration is also provided.
Collapse
Affiliation(s)
- G Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - V Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - V Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| |
Collapse
|
25
|
Yin P, Wang X, Wang S, Wei Y, Feng J, Zhu M. Maresin 1 Improves Cognitive Decline and Ameliorates Inflammation in a Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2019; 13:466. [PMID: 31680874 PMCID: PMC6803487 DOI: 10.3389/fncel.2019.00466] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disease. Accumulating evidences suggest an active role of inflammation in the pathogenesis of AD. Inflammation resolution is an active process that terminates inflammation and facilitates the restoration of inflamed tissue to homeostasis. Resolution of inflammation has been shown to be conducted by a group of specialized pro-resolving lipid mediators (SPMs) including lipoxins, resolvins, protectins, and maresins (MaRs). Recent studies have demonstrated that failure of inflammation resolution can lead to chronic inflammation and, hence, contribute to AD progression. We have previously shown that MaR1 can improve neuronal survival and increase microglial phagocytosis of Aβ. However, the effects of MaR1 on animal models of AD have not been reported. In this study, we aim to investigate the effects of MaR1 on behavioral deficits and pathological changes in a mouse model of AD. Mice received bilateral injections of Aβ42 protein into the hippocampus, followed by administration of MaR1 by intra-cerebroventricular injection. The behavioral changes in the mice were analyzed using Morris water maze. Immunohistochemistry, Fluoro-Jade B (FJB) staining, cytometric beads array (CBA), and western blot analysis were used to demonstrate molecular changes in the mice hippocampus and cortex. Our results showed that MaR1 treatment significantly improved the cognitive decline, attenuated microglia and astrocyte activation. In addition, we found that MaR1 decreased the pro-inflammatory cytokines TNF-α, IL-6, and MCP-1 production induced by Aβ42 and increased the anti-inflammatory cytokines IL-2, IL-10 secretion with or without Aβ42 stimulation. Moreover, western blot results showed that MaR1 up-regulated the levels of proteins related to survival pathway including PI3K/AKT, ERK and down-regulated the levels of proteins associated with inflammation, autophagy, and apoptosis pathways such as p38, mTOR and caspase 3. To conclude, MaR1 improved the cognitive decline, ameliorated pro-inflammatory glia cells activation via improving survival, enhancing autophagy, inhibiting inflammation and apoptosis pathways. In conclusion, this study shows that inflammation resolution may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yafen Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 2019; 44:2708-2722. [DOI: 10.1007/s11064-019-02889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
27
|
Fan W, Xing L, Chen N, Zhou X, Yu Y, Liu S. Promotion Effect of Succinimide on Amyloid Fibrillation of Hen Egg-White Lysozyme. J Phys Chem B 2019; 123:8057-8064. [DOI: 10.1021/acs.jpcb.9b06958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xing
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanqin Yu
- Department of Physics, Anhui University, Hefei, Anhui 230601, China
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
Vilasi S, Carrotta R, Ricci C, Rappa GC, Librizzi F, Martorana V, Ortore MG, Mangione MR. Inhibition of Aβ 1-42 Fibrillation by Chaperonins: Human Hsp60 Is a Stronger Inhibitor than Its Bacterial Homologue GroEL. ACS Chem Neurosci 2019; 10:3565-3574. [PMID: 31298838 DOI: 10.1021/acschemneuro.9b00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is a chronic neurodegenerative disease characterized by the accumulation of pathological aggregates of amyloid beta peptide. Many efforts have been focused on understanding peptide aggregation pathways and on identification of molecules able to inhibit aggregation in order to find an effective therapy. As a result, interest in neuroprotective proteins, such as molecular chaperones, has increased as their normal function is to assist in protein folding or to facilitate the disaggregation and/or clearance of abnormal aggregate proteins. Using biophysical techniques, we evaluated the effects of two chaperones, human Hsp60 and bacterial GroEL, on the fibrillogenesis of Aβ1-42. Both chaperonins interfere with Aβ1-42 aggregation, but the effect of Hsp60 is more significant and correlates with its more pronounced flexibility and stronger interaction with ANS, an indicator of hydrophobic regions. Dose-dependent ThT fluorescence kinetics and SAXS experiments reveal that Hsp60 does not change the nature of the molecular processes stochastically leading to the formation of seeds, but strongly delays them by recognition of hydrophobic sites of some peptide species crucial for triggering amyloid formation. Hsp60 reduces the initial chaotic heterogeneity of Aβ1-42 sample at high concentration regimes. The understanding of chaperone action in counteracting pathological aggregation could be a starting point for potential new therapeutic strategies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Vilasi
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Rita Carrotta
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Caterina Ricci
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona 60131, Italy
| | | | - Fabio Librizzi
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Vincenzo Martorana
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona 60131, Italy
| | | |
Collapse
|
29
|
Parra-Damas A, Saura CA. Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biol Psychiatry 2019; 86:87-96. [PMID: 30846302 DOI: 10.1016/j.biopsych.2019.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
Synapse-to-nucleus signaling is critical for converting signals received at synapses into transcriptional programs essential for cognition, memory, and emotion. This neuronal mechanism usually involves activity-dependent translocation of synaptonuclear factors from synapses to the nucleus resulting in regulation of transcriptional programs underlying synaptic plasticity. Acting as synapse-to-nucleus messengers, amyloid precursor protein intracellular domain associated-1 protein, cAMP response element binding protein (CREB)-regulated transcription coactivator-1, Jacob, nuclear factor kappa-light-chain-enhancer of activated B cells, RING finger protein 10, and SH3 and multiple ankyrin repeat domains 3 play essential roles in synapse remodeling and plasticity, which are considered the cellular basis of memory. Other synaptic proteins, such as extracellular signal-regulated kinase, calcium/calmodulin-dependent protein kinase II gamma, and CREB2, translocate from dendrites or cytosol to the nucleus upon synaptic activity, suggesting that they could contribute to synapse-to-nucleus signaling. Notably, some synaptonuclear factors converge on the transcription factor CREB, indicating that CREB signaling is a key hub mediating integration of synaptic signals into transcriptional programs required for neuronal function and plasticity. Although major efforts have been focused on identification and regulatory mechanisms of synaptonuclear factors, the relevance of synapse-to-nucleus communication in brain physiology and pathology is still unclear. Recent evidence, however, indicates that synaptonuclear factors are implicated in neuropsychiatric, neurodevelopmental, and neurodegenerative disorders, suggesting that uncoupling synaptic activity from nuclear signaling may prompt synapse pathology, contributing to a broad spectrum of brain disorders. This review summarizes current knowledge of synapse-to-nucleus signaling in neuron survival, synaptic function and plasticity, and memory. Finally, we discuss how altered synapse-to-nucleus signaling may lead to memory and emotional disturbances, which is relevant for clinical and therapeutic strategies in neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Morroni F, Sita G, Graziosi A, Ravegnini G, Molteni R, Paladini MS, Dias KST, dos Santos AF, Viegas C, Camps I, Pruccoli L, Tarozzi A, Hrelia P. PQM130, a Novel Feruloyl-Donepezil Hybrid Compound, Effectively Ameliorates the Cognitive Impairments and Pathology in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2019; 10:658. [PMID: 31244664 PMCID: PMC6581760 DOI: 10.3389/fphar.2019.00658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia in older people. The complex nature of AD calls for the development of multitarget agents addressing key pathogenic processes. Donepezil, an acetylcholinesterase inhibitor, is a first-line acetylcholinesterase inhibitor used for the treatment of AD. Although several studies have demonstrated the symptomatic efficacy of donepezil treatment in AD patients, the possible effects of donepezil on the AD process are not yet known. In this study, a novel feruloyl-donepezil hybrid compound (PQM130) was synthesized and evaluated as a multitarget drug candidate against the neurotoxicity induced by Aβ1-42 oligomer (AβO) injection in mice. Interestingly, PQM130 had already shown anti-inflammatory activity in different in vivo models and neuroprotective activity in human neuronal cells. The intracerebroventricular (i.c.v.) injection of AβO in mice caused the increase of memory impairment, oxidative stress, neurodegeneration, and neuroinflammation. Instead, PQM130 (0.5-1 mg/kg) treatment after the i.c.v. AβO injection reduced oxidative damage and neuroinflammation and induced cell survival and protein synthesis through the modulation of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinases (ERK1/2). Moreover, PQM130 increased brain plasticity and protected mice against the decline in spatial cognition. Even more interesting is that PQM130 modulated different pathways compared to donepezil, and it is much more effective in counteracting AβO damage. Therefore, our findings highlighted that PQM130 is a potent multi-functional agent against AD and could act as a promising neuroprotective compound for anti-AD drug development.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Agnese Graziosi
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | - Claudio Viegas
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ihosvany Camps
- Institute of Exact Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies-QuVi, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies-QuVi, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Kam MK, Lee DG, Kim B, Lee HS, Lee SR, Bae YC, Lee DS. Peroxiredoxin 4 ameliorates amyloid beta oligomer-mediated apoptosis by inhibiting ER-stress in HT-22 hippocampal neuron cells. Cell Biol Toxicol 2019; 35:573-588. [PMID: 31147869 DOI: 10.1007/s10565-019-09477-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by amyloid beta oligomers (AβO), which induce cell death by triggering oxidative stress and endoplasmic reticulum (ER) stress. Oxidative stress is regulated by antioxidant enzymes, including peroxiredoxins. Peroxiredoxins (Prx) are classified into six subtypes, based on their localization and cysteine residues, and protect cells by scavenging hydrogen peroxide (H2O2). Peroxiredoxin 4 (Prx4) is unique in being localized to the ER; however, whether Prx4 protects neuronal cells from AβO-induced toxicity remains unclear, although Prx4 expression is upregulated in AβO-induced oxidative stress and ER stress. In this study, we established HT-22 cells in which Prx4 was either overexpressed or silenced to investigate its role in AβO-induced toxicity. AβO-stimulation of HT-22 cells with overexpressed Prx4 caused decreases in both AβO-induced ROS and ER stress (followed by ER expansion). In contrast, AβO stimulation caused increases in both ROS and ER stress that were notably higher in HT-22 cells with silenced Prx4 expression than in HT-22 cells. Consequently, Prx4 overexpression decreased apoptotic cell death and ameliorated the AβO-induced increase in intracellular Ca2+. Therefore, we conclude that Prx4 has a protective effect against AβO-mediated oxidative stress, ER stress, and neuronal cell death. Furthermore, these results suggest that Prx4 may be a target for preventing AβO toxicity in AD. Graphical abstract .
Collapse
Affiliation(s)
- Min Kyoung Kam
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gil Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Neurology, School of Medicine, UC Davis, Davis, CA, 95817, USA
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheonbuk-do, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
32
|
Wang T, Cheng Y, Han H, Liu J, Tian B, Liu X. miR-194 Accelerates Apoptosis of Aβ 1⁻42-Transduced Hippocampal Neurons by Inhibiting Nrn1 and Decreasing PI3K/Akt Signaling Pathway Activity. Genes (Basel) 2019; 10:genes10040313. [PMID: 31010100 PMCID: PMC6523401 DOI: 10.3390/genes10040313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
This article explores the mechanism of miR-194 on the proliferation and apoptosis of Aβ1–42-transduced hippocampal neurons. Aβ1–42-transduced hippocampal neuron model was established by inducing hippocampal neurons with Aβ1–42. MTT assay and flow cytometry were used to detect the viability and apoptosis of hippocampal neurons, respectively. qRT-PCR was used to detect changes in miR-194 and Nrn1 expression after Aβ1–42 induction. Aβ1–42-transduced hippocampal neurons were transfected with miR-194 mimics and/or Nrn1 overexpression vectors. Their viability and neurite length were detected by MTT assay and immunofluorescence, respectively. Western blot was used to detect protein expression. Aβ1–42 inhibited Aβ1–42-transduced hippocampal neuron activity and promoted their apoptosis in a dose-dependent manner. miR-194 was upregulated and Nrn1 was downregulated in Aβ1–42-transduced hippocampal neurons (p < 0.05). Compared with the model group, Aβ1–42-transduced hippocampal neurons of the miR-194 mimic group had much lower activity, average longest neurite length, Nrn1, p-AkT, and Bcl-2 protein expression and had much higher Bax, Caspase-3, and Cleaved Caspase-3 protein expression. Compared with the model group, Aβ1–42-transduced hippocampal neurons of the LV-Nrn1 group had much higher activity, average longest neurite length, Nrn1, p-AkT, and Bcl-2 protein expression and had much lower Bax, Caspase-3, and Cleaved Caspase-3 protein expression. Nrn1 is a target gene of miR-194. miR-194 inhibited apoptosis of Aβ1–42-transduced hippocampal neurons by inhibiting Nrn1 and decreasing PI3K/AkT signaling pathway activity.
Collapse
Affiliation(s)
- Tingting Wang
- Psychiatric Department V, Qingdao Mental Health Center, No. 299, Nanjing Road, Shibei District, Qingdao 266000, China.
| | - Yaling Cheng
- Psychiatric Department V, Qingdao Mental Health Center, No. 299, Nanjing Road, Shibei District, Qingdao 266000, China.
| | - Haibin Han
- Psychiatric Department V, Qingdao Mental Health Center, No. 299, Nanjing Road, Shibei District, Qingdao 266000, China.
| | - Jie Liu
- Psychiatric Department V, Qingdao Mental Health Center, No. 299, Nanjing Road, Shibei District, Qingdao 266000, China.
| | - Bo Tian
- Psychiatric Department V, Qingdao Mental Health Center, No. 299, Nanjing Road, Shibei District, Qingdao 266000, China.
| | - Xiaocui Liu
- Psychiatric Department V, Qingdao Mental Health Center, No. 299, Nanjing Road, Shibei District, Qingdao 266000, China.
| |
Collapse
|
33
|
Koseoglu MM, Norambuena A, Sharlow ER, Lazo JS, Bloom GS. Aberrant Neuronal Cell Cycle Re-Entry: The Pathological Confluence of Alzheimer's Disease and Brain Insulin Resistance, and Its Relation to Cancer. J Alzheimers Dis 2019; 67:1-11. [PMID: 30452418 PMCID: PMC8363205 DOI: 10.3233/jad-180874] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant neuronal cell cycle re-entry (CCR) is a phenomenon that precedes and may mechanistically lead to a majority of the neuronal loss observed in Alzheimer's disease (AD). Recent developments concerning the regulation of aberrant neuronal CCR in AD suggest that there are potential intracellular signaling "hotspots" in AD, cancer, and brain insulin resistance, the latter of which is characteristically associated with AD. Critically, these common signaling nodes across different human diseases may represent currently untapped therapeutic opportunities for AD. Specifically, repurposing of existing US Food and Drug Administration-approved pharmacological agents, including experimental therapeutics that target the cell cycle in cancer, may be an innovative avenue for future AD-directed drug discovery and development. In this review we discuss overlapping aspects of AD, cancer, and brain insulin resistance from the perspective of neuronal CCR, and consider strategies to exploit them for prevention or therapeutic intervention of AD.
Collapse
Affiliation(s)
| | - Andrés Norambuena
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
34
|
Mendell AL, MacLusky NJ. The testosterone metabolite 3α-androstanediol inhibits oxidative stress-induced ERK phosphorylation and neurotoxicity in SH-SY5Y cells through an MKP3/DUSP6-dependent mechanism. Neurosci Lett 2018; 696:60-66. [PMID: 30552945 DOI: 10.1016/j.neulet.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Testosterone exerts neuroprotective effects on the brain, but the mechanisms by which these effects are exerted appear to be different in males and females. While in females they involve local conversion to estradiol, in males they may be androgen receptor-dependent, or mediated through metabolism to neurosteroids such as 5α-androstane-3α,17β-diol (3α-diol), which acts through different mechanisms than testosterone itself. Recently, we demonstrated that 3α-diol can protect neurons and neuronal-like cells against oxidative stress-induced neurotoxicity associated with prolonged phosphorylation of the extracellular signal-regulated kinase (ERK). The mechanism(s) responsible for these effects remain unknown. In the present study, we sought to determine whether the ERK-specific phosphatase, mitogen-activated protein kinase phosphatase 3/dual specificity phosphatase 6 (MKP3/DUSP6), is involved in the cytoprotective effects of 3α-diol in SH-SY5Y human female neuroblastoma cells. 3α-diol inhibited ERK phosphorylation and ameliorated cell death induced by the oxidative stressor hydrogen peroxide (H2O2). These protective effects were significantly reduced by pre-treatment with the MKP3/DUSP6 inhibitor BCI. In addition, H2O2 decreased expression of MKP3/DUSP6, and this was prevented by co-treatment with 3α-diol. These findings suggest that the protective effects of 3α-diol are mediated through regulation of ERK phosphorylation in neurotoxic conditions and indicate that these effects may be exerted through modulation of MKP3/DUSP6. Targeting the regulation of MKP3/DUSP6 may be beneficial in reducing toxicity under conditions of oxidative stress.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
35
|
Rosenberg RN, Fu M, Lambracht-Washington D. Active full-length DNA Aβ 42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. ALZHEIMERS RESEARCH & THERAPY 2018; 10:115. [PMID: 30454039 PMCID: PMC6245829 DOI: 10.1186/s13195-018-0441-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
Background Alzheimer’s disease (AD) is the most well-known and most common type of age-related dementia. Amyloid deposition and hyperphosphorylation of tau protein are both pathological hallmarks of AD. Using a triple-transgenic mouse model (3xTg-AD) that develops plaques and tangles in the brain similar to human AD, we provide evidence that active full-length DNA amyloid-β peptide 1–42 (Aβ42) trimer immunization leads to reduction of both amyloid and tau aggregation and accumulation. Methods Immune responses were monitored by enzyme-linked immunosorbent assay (ELISA) (antibody production) and enzyme-linked immunospot (cellular activation, cytokine production). Brains from 20-month-old 3x Tg-AD mice that had received DNA Aβ42 immunotherapy were compared with brains from age- and gender-matched transgenic Aβ42 peptide-immunized and control mice by histology, Western blot analysis, and ELISA. Protein kinase activation and kinase levels were studied in Western blots from mouse hemibrain lysates. Results Quantitative ELISA showed a 40% reduction of Aβ42 peptide and a 25–50% reduction of total tau and different phosphorylated tau molecules in the DNA Aβ42 trimer-immunized 3xTg-AD mice compared with nonimmunized 3xTg-AD control animals. Plaque and Aβ peptide reductions in the brain were due to the anti-Aβ antibodies generated following the immunizations. Reductions of tau were likely due to indirect actions such as less Aβ in the brain resulting in less tau kinase activation. Conclusions The significance of these findings is that DNA Aβ42 trimer immunotherapy targets two major pathologies in AD—amyloid plaques and neurofibrillary tangles—in one vaccine without inducing inflammatory T-cell responses, which carry the danger of autoimmune inflammation, as found in a clinical trial using active Aβ42 peptide immunization in patients with AD (AN1792).
Collapse
Affiliation(s)
- Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA
| | - Min Fu
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA
| | - Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA.
| |
Collapse
|
36
|
Activation of α7 nicotinic acetylcholine receptor alleviates Aβ1-42-induced neurotoxicity via downregulation of p38 and JNK MAPK signaling pathways. Neurochem Int 2018; 120:238-250. [DOI: 10.1016/j.neuint.2018.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023]
|
37
|
Dumbacher M, Van Dooren T, Princen K, De Witte K, Farinelli M, Lievens S, Tavernier J, Dehaen W, Wera S, Winderickx J, Allasia S, Kilonda A, Spieser S, Marchand A, Chaltin P, Hoogenraad CC, Griffioen G. Modifying Rap1-signalling by targeting Pde6δ is neuroprotective in models of Alzheimer's disease. Mol Neurodegener 2018; 13:50. [PMID: 30257685 PMCID: PMC6158915 DOI: 10.1186/s13024-018-0283-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/13/2018] [Indexed: 01/06/2023] Open
Abstract
Background Neuronal Ca2+ dyshomeostasis and hyperactivity play a central role in Alzheimer’s disease pathology and progression. Amyloid-beta together with non-genetic risk-factors of Alzheimer’s disease contributes to increased Ca2+ influx and aberrant neuronal activity, which accelerates neurodegeneration in a feed-forward fashion. As such, identifying new targets and drugs to modulate excessive Ca2+ signalling and neuronal hyperactivity, without overly suppressing them, has promising therapeutic potential. Methods Here we show, using biochemical, electrophysiological, imaging, and behavioural tools, that pharmacological modulation of Rap1 signalling by inhibiting its interaction with Pde6δ normalises disease associated Ca2+ aberrations and neuronal activity, conferring neuroprotection in models of Alzheimer’s disease. Results The newly identified inhibitors of the Rap1-Pde6δ interaction counteract AD phenotypes, by reconfiguring Rap1 signalling underlying synaptic efficacy, Ca2+ influx, and neuronal repolarisation, without adverse effects in-cellulo or in-vivo. Thus, modulation of Rap1 by Pde6δ accommodates key mechanisms underlying neuronal activity, and therefore represents a promising new drug target for early or late intervention in neurodegenerative disorders. Conclusion Targeting the Pde6δ-Rap1 interaction has promising therapeutic potential for disorders characterised by neuronal hyperactivity, such as Alzheimer’s disease. Electronic supplementary material The online version of this article (10.1186/s13024-018-0283-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Dumbacher
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium.,Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Tom Van Dooren
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium
| | - Katrien Princen
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium
| | - Koen De Witte
- reMYND NV, Gaston Geenslaan 1, Leuven-Heverlee, 3001, Belgium
| | - Mélissa Farinelli
- E-Phy-Science, IPMC, 660 route des Lucioles, 06560, Sophia Antipolis, France
| | - Sam Lievens
- Orionis Biosciences, Technologiepark 12B, Zwijnaarde-Ghent, 9052, Belgium.,Cytokine Receptor Lab, Flanders Institute of Biotechnology, Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, Flanders Institute of Biotechnology, Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f - box 2404, Leuven-Heverlee, 3001, Belgium
| | - Stefaan Wera
- ViroVet NV, Ambachtenlaan 1, Leuven-Heverlee, 3001, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, Leuven-Heverlee, 3001, Belgium
| | - Sara Allasia
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Amuri Kilonda
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Stéphane Spieser
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Arnaud Marchand
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium
| | - Patrick Chaltin
- Cistim Leuven vzw, Gaston Geenslaan 2, Leuven-Heverlee, 3001, Belgium.,Center for Drug Design and Development (CD3), KU Leuven, Waaistraat 6, 3000, Leuven, Belgium
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CH, Utrecht, The Netherlands
| | | |
Collapse
|
38
|
Gomi F, Uchida Y, Endo S. Up-regulation of NSP3 by Oligomeric Aβ Accelerates Neuronal Death Through Cas-independent Rap1A Activation. Neuroscience 2018; 386:182-193. [PMID: 29966723 DOI: 10.1016/j.neuroscience.2018.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
β-Amyloid (Aβ) plays an important role in the early pathogenesis of Alzheimer's disease (AD). In vitro studies have demonstrated that Aβ oligomers induce hippocampal and neocortical neuronal death. However the neurotoxic mechanisms by which soluble Aβ oligomers cause neuronal damage and death remain to be fully elucidated. To this end, we analyzed the gene expression profile of rat cerebral cortical neurons treated with Aβ oligomers in vitro. Aβ treatment induced the expression of novel SH2-containing protein 3 (NSP3), an adaptor molecule interacting with Cas family proteins. NSP3 expression was upregulated not only in oligomeric-Aβ-treated cultured neurons but also in the neocortex of aged Tg2576 mice. NSP3 overexpression in cultured cortical neurons accelerated neuronal death. The C-terminal region of NSP3 unbound to a Cas protein was necessary for the NSP3-induced acceleration of neuronal death, as was Cas-independent Rap1A activation downstream of NSP3. Moreover, NSP3 RNAi knockdown partially rescued Aβ-oligomer-treated neurons. These results indicate that NSP3 upregulation by soluble Aβ oligomers may accelerate neuronal death via Cas-independent Rap1A activation, implicating NSP3 in the pathogenesis of AD.
Collapse
Affiliation(s)
- Fujiya Gomi
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Yoko Uchida
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Shogo Endo
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
39
|
Wellbourne-Wood J, Chatton JY. From Cultured Rodent Neurons to Human Brain Tissue: Model Systems for Pharmacological and Translational Neuroscience. ACS Chem Neurosci 2018; 9:1975-1985. [PMID: 29847093 DOI: 10.1021/acschemneuro.8b00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the enormous complexity of the functional and pathological brain there are a number of possible experimental model systems to choose from. Depending on the research question choosing the appropriate model may not be a trivial task, and given the dynamic and intricate nature of an intact living brain several models might be needed to properly address certain questions. In this review, we aim to provide an overview of neural cell and tissue culture, reflecting on historic methodological milestones and providing a brief overview of the state-of-the-art. We additionally present an example of an effective model system pipeline, composed of dissociated mouse cultures, organotypics, acute mouse brain slices, and acute human brain slices, in that order. The sequential use of these four model systems allows a balance and progression from experimental control to human applicability, and provides a meta-model that can help validate basic research findings in a translational setting. We then conclude with a few remarks regarding the necessity of an integrated approach when performing translational and neuropharmacological studies.
Collapse
Affiliation(s)
- Joel Wellbourne-Wood
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
40
|
Mendell AL, Chung BY, Creighton CE, Kalisch BE, Bailey CD, MacLusky NJ. Neurosteroid metabolites of testosterone and progesterone differentially inhibit ERK phosphorylation induced by amyloid β in SH-SY5Y cells and primary cortical neurons. Brain Res 2018; 1686:83-93. [DOI: 10.1016/j.brainres.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
41
|
Du G, Zhao Z, Chen Y, Li Z, Tian Y, Liu Z, Liu B, Song J. Quercetin protects rat cortical neurons against traumatic brain injury. Mol Med Rep 2018; 17:7859-7865. [DOI: 10.3892/mmr.2018.8801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Guoliang Du
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Zongmao Zhao
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 060000, P.R. China
| | - Yonghan Chen
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Zonghao Li
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Yaohui Tian
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Zhifeng Liu
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Bin Liu
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Jianqiang Song
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
42
|
Lin TS, Tsai HJ, Lee CH, Song YQ, Huang RS, Hsieh-Li HM, Liang MC, Lin Y. An Improved Drugs Screening System Reveals that Baicalein Ameliorates the Aβ/AMPA/NMDA-Induced Depolarization of Neurons. J Alzheimers Dis 2018; 56:959-976. [PMID: 28106556 DOI: 10.3233/jad-160898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The presence of amyloid-β (Aβ) plaque and tau protein hyperphosphorylation in brain tissue is the pathological hallmark of Alzheimer's disease (AD). At least some Aβ neurotoxicity is caused by the presence of excess glutamate that has been induced by Aβ accumulation. Memantine is currently the only NMDA receptor inhibitor approved for treating moderate-to-severe AD patients. We utilized primary cortical neurons and DiBAC4(3), a slow-response voltage sensitive fluorescence dye, to create a novel system for screening herbal medicines that allows the identification of pure compounds able to ameliorate Aβ-induced abnormal depolarization. The intensity of DiBAC4(3) fluorescence was increased when primary neurons were stimulated by Aβ; furthermore, pre-treatment with memantine abolished this change. Using this system, we identified six crude extracts made from herbal medicines that effectively alleviated this Aβ-induced abnormal depolarization. Among these herbal medicines, one pure compound, baicalein, which was known to be present in Scutellaria baricalensis and is known to improve memory using an AD mouse model, was identified by our assay. However, the compound's molecular mechanism remained unknown. We found that baicalein, in addition to inhibiting Aβ-induced depolarization, possibly functions as an antagonist of AMPA and NMDA receptors. Taken together, we have established a system/platform to identify herbal medicines that ameliorate Aβ-induced depolarization of neurons. Equally important, baicalein is a candidate drug with great potential for the treatment of AD patients.
Collapse
Affiliation(s)
- Tian-Syuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Han-Jung Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Han Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yan-Qing Song
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Rih-Sheng Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Mei-Chih Liang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yenshou Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
43
|
Jena PK, Sheng L, Di Lucente J, Jin LW, Maezawa I, Wan YJY. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J 2018; 32:2866-2877. [PMID: 29401580 DOI: 10.1096/fj.201700984rr] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify the intrinsic links that explain the effect of a Western diet (WD) on cognitive dysfunction. Specific pathogen-free, wild-type mice were fed either a control diet (CD) or a high-fat, high-sucrose WD after weaning and were euthanized at 10 mo of age to study the pathways that affect cognitive health. The results showed that long-term WD intake reduced hippocampal synaptic plasticity and the level of brain-derived neurotrophic factor mRNA in the brain and isolated microglia. A WD also activated ERK1/2 and reduced postsynaptic density-95 in the brain, suggesting postsynaptic damage. Moreover, WD-fed mice had increased inflammatory signaling in the brain, ileum, liver, adipose tissue, and spleen, which was accompanied by microglia activation. In the brain, as well as in the digestive tract, a WD reduced signaling regulated by retinoic acid and bile acids (BAs), whose receptors form heterodimers to control metabolism and inflammation. Furthermore, a WD intake caused dysbiosis and dysregulated BA synthesis with reduced endogenous ligands for BA receptors, i.e., farnesoid X receptor and G-protein-coupled bile acid receptor in the liver and brain. Together, dysregulated BA synthesis and dysbiosis were accompanied by systemic inflammation, microglial activation, and reduced neuroplasticity induced by WD.-Jena, P. K., Sheng, L., Di Lucente, J., Jin, L.-W., Maezawa, I., Wan, Y.-J. Y. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| |
Collapse
|
44
|
Jhang KA, Park JS, Kim HS, Chong YH. Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9626-9634. [PMID: 29022339 DOI: 10.1021/acs.jafc.7b03252] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study was to investigate the effect of resveratrol (a natural polyphenolic phytostilbene) on tau hyperphosphorylation and oxidative damage induced by sodium orthovanadate (Na3VO4), the prevalent species of vanadium (vanadate), in rat hippocampal slices. Our results showed that resveratrol significantly inhibited Na3VO4-induced hyperphosphorylation of tau at the Ser396 (p-S396-tau) site, which is upregulated in the hippocampus of Alzheimer's disease (AD) brains and principally linked to AD-associated cognitive dysfunction. Subsequent mechanistic studies revealed that reduction of ERK1/2 activation was involved in the inhibitory effect of resveratrol by inhibiting the ERK1/2 pathway with SL327 mimicking the aforementioned effect of resveratrol. Moreover, resveratrol potently induced GSK-3β Ser9 phosphorylation and reduced Na3VO4-induced p-S396-tau levels, which were markedly replicated by pharmacologic inhibition of GSK-3β with LiCl. These results indicate that resveratrol could suppress Na3VO4-induced p-S396-tau levels via downregulating ERK1/2 and GSK-3β signaling cascades in rat hippocampal slices. In addition, resveratrol diminished the increased extracellular reactive oxygen species generation and hippocampal toxicity upon long-term exposure to Na3VO4 or FeCl2. Our findings strongly support the notion that resveratrol may serve as a potential nutraceutical agent for AD.
Collapse
Affiliation(s)
- Kyoung A Jhang
- Department of Microbiology and Division of Molecular Biology and Neuroscience, Ewha Medical Research Institute, School of Medicine, Ewha Womans University , 1071 Anyangchun-ro, Yangchun-Gu, Seoul, 07985, Republic of Korea
| | - Jin-Sun Park
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University , 1071 Anyangchun-ro, Yangchun-Gu, Seoul, 07985, Republic of Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University , 1071 Anyangchun-ro, Yangchun-Gu, Seoul, 07985, Republic of Korea
| | - Young Hae Chong
- Department of Microbiology and Division of Molecular Biology and Neuroscience, Ewha Medical Research Institute, School of Medicine, Ewha Womans University , 1071 Anyangchun-ro, Yangchun-Gu, Seoul, 07985, Republic of Korea
| |
Collapse
|
45
|
Olivera Santa-Catalina M, Caballero Bermejo M, Argent R, Alonso JC, Centeno F, Lorenzo MJ. JNK signaling pathway regulates sorbitol-induced Tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3. Arch Biochem Biophys 2017; 636:42-49. [PMID: 29126968 DOI: 10.1016/j.abb.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/19/2017] [Accepted: 11/05/2017] [Indexed: 12/18/2022]
Abstract
Growing evidence suggests that Diabetes Mellitus increases the risk of developing Alzheimer's disease. It is well known that hyperglycemia, a key feature of Diabetes Mellitus, may induce plasma osmolarity disturbances. Both hyperglycemia and hyperosmolarity promote the altered post-translational regulation of microtubule-associated protein Tau. Interestingly, abnormal hyperphosphorylation and cleavage of Tau have been proven to lead to the genesis of filamentous structures referred to as neurofibrillary tangles, the main pathological hallmark of Alzheimer's disease. We have previously described that hyperosmotic stress induced by sorbitol promotes Tau proteolysis and apoptosis in SH-SY5Y cells via caspase-3 activation. In order to gain insights into the regulatory mechanisms of such processes, in this work we explored the intracellular signaling pathways that regulate these events. We found that sorbitol treatment significantly enhanced the activation of conventional families of MAPK in SH-SY5Y cells. Tau proteolysis was completely prevented by JNK inhibition but not affected by either ERK1/2 or p38 MAPK blockade. Moreover, inhibition of JNK, but not ERK1/2 or p38 MAPK, efficiently prevented sorbitol-induced apoptosis and caspase-3 activation. In summary, we provide evidence that JNK signaling pathway is an upstream regulator of hyperosmotic stress-induced Tau cleavage and apoptosis in SH-SY5Y through the control of caspase-3 activation.
Collapse
Affiliation(s)
- Marta Olivera Santa-Catalina
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | - Montaña Caballero Bermejo
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | - Ricardo Argent
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | - Juan C Alonso
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | - Francisco Centeno
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Sciences, University of Extremadura, Badajoz, Spain.
| | - María J Lorenzo
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
46
|
Islam MI, Sharoar MG, Ryu EK, Park IS. Limited activation of the intrinsic apoptotic pathway plays a main role in amyloid-β-induced apoptosis without eliciting the activation of the extrinsic apoptotic pathway. Int J Mol Med 2017; 40:1971-1982. [PMID: 29039468 DOI: 10.3892/ijmm.2017.3193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/03/2017] [Indexed: 11/06/2022] Open
Abstract
Amyloid-β (Aβ), a main pathogenic factor of Alzheimer's disease (AD), induces apoptosis accompanied by caspase activation. However, limited caspase activation and the suppression of the intrinsic apoptotic pathway (IAPW) are frequently observed upon Aβ treatment. In this study, we investigated whether these suppressive effects of Aβ can be overcome; we also examined the death-related pathways. Single treatments of cells with Aβ42 for up to 48 h barely induced caspase activation. In cells treated with Aβ42 twice for 2 h followed by 22 h (2+22 h) or for longer durations, the apoptotic protease activating factor-1 (Apaf-1) apoptosome was formed and caspases-3 and -9 were activated to a certain extent, suggesting the activation of the IAPW. However, the Aβ42-induced activation of the IAPW differed from that induced by treatment with other agents, such as staurosporine (STS) in that lower amounts of cytochrome c were released from the mitochondria, the majority of procaspase-9 in the Apaf-1 complex was not processed and caspase-3 was activated to a lesser extent in the peptide-treated cells. Thus, it seemed that the IAPW was not fully activated by Aβ42. The 30- and 41/43-kDa fragments derived from procaspase-8 were detected, which appear to be produced through the IAPW without death-inducing signaling-complex (DISC) formation, a key feature of the extrinsic apoptotic pathway (EAPW). Bid cleavage was observed only after caspase-3 activity reached its maximal levels, suggesting that the cleavage may contribute in a limited capacity to the amplification process of the IAPW in the Aβ-treated cells. Taken together, our data suggest that the IAPW, albeit functional only to a limited extent, plays a major role in Aβ42-induced apoptosis without the EAPW.
Collapse
Affiliation(s)
- Md Imamul Islam
- Department of Medical Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| | - Md Golam Sharoar
- Department of Medical Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| | - Eun-Kyoung Ryu
- Department of Nursing, Kongju National University, Kongju 314-701, Republic of Korea
| | - Il-Seon Park
- Department of Medical Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
47
|
Rivera-Carvantes MC, Jarero-Basulto JJ, Feria-Velasco AI, Beas-Zárate C, Navarro-Meza M, González-López MB, Gudiño-Cabrera G, García-Rodríguez JC. Changes in the expression level of MAPK pathway components induced by monosodium glutamate-administration produce neuronal death in the hippocampus from neonatal rats. Neuroscience 2017; 365:57-69. [PMID: 28954212 DOI: 10.1016/j.neuroscience.2017.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 11/18/2022]
Abstract
Excessive Glutamate (Glu) release may trigger excitotoxic cellular death by the activation of intracellular signaling pathways that transduce extracellular signals to the cell nucleus, which determines the onset of a death program. One such signaling pathway is the mitogen-activated protein kinases (MAPK), which is involved in both survival and cell death. Experimental evidences from the use of specific inhibitors supports the participation of some MAPK pathway components in the excitotoxicity mechanism, but the complete process of this activation, which terminates in cell damage and death, is not clearly understood. The present work, we investigated the changes in the expression level of some MAPK-pathway components in hippocampal excitotoxic cell death in the neonatal rats using an experimental model of subcutaneous monosodium glutamate (MSG) administration on postnatal days (PD) 1, 3, 5 and 7. Data were collected at different ages through PD 14. Cell viability was evaluated using fluorescein diacetate mixed with propidium iodide (FDA-PI), and the Nissl-staining technique was used to evaluate histological damage. Transcriptional changes were also investigated in 98 components of the MAPK pathway that are associated with cell damage. These results are an evidence of that repetitive use of MSG, in neonatal rats, induces cell damage-associated transcriptional changes of MAPK components, that might reflect a differential stage of both biochemical and molecular brain maturation. This work also suggests that some of the proteins evaluated such as phosphorylated retinoblastoma (pRb) protein, which was up-regulated, could regulate the response to excitotoxic through modulation of the process of re-entry into the cell cycle in the hippocampus of rats treated with MSG.
Collapse
Affiliation(s)
- Martha Catalina Rivera-Carvantes
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico.
| | - José Jaime Jarero-Basulto
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Alfredo Ignacio Feria-Velasco
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Carlos Beas-Zárate
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Mónica Navarro-Meza
- Department of Health and Wellness, CUSur, University of Guadalajara, Ciudad Guzman, Jal., Mexico
| | - Mariana Berenice González-López
- Cellular Neurobiology Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | - Graciela Gudiño-Cabrera
- Regeneration and Neural Development Laboratory, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jal., Mexico
| | | |
Collapse
|
48
|
Fucoxanthin, a Marine Carotenoid, Attenuates β-Amyloid Oligomer-Induced Neurotoxicity Possibly via Regulating the PI3K/Akt and the ERK Pathways in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6792543. [PMID: 28928905 PMCID: PMC5591933 DOI: 10.1155/2017/6792543] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/30/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by neurofibrillary tangles, synaptic impairments, and loss of neurons. Oligomers of β-amyloid (Aβ) are widely accepted as the main neurotoxins to induce oxidative stress and neuronal loss in AD. In this study, we discovered that fucoxanthin, a marine carotenoid with antioxidative stress properties, concentration dependently prevented Aβ oligomer-induced increase of neuronal apoptosis and intracellular reactive oxygen species in SH-SY5Y cells. Aβ oligomers inhibited the prosurvival phosphoinositide 3-kinase (PI3K)/Akt cascade and activated the proapoptotic extracellular signal-regulated kinase (ERK) pathway. Moreover, inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase (MEK) synergistically prevented Aβ oligomer-induced neuronal death, suggesting that the PI3K/Akt and ERK pathways might be involved in Aβ oligomer-induced neurotoxicity. Pretreatment with fucoxanthin significantly prevented Aβ oligomer-induced alteration of the PI3K/Akt and ERK pathways. Furthermore, LY294002 and wortmannin, two PI3K inhibitors, abolished the neuroprotective effects of fucoxanthin against Aβ oligomer-induced neurotoxicity. These results suggested that fucoxanthin might prevent Aβ oligomer-induced neuronal loss and oxidative stress via the activation of the PI3K/Akt cascade as well as inhibition of the ERK pathway, indicating that further studies of fucoxanthin and related compounds might lead to a useful treatment of AD.
Collapse
|
49
|
Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 2017; 39:1338-1346. [PMID: 28440493 PMCID: PMC5428947 DOI: 10.3892/ijmm.2017.2962] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
Signaling pathways are critical modulators of a variety of physiological and pathological processes, and the abnormal activation of some signaling pathways can contribute to disease progression in various conditions. As a result, signaling pathways have emerged as an important tool through which the occurrence and development of diseases can be studied, which may then lead to the development of novel drugs. Accumulating evidence supports a key role for extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the embryonic development of the central nervous system (CNS) and in the regulation of adult brain function. ERK1/2, one of the most well characterized members of the mitogen-activated protein kinase family, regulates a range of processes, from metabolism, motility and inflammation, to cell death and survival. In the nervous system, ERK1/2 regulates synaptic plasticity, brain development and repair as well as memory formation. ERK1/2 is also a potent effector of neuronal death and neuroinflammation in many CNS diseases. This review summarizes recent findings in neurobiological ERK1/2 research, with a special emphasis on findings that clarify our understanding of the processes that regulate the plethora of isoform-specific ERK functions under physiological and pathological conditions. Finally, we suggest some potential therapeutic strategies associated with agents acting on the ERK1/2 signaling to prevent or treat neurological diseases.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
50
|
Franco R, Martínez-Pinilla E, Navarro G, Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Prog Neurobiol 2017; 149-150:21-38. [PMID: 28189739 DOI: 10.1016/j.pneurobio.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Despite efforts to understand the mechanism of neuronal cell death, finding effective therapies for neurodegenerative diseases is still a challenge. Cognitive deficits are often associated with neurodegenerative diseases. Remarkably, in the absence of consensus biomarkers, diagnosis of diseases such as Alzheimer's still relies on cognitive tests. Unfortunately, all efforts to translate findings in animal models to the patients have been unsuccessful. Alzheimer's disease may be addressed from two different points of view, neuroprotection or cognitive enhancement. Based on recent data, the mammalian target of rapamycin (mTOR) pathway arises as a versatile player whose modulation may impact on mechanisms of both neuroprotection and cognition. Whereas direct targeting of mTOR does not seem to constitute a convenient approach in drug discovery, its indirect modulation by other signaling pathways seems promising. In fact, G-protein-coupled receptors (GPCRs) remain the most common 'druggable' targets and as such pharmacological manipulation of GPCRs with selective ligands may modulate phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and mTOR signaling pathways. Thus, GPCRs become important targets for potential drug treatments in different neurodegenerative disorders including, but not limited to, Alzheimer's disease. GPCR-mediated modulation of mTOR may take advantage of different GPCRs coupled to different G-dependent and G-independent signal transduction routes, of functional selectivity and/or of biased agonism. Signals mediated by GPCRs may act as coincidence detectors to achieve different benefits in different stages of the neurodegenerative disease.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|