1
|
Batbaatar MA, Kinoshita T, Ikeda S, Nishi K, Iwasaki H, Ganbaatar N, Ohno M, Nishi E. Nardilysin in vascular smooth muscle cells controls blood pressure via the regulation of calcium dynamics. Biochem Biophys Res Commun 2024; 712-713:149961. [PMID: 38648679 DOI: 10.1016/j.bbrc.2024.149961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Calcium/metabolism
- Mice, Knockout
- Blood Pressure
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Metalloendopeptidases/metabolism
- Metalloendopeptidases/genetics
- Male
- Mice, Inbred C57BL
- Hypotension/metabolism
- Cells, Cultured
- Aorta/metabolism
- Aorta/cytology
- Vasoconstriction/drug effects
- Calcium Signaling
Collapse
Affiliation(s)
- Mend Amar Batbaatar
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan; Department of Pharmacology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Takeshi Kinoshita
- Division of Cardiovascular Surgery and Thoracic Surgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Shinya Ikeda
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Hirotaka Iwasaki
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | | | - Mikiko Ohno
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| | - Eiichiro Nishi
- Department of Pharmacology, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
2
|
Oshima S, Sinha R, Ohno M, Nishi K, Eto K, Takaori-Kondo A, Nishi E, Yamamoto R. Nardilysin determines hematopoietic stem cell fitness by regulating protein synthesis. Biochem Biophys Res Commun 2024; 693:149355. [PMID: 38096617 DOI: 10.1016/j.bbrc.2023.149355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.
Collapse
Affiliation(s)
- Shinichiro Oshima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, 94305, USA
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Ryo Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Yamaguchi A, Takahashi T, Kato T, Tanaka T, Nishi E, Fujimoto N. Immunohistochemical and clinicopathological study regarding nardilysin on extramammary Paget's disease. Arch Dermatol Res 2023; 315:1979-1987. [PMID: 36867223 DOI: 10.1007/s00403-023-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 03/04/2023]
Abstract
It has been reported that nardilysin (NRDC), a metalloendopeptidase which regulates various growth factors and cytokines, is associated with malignancies in a conflicting manner, in which it promoted gastric, hepatocellular, and colorectal cancers and suppressed pancreatic ductal adenocarcinoma. However, it has not been investigated how NRDC is associated with cutaneous malignancies for now. Immunohistochemical staining has revealed that NRDC expression is observed in all extramammary Paget's disease (EMPD) cases. Notably, other cutaneous malignancies including basal cell carcinoma, squamous cell carcinoma, and eccrine porocarcinoma, did not show increased NRDC expression in immunohistochemistry. EMPD typically presents several types of lesions including nodules, and positive staining of NRDC on EMPD was observed regardless of the type of lesions. Examination using samples taken from nodular lesions showed that some cases showed heterogenous NRDC expression within each lesion. We also found that NRDC staining was weaker in the marginal parts of EMPD lesion than in the central parts in several cases, and tumor cells tend to be distributed beyond the macroscopic skin lesions in these cases. It was speculated that decreased NRDC expression in the marginal zones of the skin lesions may be associated with the ability of tumor cells to produce the cutaneous manifestation of EMPD. This study suggests that NRDC may be associated with EMPD like other malignancies reported previously.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Toshifumi Takahashi
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Takeshi Kato
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Toshihiro Tanaka
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
4
|
Saijo S, Ohno M, Iwasaki H, Matsuda S, Nishi K, Hiraoka Y, Ide N, Kimura T, Nishi E. Nardilysin in adipocytes regulates UCP1 expression and body temperature homeostasis. Sci Rep 2022; 12:3449. [PMID: 35236897 PMCID: PMC8891301 DOI: 10.1038/s41598-022-07379-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Brown adipose tissue (BAT) dissipates chemical energy as heat through uncoupling protein 1 (UCP1). The induction of mitochondrial reactive oxygen species (ROS) in BAT was recently identified as a mechanism that supports UCP1-dependent thermogenesis. We previously demonstrated that nardilysin (NRDC) plays critical roles in body temperature homeostasis. Global NRDC-deficient (Nrdc–/–) mice show hypothermia due to a lower set point for body temperature, whereas BAT thermogenesis at room temperature (RT) is enhanced mainly to compensate for poor thermal insulation. To examine the primary role of NRDC in BAT thermogenesis, we generated adipocyte-specific NRDC-deficient (Adipo-KO) mice by mating Nrdc floxed (Nrdcflox/flox) mice with adiponectin-Cre mice. Adipo-KO mice showed hyperthermia at both RT and thermoneutrality. They were also more cold-tolerant than Nrdcflox/flox mice. However, UCP1 mRNA levels were significantly lower in Adipo-KO BAT at RT, thermoneutrality, and 4 °C, whereas no significant differences were observed in UCP1 protein levels at RT and 4 °C. We examined the protein stability of UCP1 using the cycloheximide chase assay and found that NRDC negatively regulated its stability via the ubiquitin–proteasome pathway. NRDC may be also involved in ROS-mediated in vivo thermogenesis because the inhibitory effects of N-acetyl cysteine, an ROS scavenger, on β3 agonist-induced thermogenesis were stronger in Adipo-KO mice. Collectively, the present results demonstrate that NRDC in BAT controls adaptive thermogenesis and body temperature homeostasis possibly via the regulation of UCP1 protein stability and ROS levels.
Collapse
Affiliation(s)
- Sayaka Saijo
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Japanese Red Cross Otsu Hospital, 1-1-35, Nagara-cho, Otsu, Shiga, 520-0000, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.,Division of Endocrinology, UCLA, 650 Charles E. Young Dr. S. CHS 34-115, Los Angeles, CA, 90095, USA
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Natsuki Ide
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
5
|
Kodama M, Shimura H, Tien JC, Newberg JY, Kodama T, Wei Z, Rangel R, Yoshihara K, Kuruma A, Nakae A, Hashimoto K, Sawada K, Kimura T, Jenkins NA, Copeland NG. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Res 2021; 81:5413-5424. [PMID: 34475109 DOI: 10.1158/0008-5472.can-21-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jean C Tien
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Airi Kuruma
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J Clin Med 2021; 10:jcm10153373. [PMID: 34362154 PMCID: PMC8347979 DOI: 10.3390/jcm10153373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
For decades, metalloproteinase 17 (ADAM17) has been the goal of wide investigation. Since its discovery as the tumour necrosis factor-α convertase, it has been studied as the main drug target, especially in the context of inflammatory conditions and tumour. In fact, evidence is mounting to support a key role of ADAM17 in the induction of the proliferation, migration and progression of tumour cells and the trigger of the pro-fibrotic process during chronic inflammatory conditions; this occurs, probably, through the activation of epithelial-to-mesenchymal transition (EMT). EMT is a central morphologic conversion that occurs in adults during wound healing, tumour progression and organ fibrosis. EMT is characterised by the disassembly of cell–cell contacts, remodelling of the actin cytoskeleton and separation of cells, and generates fibroblast-like cells that express mesenchymal markers and have migratory properties. This transition is characterised by loss of epithelial proteins such as E-cadherin and the acquisition of new mesenchymal markers, including vimentin and a-smooth muscle actin. The present review discusses the current understanding of molecular mechanisms involved in ADAM17-dependent EMT in order to individuate innovative therapeutic strategies using ADAM17-related pathways.
Collapse
|
7
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
8
|
Yasuda D, Hiraoka Y, Ohno M, Nishi K, Iwasaki H, Kita T, Nishi E, Kume N. Deficiency of Nardilysin in the Liver Reduces Serum Cholesterol Levels. Biol Pharm Bull 2021; 44:363-371. [PMID: 33642545 DOI: 10.1248/bpb.b20-00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nardilysin (NRDC) has been shown to be involved in post-translational histone modifications, in addition to enhancement in ectodomain shedding of membrane-anchored protein, which play significant roles in various pathophysiology, including glucose homeostasis, inflammatory diseases and cancer. The present study sought to determine roles of NRDC in the liver on lipid and lipoprotein metabolism. We established liver-specific NRDC deficient mice by use of NRD1 floxed mice and albumin promoter-Cre recombinase (Cre) transgenic mice, and found that their serum low-density lipoprotein (LDL) cholesterol levels were significantly lower than those in control littermate mice. In the liver, LDL receptor (LDLR) mRNA expression was significantly upregulated, while inducible degrader of LDLR (IDOL) and microsomal triglyceride transfer protein (MTP) mRNA expression was significantly downregulated, in liver-specific NRDC deficient mice. Hepatic cell-surface LDLR expression levels were significantly elevated and serum pro-protein convertase subtilisin-kexin type 9 (PCSK9) levels were significantly reduced in mice with hepatic NRDC deficiency. In cultured hepatocytes, NRDC deficiency significantly reduced secreted PCSK9 and increased cell-surface LDLR expression. On the other hand, NRDC overexpression in cultured hepatocytes significantly increased secreted PCSK9 and lowered cell-surface LDLR expression. Thus, NRDC in murine hepatocytes appears to play key roles in cholesterol homeostasis, although the precise molecular mechanisms remain to be determined.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Sciences
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences
| | - Noriaki Kume
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
9
|
Ohno M, Nishi K, Hiraoka Y, Niizuma S, Matsuda S, Iwasaki H, Kimura T, Nishi E. Nardilysin controls cardiac sympathetic innervation patterning through regulation of p75 neurotrophin receptor. FASEB J 2020; 34:11624-11640. [PMID: 32683751 DOI: 10.1096/fj.202000604r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Cardiac sympathetic innervation is critically involved in the regulation of circulatory dynamics. However, the molecular mechanism for the innervation patterning has remained elusive. Here, we demonstrate that nardilysin (NRDC, Nrdc), an enhancer of ectodomain shedding, regulates cardiac sympathetic innervation. Nardilysin-deficient (Nrdc-/- ) mice show hypoplastic hearts, hypotension, bradycardia, and abnormal sympathetic innervation patterning. While the innervation of left ventricle (LV) of wild-type mice is denser in the subepicardium than in the subendocardium, Nrdc-/- LV lacks such a polarity and is uniformly and more abundantly innervated. At the molecular level, the full-length form of p75 neurotrophin receptor (p75NTR , Ngfr) is increased in Nrdc-/- LV due to the reduced ectodomain shedding of p75NTR . Importantly, the reduction of p75NTR rescued the abnormal innervation phenotype of Nrdc-/- mice. Moreover, sympathetic neuron-specific, but not cardiomyocyte-specific deletion of Nrdc recapitulated the abnormal innervation patterning of Nrdc-/- mice. In conclusion, neuronal nardilysin critically regulates cardiac sympathetic innervation and circulatory dynamics via modulation of p75NTR .
Collapse
Affiliation(s)
- Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Hyogo, Japan
| | - Shinichiro Niizuma
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
10
|
Ikuta K, Fukuda A, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Tsuda M, Kimura Y, Matsumoto Y, Kimura Y, Maruno T, Kanda K, Nishi K, Takaori K, Uemoto S, Takaishi S, Chiba T, Nishi E, Seno H. Nardilysin inhibits pancreatitis and suppresses pancreatic ductal adenocarcinoma initiation in mice. Gut 2019; 68:882-892. [PMID: 29798841 DOI: 10.1136/gutjnl-2017-315425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Nardilysin (NRDC), a zinc peptidase, exhibits multiple localisation-dependent functions including as an enhancer of ectodomain shedding in the extracellular space and a transcriptional coregulator in the nucleus. In this study, we investigated its functional role in exocrine pancreatic development, homeostasis and the formation of pancreatic ductal adenocarcinoma (PDA). DESIGN We analysed Ptf1a-Cre; Nrdcflox/flox mice to investigate the impact of Nrdc deletion. Pancreatic acinar cells were isolated from Nrdcflox/flox mice and infected with adenovirus expressing Cre recombinase to examine the impact of Nrdc inactivation. Global gene expression in Nrdc-cKO pancreas was analysed compared with wild-type pancreas by microarray analysis. We also analysed Ptf1a-Cre; KrasG12D; Nrdcflox/flox mice to investigate the impact of Nrdc deletion in the context of oncogenic Kras. A total of 51 human samples of pancreatic intraepithelial lesions (PanIN) and PDA were examined by immunohistochemistry for NRDC. RESULTS We found that pancreatic deletion of Nrdc leads to spontaneous chronic pancreatitis concomitant with acinar-to-ductal conversion, increased apoptosis and atrophic pancreas in mice. Acinar-to-ductal conversion was observed mainly through a non-cell autonomous mechanism, and the expression of several chemokines was significantly increased in Nrdc-null pancreatic acinar cells. Furthermore, pancreatic deletion of Nrdc dramatically accelerated KrasG12D -driven PanIN and subsequent PDA formation in mice. These data demonstrate a previously unappreciated anti-inflammatory and tumour suppressive functions of Nrdc in the pancreas in mice. Finally, absence of NRDC expression was observed in a subset of human PanIN and PDA. CONCLUSION Nrdc inhibits pancreatitis and suppresses PDA initiation in mice.
Collapse
Affiliation(s)
- Kozo Ikuta
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Masuo
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keitaro Kanda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiyoto Nishi
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoichi Takaori
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Takaishi
- Laboratory for Malignancy Control Research (DSK project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Seno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Yoh T, Hatano E, Kasai Y, Fuji H, Nishi K, Toriguchi K, Sueoka H, Ohno M, Seo S, Iwaisako K, Taura K, Yamaguchi R, Kurokawa M, Fujimoto J, Kimura T, Uemoto S, Nishi E. Serum Nardilysin, a Surrogate Marker for Epithelial-Mesenchymal Transition, Predicts Prognosis of Intrahepatic Cholangiocarcinoma after Surgical Resection. Clin Cancer Res 2019; 25:619-628. [PMID: 30352908 DOI: 10.1158/1078-0432.ccr-18-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/21/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Few studies have investigated prognostic biomarkers in patients with intrahepatic cholangiocarcinoma (ICC). Nardilysin (NRDC), a metalloendopeptidase of the M16 family, has been suggested to play important roles in inflammation and several cancer types. We herein examined the clinical significance and biological function of NRDC in ICC.Experimental Design: We measured serum NRDC levels in 98 patients with ICC who underwent surgical resection in two independent cohorts to assess its prognostic impact. We also analyzed NRDC mRNA levels in cancerous tissue specimens from 43 patients with ICC. We investigated the roles of NRDC in cell proliferation, migration, gemcitabine sensitivity, and gene expression in ICC cell lines using gene silencing. RESULTS High serum NRDC levels were associated with shorter overall survival and disease-free survival in the primary (n = 79) and validation (n = 19) cohorts. A correlation was observed between serum protein levels and cancerous tissue mRNA levels of NRDC (Spearman ρ = 0.413; P = 0.006). The gene knockdown of NRDC in ICC cell lines attenuated cell proliferation, migration, and tumor growth in xenografts, and increased sensitivity to gemcitabine. The gene knockdown of NRDC was also accompanied by significant changes in the expression of several epithelial-mesenchymal transition (EMT)-related genes. Strong correlations were observed between the mRNA levels of NRDC and EMT-inducing transcription factors, ZEB1 and SNAI1, in surgical specimens from patients with ICC. CONCLUSIONS Serum NRDC, a possible surrogate marker reflecting the EMT state in primary tumors, predicts the outcome of ICC after surgical resection.
Collapse
Affiliation(s)
- Tomoaki Yoh
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Fuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kan Toriguchi
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hideaki Sueoka
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Jiro Fujimoto
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
12
|
Kanda K, Sakamoto J, Matsumoto Y, Ikuta K, Goto N, Morita Y, Ohno M, Nishi K, Eto K, Kimura Y, Nakanishi Y, Ikegami K, Yoshikawa T, Fukuda A, Kawada K, Sakai Y, Ito A, Yoshida M, Kimura T, Chiba T, Nishi E, Seno H. Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation. JCI Insight 2018; 3:91316. [PMID: 29669932 DOI: 10.1172/jci.insight.91316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.
Collapse
Affiliation(s)
| | - Jiro Sakamoto
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, and
| | | | - Yusuke Morita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastroenterology and Hepatology, and
| | | | | | | | | | - Kenji Kawada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, and
| |
Collapse
|
13
|
Chen PM, Ohno M, Hiwasa T, Nishi K, Saijo S, Sakamoto J, Morita Y, Matsuda S, Watanabe S, Kuwabara Y, Ono K, Imai M, Inoue K, Murai T, Inada T, Tanaka M, Kita T, Kimura T, Nishi E. Nardilysin is a promising biomarker for the early diagnosis of acute coronary syndrome. Int J Cardiol 2018; 243:1-8. [PMID: 28747015 DOI: 10.1016/j.ijcard.2017.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Biomarkers for detection of transient myocardial ischemia in patients with unstable angina (UA) or for very early diagnosis of acute myocardial infarction (AMI) are not currently available. METHODS AND RESULTS We performed two sequential screenings of autoantibodies elevated shortly after the onset of acute coronary syndrome (ACS), and focused on metalloendopeptidase nardilysin (NRDC) among 19 identified candidate antigens. In a retrospective analysis among 93 ACS and 117 non-ACS patients, the serum level of NRDC was significantly increased in patients with ACS compared with that in patients with non-ACS (2073.5±189.8pg/ml versus 775.7±63.4pg/ml, P<0.0001). The area under the curve of NRDC for the diagnosis of ACS was 0.822 by the receiver operating characteristic curves analysis. In the time course analysis in 43 consecutive ACS patients (AMI: N=35 and UA: N=8), serum concentration of NRDC was significantly increased even in UA patients with a peak serum NRDC levels reached at admission both in AMI and UA patients. In a mouse model of AMI, we found an acute increase in serum NRDC and reduced NRDC expression in ischemic regions shortly after coronary artery ligation. NRDC expression was also reduced in infarcted regions in human autopsy samples from AMI patients. Moreover, the short treatment of primary culture of rat cardiomyocytes with H2O2 or A23187 induced NRDC secretion without cell toxicity. CONCLUSION NRDC is a promising biomarker for the early detection of ACS, even in UA patients without elevation of necrosis markers.
Collapse
Affiliation(s)
- Po-Min Chen
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Saijo
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiro Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Imai
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | - Toru Kita
- Kobe City Hospital Organization, Kobe, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
14
|
Morita Y, Ohno M, Nishi K, Hiraoka Y, Saijo S, Matsuda S, Kita T, Kimura T, Nishi E. Genome-wide profiling of nardilysin target genes reveals its role in epigenetic regulation and cell cycle progression. Sci Rep 2017; 7:14801. [PMID: 29093577 PMCID: PMC5665917 DOI: 10.1038/s41598-017-14942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022] Open
Abstract
Post-translational histone modifications, such as acetylation and methylation, are prerequisites for transcriptional regulation. The metalloendopeptidase nardilysin (Nrdc) is a H3K4me2-binding protein that controls thermoregulation and β-cell functions through its transcriptional coregulator function. We herein combined high-throughput ChIP-seq and RNA-seq to achieve the first genome-wide identification of Nrdc target genes. A ChIP-seq analysis of immortalized mouse embryo fibroblasts (iMEF) identified 4053 Nrdc-binding sites, most of which were located in proximal promoter sites (2587 Nrdc-binding genes). Global H3K4me2 levels at Nrdc-binding promoters slightly increased, while H3K9ac levels decreased in the absence of Nrdc. Among Nrdc-binding genes, a comparative RNA-seq analysis identified 448 candidates for Nrdc target genes, among which cell cycle-related genes were significantly enriched. We confirmed decreased mRNA and H3K9ac levels at the promoters of individual genes in Nrdc-deficient iMEF, which were restored by the ectopic introduction of Nrdc. Reduced mRNA levels, but not H3K9ac levels were fully restored by the reintroduction of the peptidase-dead mutant of Nrdc. Furthermore, Nrdc promoted cell cycle progression at multiple stages, which enhanced cell proliferation in vivo. Collectively, our integrative studies emphasize the importance of Nrdc for maintaining a proper epigenetic status and cell growth.
Collapse
Affiliation(s)
- Yusuke Morita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586, Japan
| | - Sayaka Saijo
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toru Kita
- Kobe Home Medical and Nursing Care Promotion Foundation, 14-1 Naka Ichiriyama, Kami Aza, Shimotani, Yamada-cho, Kita-ku, Kobe, 651-1102, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan.
| |
Collapse
|
15
|
Fujii T, Nishi E, Ito H, Yoshitomi H, Furu M, Okabe N, Ohno M, Nishi K, Morita Y, Morita Y, Azukizawa M, Okahata A, Tomizawa T, Kimura T, Matsuda S. Nardilysin is involved in autoimmune arthritis via the regulation of tumour necrosis factor alpha secretion. RMD Open 2017; 3:e000436. [PMID: 28955486 PMCID: PMC5604610 DOI: 10.1136/rmdopen-2017-000436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/23/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Objective Tumour necrosis factor alpha (TNF-α) plays an important role in rheumatoid arthritis (RA). TNF-α is synthesised as a membrane-anchored precursor and is fully activated by a disintegrin and metalloproteinase 17 (ADAM17)-mediated ectodomain shedding. Nardilysin (NRDC) facilitates ectodomain shedding via activation of ADAM17. This study was undertaken to elucidate the role of NRDC in RA. Methods NRDC-deficient (Nrdc–/–) mice and macrophage-specific NRDC-deficient (NrdcdelM) mice were examined in murine RA models, collagen antibody-induced arthritis (CAIA) and K/BxN serum transfer arthritis (K/BxN STA). We evaluated the effect of gene deletion or silencing of Nrdc on ectodomain shedding of TNF-α in macrophages or monocytes. NRDC concentration in synovial fluid from patients with RA and osteoarthritis (OA) were measured. We also examined whether local gene silencing of Nrdc ameliorated CAIA. Results CAIA and K/BxN STA were significantly attenuated in Nrdc–/– mice and NrdcdelM mice. Gene deletion or silencing of Nrdc in macrophages or THP-1 cells resulted in the reduction of TNF-α shedding. The level of NRDC is higher in synovial fluid from RA patients compared with that from OA patients. Intra-articular injection of anti-Nrdcsmall interfering RNA ameliorated CAIA. Conclusion These data indicate that NRDC plays crucial roles in the pathogenesis of autoimmune arthritis and could be a new therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Takayuki Fujii
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Moritoshi Furu
- Department of Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Namiko Okabe
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Azukizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Okahata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Tomizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Kasai Y, Toriguchi K, Hatano E, Nishi K, Ohno M, Yoh T, Fukuyama K, Nishio T, Okuno M, Iwaisako K, Seo S, Taura K, Kurokawa M, Kunichika M, Uemoto S, Nishi E. Nardilysin promotes hepatocellular carcinoma through activation of signal transducer and activator of transcription 3. Cancer Sci 2017; 108:910-917. [PMID: 28207963 PMCID: PMC5448622 DOI: 10.1111/cas.13204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
Nardilysin (NRDC) is a metalloendopeptidase of the M16 family. We previously showed that NRDC activates inflammatory cytokine signaling, including interleukin‐6‐signal transducer and activator of transcription 3 (STAT3) signaling. NRDC has been implicated in the promotion of breast, gastric and esophageal cancer, as well as the development of liver fibrosis. In this study, we investigated the role of NRDC in the promotion of hepatocellular carcinoma (HCC), both clinically and experimentally. We found that NRDC expression was upregulated threefold in HCC tissue compared to the adjacent non‐tumor liver tissue, which was confirmed by immunohistochemistry and western blotting. We also found that high serum NRDC was associated with large tumor size (>3 cm, P = 0.016) and poor prognosis after hepatectomy (median survival time 32.0 vs 73.9 months, P = 0.003) in patients with hepatitis C (n = 120). Diethylnitrosamine‐induced hepatocarcinogenesis was suppressed in heterozygous NRDC‐deficient mice compared to their wild‐type littermates. Gene silencing of NRDC with miRNA diminished the growth of Huh‐7 and Hep3B spheroids in vitro. Notably, phosphorylation of STAT3 was decreased in NRDC‐depleted Huh‐7 spheroids compared to control spheroids. The effect of a STAT3 inhibitor (S3I‐201) on the growth of Huh‐7 spheroids was reduced in NRDC‐depleted cells relative to controls. Our results show that NRDC is a promising prognostic marker for HCC in patients with hepatitis C, and that NRDC promotes tumor growth through activation of STAT3.
Collapse
Affiliation(s)
- Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kan Toriguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Yoh
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Fukuyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Okuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Target Therapy and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
17
|
Iwakura Y, Wang R, Inamura N, Araki K, Higashiyama S, Takei N, Nawa H. Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS One 2017; 12:e0174780. [PMID: 28350885 PMCID: PMC5370147 DOI: 10.1371/journal.pone.0174780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
The neurotrophic factor neuregulin 1 (NRG1) regulates neuronal development, glial differentiation, and excitatory synapse maturation. NRG1 is synthesized as a membrane-anchored precursor and is then liberated by proteolytic processing or exocytosis. Mature NRG1 then binds to its receptors expressed by neighboring neurons or glial cells. However, the molecular mechanisms that govern this process in the nervous system are not defined in detail. Here we prepared neuron-enriched and glia-enriched cultures from embryonic rat neocortex to investigate the role of neurotransmitters that regulate the liberation/release of NRG1 from the membrane of neurons or glial cells. Using a two-site enzyme immunoassay to detect soluble NRG1, we show that, of various neurotransmitters, glutamate was the most potent inducer of NRG1 release in neuron-enriched cultures. NRG1 release in glia-enriched cultures was relatively limited. Furthermore, among glutamate receptor agonists, N-Methyl-D-Aspartate (NMDA) and kainate (KA), but not AMPA or tACPD, mimicked the effects of glutamate. Similar findings were acquired from analysis of the hippocampus of rats with KA-induced seizures. To evaluate the contribution of members of a disintegrin and metalloproteinase (ADAM) families to NRG1 release, we transfected primary cultures of neurons with cDNA vectors encoding NRG1 types I, II, or III precursors, each tagged with the alkaline phosphatase reporter. Analysis of alkaline phosphatase activity revealed that the NRG1 type II precursor was subjected to tumor necrosis factor-α-converting enzyme (TACE) / a Disintegrin And Metalloproteinase 17 (ADAM17) -dependent ectodomain shedding in a protein kinase C-dependent manner. These results suggest that glutamatergic neurotransmission positively regulates the ectodomain shedding of NRG1 type II precursors and liberates the active NRG1 domain in an activity-dependent manner.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| | - Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoko Inamura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
18
|
Nardilysin regulates inflammation, metaplasia, and tumors in murine stomach. Sci Rep 2017; 7:43052. [PMID: 28230087 PMCID: PMC5322384 DOI: 10.1038/srep43052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/17/2017] [Indexed: 01/26/2023] Open
Abstract
Chronic inflammation contributes to a wide variety of human disorders. In the stomach, longstanding gastritis often results in structural alterations in the gastric mucosa, including metaplastic changes and gastric cancers. Therefore, it is important to elucidate factors that are involved in gastric inflammation. Nardilysin (N-arginine dibasic convertase; Nrdc) is a metalloendopeptidase of the M16 family that promotes ectodomain shedding of the precursor forms of various growth factors and cytokines by enhancing the protease activities of a disintegrin and metalloproteinase (ADAM) proteins. Here, we have demonstrated that Nrdc crucially regulates gastric inflammation caused by Helicobacter felis infection or forced expression of prostaglandin E2 in K19-C2mE mice. Metaplastic changes following gastric inflammation were suppressed by the deletion of Nrdc. Furthremore, the deletion of Nrdc significantly suppressed N-methyl-N-nitrosourea (MNU)-induced gastric tumorigenesis in the murine stomach. These data may lead to a global therapeutic approach against various gastric disorders by targeting Nrdc.
Collapse
|
19
|
Yoon WH, Sandoval H, Nagarkar-Jaiswal S, Jaiswal M, Yamamoto S, Haelterman NA, Putluri N, Putluri V, Sreekumar A, Tos T, Aksoy A, Donti T, Graham BH, Ohno M, Nishi E, Hunter J, Muzny DM, Carmichael J, Shen J, Arboleda VA, Nelson SF, Wangler MF, Karaca E, Lupski JR, Bellen HJ. Loss of Nardilysin, a Mitochondrial Co-chaperone for α-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration. Neuron 2017; 93:115-131. [PMID: 28017472 PMCID: PMC5242142 DOI: 10.1016/j.neuron.2016.11.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/21/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
Abstract
We previously identified mutations in Nardilysin (dNrd1) in a forward genetic screen designed to isolate genes whose loss causes neurodegeneration in Drosophila photoreceptor neurons. Here we show that NRD1 is localized to mitochondria, where it recruits mitochondrial chaperones and assists in the folding of α-ketoglutarate dehydrogenase (OGDH), a rate-limiting enzyme in the Krebs cycle. Loss of Nrd1 or Ogdh leads to an increase in α-ketoglutarate, a substrate for OGDH, which in turn leads to mTORC1 activation and a subsequent reduction in autophagy. Inhibition of mTOR activity by rapamycin or partially restoring autophagy delays neurodegeneration in dNrd1 mutant flies. In summary, this study reveals a novel role for NRD1 as a mitochondrial co-chaperone for OGDH and provides a mechanistic link between mitochondrial metabolic dysfunction, mTORC1 signaling, and impaired autophagy in neurodegeneration.
Collapse
Affiliation(s)
- Wan Hee Yoon
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sonal Nagarkar-Jaiswal
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manish Jaiswal
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nele A Haelterman
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tulay Tos
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara 06080, Turkey
| | - Ayse Aksoy
- Department of Child Neurology, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara 06080, Turkey
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill Hunter
- Department of Pediatric Radiology, Texas Children's Hospital and Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Carmichael
- Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA 93636, USA
| | - Joseph Shen
- Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA 93636, USA
| | - Valerie A Arboleda
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Nishi K, Sato Y, Ohno M, Hiraoka Y, Saijo S, Sakamoto J, Chen PM, Morita Y, Matsuda S, Iwasaki K, Sugizaki K, Harada N, Mukumoto Y, Kiyonari H, Furuyama K, Kawaguchi Y, Uemoto S, Kita T, Inagaki N, Kimura T, Nishi E. Nardilysin Is Required for Maintaining Pancreatic β-Cell Function. Diabetes 2016; 65:3015-27. [PMID: 27385158 DOI: 10.2337/db16-0178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes (T2D) is associated with pancreatic β-cell dysfunction, manifested by reduced glucose-stimulated insulin secretion (GSIS). Several transcription factors enriched in β-cells, such as MafA, control β-cell function by organizing genes involved in GSIS. Here we demonstrate that nardilysin (N-arginine dibasic convertase; Nrd1 and NRDc) critically regulates β-cell function through MafA. Nrd1(-/-) mice showed glucose intolerance and severely decreased GSIS. Islets isolated from Nrd1(-/-) mice exhibited reduced insulin content and impaired GSIS in vitro. Moreover, β-cell-specific NRDc-deficient (Nrd1(delβ)) mice showed a diabetic phenotype with markedly reduced GSIS. MafA was specifically downregulated in islets from Nrd1(delβ) mice, whereas overexpression of NRDc upregulated MafA and insulin expression in INS832/13 cells. Chromatin immunoprecipitation assay revealed that NRDc is associated with Islet-1 in the enhancer region of MafA, where NRDc controls the recruitment of Islet-1 and MafA transcription. Our findings demonstrate that NRDc controls β-cell function via regulation of the Islet-1-MafA pathway.
Collapse
Affiliation(s)
- Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuichi Sato
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshinori Hiraoka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Sayaka Saijo
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jiro Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Po-Min Chen
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yusuke Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kanako Iwasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazu Sugizaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Chuo-ku, Kobe, Japan
| | - Hiroshi Kiyonari
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Chuo-ku, Kobe, Japan Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Chuo-ku, Kobe, Japan
| | - Kenichiro Furuyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshiya Kawaguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Toru Kita
- Kobe City Medical Center General Hospital, Chuo-ku, Kobe, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Ravidà A, Cwiklinski K, Aldridge AM, Clarke P, Thompson R, Gerlach JQ, Kilcoyne M, Hokke CH, Dalton JP, O'Neill SM. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host. Mol Cell Proteomics 2016; 15:3139-3153. [PMID: 27466253 PMCID: PMC5054340 DOI: 10.1074/mcp.m116.059774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Collapse
Affiliation(s)
- Alessandra Ravidà
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Krystyna Cwiklinski
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Allison M Aldridge
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Clarke
- ¶Glycoselect, Dublin City University, Glasnevin, Dublin 9
| | | | - Jared Q Gerlach
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; **Regenerative Medicine Institute, NUI Galway, Ireland
| | - Michelle Kilcoyne
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; ‡‡Carbohydrate Signalling Group, Microbiology, NUI Galway, Ireland
| | - Cornelis H Hokke
- §§Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - John P Dalton
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sandra M O'Neill
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland;
| |
Collapse
|
22
|
ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview. Toxins (Basel) 2016; 8:toxins8050155. [PMID: 27196928 PMCID: PMC4885070 DOI: 10.3390/toxins8050155] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.
Collapse
|
23
|
Critical roles of nardilysin in the maintenance of body temperature homoeostasis. Nat Commun 2015; 5:3224. [PMID: 24492630 PMCID: PMC3926010 DOI: 10.1038/ncomms4224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/09/2014] [Indexed: 01/15/2023] Open
Abstract
Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1−/− mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1−/− mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation. The precise regulation of mammalian body temperature is important for survival. Here the authors show that the peptidase nardilysin represses the transcription factor PGC-1α, and identify nardilysin as a regulator of basal body temperature, cold-induced thermogenesis and body insulation.
Collapse
|
24
|
Prakasam HS, Gallo LI, Li H, Ruiz WG, Hallows KR, Apodaca G. A1 adenosine receptor-stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation. Mol Biol Cell 2014; 25:3798-812. [PMID: 25232008 PMCID: PMC4230785 DOI: 10.1091/mbc.e14-03-0818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of phosphorylation in ADAM17-dependent shedding is controversial. We show that the A1 adenosine receptor stimulates exocytosis in umbrella cells by a pathway that requires phosphorylation of ADAM17–Ser-811, followed by HB-EGF shedding and EGF receptor transactivation. Preventing ADAM17 phosphorylation blocks these downstream events. Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using native bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, we observe that stimulation of apically localized A1 adenosine receptors (A1ARs) triggers a Gi-Gβγ-phospholipase C-protein kinase C (PKC) cascade that promotes ADAM17-dependent HB-EGF cleavage, EGFR transactivation, and apical exocytosis. We further show that the cytoplasmic tail of rat ADAM17 contains a conserved serine residue at position 811, which resides in a canonical PKC phosphorylation site, and is phosphorylated in response to A1AR activation. Preventing this phosphorylation event by expression of a nonphosphorylatable ADAM17S811A mutant or expression of a tail-minus construct inhibits A1AR-stimulated, ADAM17-dependent HB-EGF cleavage. Furthermore, expression of ADAM17S811A in bladder tissues impairs A1AR-induced apical exocytosis. We conclude that adenosine-stimulated exocytosis requires PKC- and ADAM17-dependent EGFR transactivation and that the function of ADAM17 in this pathway depends on the phosphorylation state of Ser-811 in its cytoplasmic domain.
Collapse
Affiliation(s)
- H Sandeep Prakasam
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Luciana I Gallo
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hui Li
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G Ruiz
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kenneth R Hallows
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gerard Apodaca
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
25
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
26
|
Involvement of reactive oxygen species in stimuli-induced shedding of heparin-binding epidermal growth factor-like growth factor. J UOEH 2014; 36:105-14. [PMID: 24930874 DOI: 10.7888/juoeh.36.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a critical growth factor for a number of physiological and pathological processes, such as wound healing, atherosclerosis and cancer proliferation. HB-EGF is synthesized as a membrane form (proHB-EGF), and is shedded at the cell surface to yield soluble HB-EGF, resulting in making it active. In this study, the involvement of reactive oxygen species (ROS) in stimuli-induced shedding of HB-EGF was investigated using monkey kidney Vero cells overexpressing HB-EGF (Vero-H cells). 12-O-tetradecanoylphorbol-13-acetate (TPA), lysophosphatidic acid (LPA) as a ligand for seventransmembrane G protein coupled receptors (GPCR) and sorbitol as stress induced shedding of HB-EGF mediated protein kinase C (PKC)-δ, mitogen-activated protein kinase (MAPK) and p38MAPK, respectively. These stimuli-induced sheddings of HB-EGF were inhibited by N-acetyl-L-cysteine (NAC), suggesting the involvement of ROS. As specific inhibitors of these protein kinases inhibited the shedding of HB-EGF, these signaling pathways seem to be independent, respectively. In contrast, γ-ray irradiation did not induce shedding although it did increase intracellular ROS levels. Taken together, these results suggest that the synergistic generation of ROS and the activation of protein kinase are required to promote stimuli-induced shedding of HB-EGF.
Collapse
|
27
|
Ishizu-Higashi S, Seno H, Nishi E, Matsumoto Y, Ikuta K, Tsuda M, Kimura Y, Takada Y, Kimura Y, Nakanishi Y, Kanda K, Komekado H, Chiba T. Deletion of nardilysin prevents the development of steatohepatitis and liver fibrotic changes. PLoS One 2014; 9:e98017. [PMID: 24849253 PMCID: PMC4029810 DOI: 10.1371/journal.pone.0098017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/28/2014] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF)-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1), a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1−/− mice were fed a control choline-supplemented amino acid-defined (CSAA) diet or a choline-deficient amino acid-defined (CDAA) diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1−/− mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1−/− mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1−/− mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1−/− mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1−/− mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1−/− mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1−/− mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.
Collapse
Affiliation(s)
- Shoko Ishizu-Higashi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (HS); (EN)
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (HS); (EN)
| | - Yoshihide Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Kimura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keitaro Kanda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Komekado
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
Ohno M, Hiraoka Y, Lichtenthaler SF, Nishi K, Saijo S, Matsuoka T, Tomimoto H, Araki W, Takahashi R, Kita T, Kimura T, Nishi E. Nardilysin prevents amyloid plaque formation by enhancing α-secretase activity in an Alzheimer's disease mouse model. Neurobiol Aging 2014; 35:213-22. [DOI: 10.1016/j.neurobiolaging.2013.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/06/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
29
|
Bernstein HG, Stricker R, Dobrowolny H, Steiner J, Bogerts B, Trübner K, Reiser G. Nardilysin in human brain diseases: both friend and foe. Amino Acids 2013; 45:269-78. [PMID: 23604405 DOI: 10.1007/s00726-013-1499-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42(IP4)/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Otto-v.-Guericke University Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Decreased expression of nardilysin in SH-SY5Y cells under ethanol stress and reduced density of nardilysin-expressing neurons in brains of alcoholics. J Psychiatr Res 2013; 47:343-9. [PMID: 23219461 DOI: 10.1016/j.jpsychires.2012.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/09/2012] [Indexed: 11/23/2022]
Abstract
There is evidence for a genetic link between the metalloendopeptidase nardilysin and alcohol dependence, but the functional implication of the enzyme in alcoholism is unknown. Interestingly, some of the enzyme's substrates and interaction partners are altered in neural and non-neural tissues under the influence of ethanol consumption. To learn more about putative roles of nardilysin in alcohol dependence we studied the expression of the enzyme protein in human neuroblastoma cells under chronic ethanol exposure as well as in four brain regions of alcoholics and matched controls. Cultured SH-SY5Y cells were exposed for 96 h to two different concentrations of ethanol (50 and 200 mM). Nardilysin expression was determined using Western blotting with densitometric analysis. Furthermore, we morphometrically studied the cellular expression of nardilysin in postmortem brains of eight chronic alcoholics and nine controls by counting the number of nardilysin-immunopositive neurons in left frontal limbic area, Nuc. basalis of Meynert, paraventricular and supraoptic hypothalamic nuclei and calculating numerical cell densities. Nardilysin expression was significantly reduced after 96 h of SH-SY5Y cells exposure to 200 mM ethanol. In human brains nardilysin protein was localized to multiple neurons. In heavy drinkers there was a significantly reduced density of nardilysin immunoreactive neurons in Nuc. basalis of Meynert, paraventricular, and supraoptic nuclei. The alcohol-dependent reduction of nardilysin in cell culture and nervous tissue points to an implication of the enzyme in the pathophysiology of alcoholism.
Collapse
|
31
|
Coffill CR, Muller PAJ, Oh HK, Neo SP, Hogue KA, Cheok CF, Vousden KH, Lane DP, Blackstock WP, Gunaratne J. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 2012; 13:638-44. [PMID: 22653443 DOI: 10.1038/embor.2012.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/19/2022] Open
Abstract
The invasiveness of tumour cells depends on changes in cell shape, polarity and migration. Mutant p53 induces enhanced tumour metastasis in mice, and human cells overexpressing p53R273H have aberrant polarity and increased invasiveness, demonstrating the 'gain of function' of mutant p53 in carcinogenesis. We hypothesize that p53R273H interacts with mutant p53-specific binding partners that control polarity, migration or invasion. Here we analyze the p53R273H interactome using stable isotope labelling by amino acids in cell culture and quantitative mass spectrometry, and identify at least 15 new potential mutant p53-specific binding partners. The interaction of p53R273H with one of them--nardilysin (NRD1)--promotes an invasive response to heparin binding-epidermal growth factor-like growth factor that is p53R273H-dependant but does not require Rab coupling protein or p63. Advanced proteomics has thus allowed the detection of a new mechanism of p53-driven invasion.
Collapse
Affiliation(s)
- Cynthia R Coffill
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nakayama H, Fukuda S, Inoue H, Nishida-Fukuda H, Shirakata Y, Hashimoto K, Higashiyama S. Cell surface annexins regulate ADAM-mediated ectodomain shedding of proamphiregulin. Mol Biol Cell 2012; 23:1964-75. [PMID: 22438584 PMCID: PMC3350559 DOI: 10.1091/mbc.e11-08-0683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ectodomain shedding of EGFR ligands by ADAM17 is a key step of transactivation of epidermal growth factor receptor (EGFR) and the downstream signaling network. In this study, we identified cell surface annexins as regulators of ectodomain shedding of amphiregulin precursor. We propose that cell surface annexins act as a shedding platform to determine the substrate selectivity of ADAM17. A disintegrin and metalloproteinase (ADAM) is a family of enzymes involved in ectodomain shedding of various membrane proteins. However, the molecular mechanism underlying substrate recognition by ADAMs remains unknown. In this study, we successfully captured and analyzed cell surface transient assemblies between the transmembrane amphiregulin precursor (proAREG) and ADAM17 during an early shedding phase, which enabled the identification of cell surface annexins as components of their shedding complex. Annexin family members annexin A2 (ANXA2), A8, and A9 interacted with proAREG and ADAM17 on the cell surface. Shedding of proAREG was increased when ANXA2 was knocked down but decreased with ANXA8 and A9 knockdown, because of enhanced and impaired association with ADAM17, respectively. Knockdown of ANXA2 and A8 in primary keratinocytes altered wound-induced cell migration and ultraviolet B–induced phosphorylation of epidermal growth factor receptor (EGFR), suggesting that annexins play an essential role in the ADAM-mediated ectodomain shedding of EGFR ligands. On the basis of these data, we propose that annexins on the cell surface function as “shedding platform” proteins to determine the substrate selectivity of ADAM17, with possible therapeutic potential in ADAM-related diseases.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Kanda K, Komekado H, Sawabu T, Ishizu S, Nakanishi Y, Nakatsuji M, Akitake-Kawano R, Ohno M, Hiraoka Y, Kawada M, Kawada K, Sakai Y, Matsumoto K, Kunichika M, Kimura T, Seno H, Nishi E, Chiba T. Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-α. EMBO Mol Med 2012; 4:396-411. [PMID: 22351606 PMCID: PMC3403297 DOI: 10.1002/emmm.201200216] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 01/05/2023] Open
Abstract
Nardilysin (NRDc), a metalloendopeptidase of the M16 family, promotes ectodomain shedding of the precursor forms of various growth factors and cytokines by enhancing the protease activities of ADAM proteins. Here, we show the growth-promoting role of NRDc in gastric cancer cells. Analyses of clinical samples demonstrated that NRDc protein expression was frequently elevated both in the serum and cancer epithelium of gastric cancer patients. After NRDc knockdown, tumour cell growth was suppressed both in vitro and in xenograft experiments. In gastric cancer cells, NRDc promotes shedding of pro-tumour necrosis factor-alpha (pro-TNF-α), which stimulates expression of NF-κB-regulated multiple cytokines such as interleukin (IL)-6. In turn, IL-6 activates STAT3, leading to transcriptional upregulation of downstream growth-related genes. Gene silencing of ADAM17 or ADAM10, representative ADAM proteases, phenocopied the changes in cytokine expression and cell growth induced by NRDc knockdown. Our results demonstrate that gastric cancer cell growth is maintained by autonomous TNF-α–NF-κB and IL-6–STAT3 signalling, and that NRDc and ADAM proteases turn on these signalling cascades by stimulating ectodomain shedding of TNF-α.
Collapse
Affiliation(s)
- Keitaro Kanda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li J, Chu M, Wang S, Chan D, Qi S, Wu M, Zhou Z, Li J, Nishi E, Qin J, Wong J. Identification and characterization of nardilysin as a novel dimethyl H3K4-binding protein involved in transcriptional regulation. J Biol Chem 2012; 287:10089-10098. [PMID: 22294699 DOI: 10.1074/jbc.m111.313965] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone methylation on lysine residues is believed to function primarily as docking sites to recruit specific proteins termed as histone code "readers" or "effectors." Each lysine residue can be mono-, di, and tri-methylated and different methylation states can have different effect on chromatin function. While an increasing number of proteins have been identified and characterized as specific effectors for methylated histones, very few of the proteins are known to recognize a particular state of methylation. In this study, we identified nardilysin (NRDc), a member of M16 family metalloendopeptidases, as a novel dimethyl-H3K4 (H3K4me2)-binding protein. Among three methylated states, NRDc binds preferentially H3K4me2 both in vitro and in vivo. Biochemical purification demonstrated that NRDc interacts with the NCoR/SMRT corepressor complex. We identified target genes repressed by NRDc through microarray. We showed that NRDc is physically associated with and recruits the NCoR complex to some of the repressed genes and this association correlates with binding of H3K4me2. Thus, our study has identified a novel H3K4me2-binding protein and revealed a role of NRDc in transcriptional regulation.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyue Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Doug Chan
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Shankang Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meng Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongliang Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Jun Qin
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China,.
| |
Collapse
|
35
|
Gutiérrez-López MD, Gilsanz A, Yáñez-Mó M, Ovalle S, Lafuente EM, Domínguez C, Monk PN, González-Alvaro I, Sánchez-Madrid F, Cabañas C. The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 2011; 68:3275-92. [PMID: 21365281 PMCID: PMC11115118 DOI: 10.1007/s00018-011-0639-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/23/2010] [Accepted: 01/20/2011] [Indexed: 01/06/2023]
Abstract
ADAM17/TACE is a metalloproteinase responsible for the shedding of the proinflammatory cytokine TNF-α and many other cell surface proteins involved in development, cell adhesion, migration, differentiation, and proliferation. Despite the important biological function of ADAM17, the mechanisms of regulation of its metalloproteinase activity remain largely unknown. We report here that the tetraspanin CD9 and ADAM17 partially co-localize on the surface of endothelial and monocytic cells. In situ proximity ligation, co-immunoprecipitation, crosslinking, and pull-down experiments collectively demonstrate a direct association between these molecules. Functional studies reveal that treatment with CD9-specific antibodies or neoexpression of CD9 exert negative regulatory effects on ADAM17 sheddase activity. Conversely, CD9 silencing increased the activity of ADAM17 against its substrates TNF-α and ICAM-1. Taken together, our results show that CD9 associates with ADAM17 and, through this interaction, negatively regulates the sheddase activity of ADAM17.
Collapse
Affiliation(s)
- Maria Dolores Gutiérrez-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
- Present Address: Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Alvaro Gilsanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Yáñez-Mó
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria Princesa, 28006 Madrid, Spain
| | - Susana Ovalle
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Esther M. Lafuente
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, UCM, 28040 Madrid, Spain
| | - Carmen Domínguez
- Servicio de Reumatología, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Peter N. Monk
- University of Sheffield Medical School, Sheffield S10 2RX, Sheffield, United Kingdom
| | | | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigacion Sanitaria Princesa, 28006 Madrid, Spain
- Departamento de Biología Vascular e Inflamación, CNIC, 28029 Madrid, Spain
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, UCM, 28040 Madrid, Spain
| |
Collapse
|
36
|
Borrmann C, Stricker R, Reiser G. Retinoic acid-induced upregulation of the metalloendopeptidase nardilysin is accelerated by co-expression of the brain-specific protein p42(IP4) (centaurin α 1; ADAP1) in neuroblastoma cells. Neurochem Int 2011; 59:936-44. [PMID: 21801775 DOI: 10.1016/j.neuint.2011.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/02/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
The mainly neuronally expressed protein p42(IP4) (centaurin α1; ADAP1), which interacts with the metalloendopeptidase nardilysin (NRD) was found to be localized in neuritic plaques in Alzheimer disease (AD) brains. NRD was shown to enhance the cleavage of the amyloid precursor protein (APP) by α-secretases, thereby increasing the release of neuroprotective sAPPα. We here investigated in vitro the biochemical interaction of p42(IP4) and NRD and studied the physiological interaction in SH-SY5Y cells. NRD is a member of the M16 family of metalloendopeptidases. Some members of this M16 family act bi-functionally, as protease and as non-enzymatic scaffold protein. Here, we show that p42(IP4) enhances the enzymatic activity of NRD 3-4 times. However, p42(IP4) is not a substrate for NRD. Furthermore, we report that differentiation of SH-SY5Y cells by stimulation with 10μM retinoic acid (RA) results in upregulation of NRD protein levels, with a 6-fold rise after 15 days. NRD is expressed in the neurites of RA-stimulated SH-SY5Y cells, and localized in vesicular structures. Since p42(IP4) is not expressed in untreated SH-SY5Y cells, we could use this cell system as a model to find out, whether there is a functional interaction. Interestingly, SH-SY5Y cells, which we stably transfected with GFP-tagged-p42(IP4) showed an enhanced NRD protein expression already at an earlier time point after RA stimulation.
Collapse
Affiliation(s)
- Claudia Borrmann
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
37
|
Choong LY, Lim SK, Chen Y, Loh MCS, Toy W, Wong CY, Salto-Tellez M, Shah N, Lim YP. Elevated NRD1 metalloprotease expression plays a role in breast cancer growth and proliferation. Genes Chromosomes Cancer 2011; 50:837-47. [PMID: 21769958 DOI: 10.1002/gcc.20905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/31/2011] [Accepted: 06/14/2011] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular etiology of cancer and increasing the number of drugs and their targets are critical to cancer management. In our attempt to unravel novel breast-cancer associated proteins, we previously conducted protein expression profiling of the MCF10AT model, which comprises a series of isogenic cell lines that mimic different stages of breast cancer progression. NRD1 expression was found to increase during breast cancer progression. Here, we attempted to confirm the relevance of NRD1 in clinical breast cancer and understand the functional role and mechanism of NRD1 in breast cancer cells. Immunohistochemistry data show that NRD1 expression was elevated in ductal carcinoma in situ and invasive ductal carcinomas compared with normal tissues in 30% of the 26 matched cases studied. Examination of NRD1 expression in tissue microarray comprising >100 carcinomas and subsequent correlation with clinical data revealed that NRD1 expression was significantly associated with tumor size, grade, and nodal status (P < 0.05). Silencing of NRD1 reduced MCF10CA1h and MDA-MD-231 breast-cancer-cell proliferation and growth. Probing the oncogenic EGF signaling pathways revealed that NRD1 knock down did not affect overall downstream tyrosine phosphorylation cascades including AKT and MAPK activation. Instead, silencing of NRD1 resulted in a reduction of overall cyclin D1 expression, a reduction of EGF-induced increase in cyclin D1 expression and an increase in apoptotic cell population compared with control cells.
Collapse
Affiliation(s)
- Lee-Yee Choong
- Cancer Science Institute of Singapore, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Higashiyama S, Nanba D, Nakayama H, Inoue H, Fukuda S. Ectodomain shedding and remnant peptide signalling of EGFRs and their ligands. J Biochem 2011; 150:15-22. [PMID: 21610047 DOI: 10.1093/jb/mvr068] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both receptor tyrosine kinases epidermal growth factor receptors (EGFRs) and their ligands are transmembrane proteins. It has been known that ligand binding activates cytoplasmic tyrosine kinase domains of EGFRs, resulting in the transduction of signals for cell proliferation, migration, differentiation or survival. In an EGFRs-ligands system, however, signal transduction occurs not only unidirectionally but also bidirectionally, which is regulated by cell-cell contact and proteolytic cleavage. Recent studies of proteolytic cleavage 'ectodomain shedding' of EGFRs and their ligands mediated by membrane-type metalloproteinases, a disintegrin and metalloproteinases have been unveiling novel functions and molecular mechanism of their remnant peptides. In addition, the study of the remnant peptide signalling would be essential for understanding the physiological and pathological relevance of anti-shedding therapeutic strategies for diseases such as cancer.
Collapse
Affiliation(s)
- Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Medicine Research Center (ProMRes), Ehime University, Japan.
| | | | | | | | | |
Collapse
|
39
|
Lichtenthaler SF. α-secretase in Alzheimer's disease: molecular identity, regulation and therapeutic potential. J Neurochem 2010; 116:10-21. [PMID: 21044078 DOI: 10.1111/j.1471-4159.2010.07081.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ectodomain shedding of the amyloid precursor protein (APP) by the metalloprotease activity α-secretase is a key regulatory event preventing the generation of the Alzheimer's disease (AD) amyloid β peptide. Proteases similar to α-secretase are essential for diverse physiological processes, such as embryonic development, cell adhesion and neuronal guidance. Previously, several proteases were suggested as candidate α-secretases for APP, in particular members of the ADAM family (a disintegrin and metalloprotease). Two recent studies analyzed primary neurons, which are the cell type affected in AD, and finally demonstrated that the constitutively cleaving α-secretase activity is selectively mediated by ADAM10. An increase in α-secretase cleavage is considered a therapeutic approach for AD. However, the molecular mechanisms regulating α-secretase cleavage remain only partly understood. Signaling pathways activating protein kinase C and MAP kinase play a central role in stimulating α-secretase cleavage of APP. Additionally, several recent publications demonstrate that ADAM10 expression and α-secretase cleavage of APP are tightly controlled at the level of transcription, e.g. by retinoic acid receptors and sirtuins, and at the level of translation and protein trafficking. This review focuses on the recent progress made in unraveling the molecular identity, regulation and therapeutic potential of α-secretase in Alzheimer's disease.
Collapse
|
40
|
Abstract
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer's disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
41
|
Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem J 2010; 428:439-50. [PMID: 20345372 DOI: 10.1042/bj20100179] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ADAM17 (where ADAM is 'a disintegrin and metalloproteinase') can rapidly modulate cell-surface signalling events by the proteolytic release of soluble forms of proligands for cellular receptors. Many regulatory pathways affect the ADAM17 sheddase activity, but the mechanisms for the activation are still not clear. We have utilized a cell-based ADAM17 assay to show that thiol isomerases, specifically PDI (protein disulfide isomerase), could be responsible for maintaining ADAM17 in an inactive form. Down-regulation of thiol isomerases, by changes in the redox environment (for instance as elicited by phorbol ester modulation of mitochondrial reactive oxygen species) markedly enhanced ADAM17 activation. On the basis of ELISA binding studies with novel fragment antibodies against ADAM17 we propose that isomerization of the disulfide bonds in ADAM17, and the subsequent conformational changes, form the basis for the modulation of ADAM17 activity. The shuffling of disulfide bond patterns in ADAMs has been suggested by a number of recent adamalysin crystal structures, with distinct disulfide bond patterns altering the relative orientations of the domains. Such a mechanism is rapid and reversible, and the role of thiol isomerases should be investigated further as a potential factor in the redox regulation of ADAM17.
Collapse
|
42
|
Andrzejewski MG, Koelsch A, Kogel T, Dreymueller D, Schwarz N, Ludwig A. Distinct role of the intracellular C-terminus for subcellular expression, shedding and function of the murine transmembrane chemokine CX3CL1. Biochem Biophys Res Commun 2010; 395:178-84. [PMID: 20347720 DOI: 10.1016/j.bbrc.2010.03.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/25/2022]
Abstract
The transmembrane chemokine CX3CL1 is expressed on the endothelial surface and promotes leukocyte adhesion and transmigration by receptor interaction via its extracellular chemokine domain. Since little is known about its intracellular C-terminus, we examined the consequences of C-terminal truncation on cellular distribution, proteolytic shedding and function of murine CX3CL1. Full length murine CX3CL1 was expressed and shed by the metalloproteinase ADAM10 as described for human CX3CL1. Truncation of murine CX3CL1 led to reduced maturation and impaired trafficking to the surface. Truncation of CX3CL1 also abrogated localization to early endosomal vesicles, but increased shedding from the surface by ADAM10. Once truncated CX3CL1 was expressed on the surface, it mediated cell contact and induced leukocyte transmigration similar as full length CX3CL1. These data suggest that the C-terminus of CX3CL1 carries important determinants for cellular trafficking but not for function of the chemokine during leukocyte recruitment.
Collapse
Affiliation(s)
- Michael G Andrzejewski
- Institute of Pharmacology and Toxicology, RWTH Aachen University, D-52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC, Sunnarborg SW. Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 2010; 20:5236-49. [PMID: 19846666 DOI: 10.1091/mbc.e08-12-1256] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by GPCRs regulates many important biological processes. ADAM metalloprotease activity has been implicated as a key step in transactivation, yet the regulatory mechanisms are not fully understood. Here, we investigate the regulation of transforming growth factor-alpha (TGF-alpha) shedding by reactive oxygen species (ROS) through the ATP-dependent activation of the P2Y family of GPCRs. We report that ATP stimulates TGF-alpha proteolysis with concomitant EGFR activation and that this process requires TACE/ADAM17 activity in both murine fibroblasts and CHO cells. ATP-induced TGF-alpha shedding required calcium and was independent of Src family kinases and PKC and MAPK signaling. Moreover, ATP-induced TGF-alpha shedding was completely inhibited by scavengers of ROS, whereas calcium-stimulated shedding was partially inhibited by ROS scavenging. Hydrogen peroxide restored TGF-alpha shedding after calcium chelation. Importantly, we also found that ATP-induced shedding was independent of the cytoplasmic NADPH oxidase complex. Instead, mitochondrial ROS production increased in response to ATP and mitochondrial oxidative complex activity was required to activate TACE-dependent shedding. These results reveal an essential role for mitochondrial ROS in regulating GPCR-induced growth factor shedding.
Collapse
Affiliation(s)
- Timothy J Myers
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Ohno M, Hiraoka Y, Matsuoka T, Tomimoto H, Takao K, Miyakawa T, Oshima N, Kiyonari H, Kimura T, Kita T, Nishi E. Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. Nat Neurosci 2009; 12:1506-13. [PMID: 19935654 DOI: 10.1038/nn.2438] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/22/2009] [Indexed: 02/08/2023]
Abstract
Axonal maturation and myelination are essential processes for establishing an efficient neuronal signaling network. We found that nardilysin (N-arginine dibasic convertase, also known as Nrd1 and NRDc), a metalloendopeptidase enhancer of protein ectodomain shedding, is a critical regulator of these processes. Nrd1-/- mice had smaller brains and a thin cerebral cortex, in which there were less myelinated fibers with thinner myelin sheaths and smaller axon diameters. We also found hypomyelination in the peripheral nervous system (PNS) of Nrd1-/- mice. Neuron-specific overexpression of NRDc induced hypermyelination, indicating that the level of neuronal NRDc regulates myelin thickness. Consistent with these findings, Nrd1-/- mice had impaired motor activities and cognitive deficits. Furthermore, NRDc enhanced ectodomain shedding of neuregulin1 (NRG1), which is a master regulator of myelination in the PNS. On the basis of these data, we propose that NRDc regulates axonal maturation and myelination in the CNS and PNS, in part, through the modulation of NRG1 shedding.
Collapse
Affiliation(s)
- Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Murphy G. Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 2009; 20:138-45. [DOI: 10.1016/j.semcdb.2008.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
46
|
Bernstein HG, Stricker R, Lendeckel U, Bertram I, Dobrowolny H, Steiner J, Bogerts B, Reiser G. Reduced neuronal co-localisation of nardilysin and the putative alpha-secretases ADAM10 and ADAM17 in Alzheimer's disease and Down syndrome brains. AGE (DORDRECHT, NETHERLANDS) 2009; 31:11-25. [PMID: 19234765 PMCID: PMC2645990 DOI: 10.1007/s11357-008-9076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/29/2008] [Indexed: 05/27/2023]
Abstract
The peptidase nardilysin is involved in degradation of neuropeptides and limited intracellular proteolysis. Recent reports point to an involvement of nardilysin in the pathophysiology of Alzheimer's disease. Nardilysin enhances the alpha-secretase activity of the disintegrin and metalloproteases (ADAMs) 10 and 17, thereby possibly contributing to reduced generation of amyloidogenic fragments from the amyloid precursor protein. A prerequisite for the alpha-secretase-stimulating effect of nardilysin on the activity of ADAMs in vivo is cellular co-expression of nardilysin with ADAM10 and/or ADAM17. We immunolocalised nardilysin, ADAM10, and ADAM17 in cortical regions of normal aged brain, in Alzheimer's disease, and in Down syndrome brains and counted the number of protease-expressing neurons. A considerable portion of neurons co-express nardilysin together with either ADAM10 or ADAM17. Compared to controls, in Alzheimer's disease and in Down syndrome brains there is a decreased cellular expression of all three antigens, and a reduction in the number of those neurons that co-express nardilysin with ADAM10 or with ADAM17. Our data are consistent with the notion that the proposed alpha-secretase-enhancing activity of nardilysin might play a role in human brain pathology.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Over the last few years disintegrin metalloproteinases of the Adam (a disintegrin and metalloproteinase) family have been associated with the process of proteolytic 'shedding' of membrane-associated proteins and hence the rapid modulation of key cell signalling pathways in the tumour microenvironment. Furthermore, numerous members of the Adam family have been associated with tumorigenesis and tumour progression. The question now arises of whether pharmacological manipulation of their functions would be a useful adjunct to therapies targeting intercellular communications. To learn from the lessons of matrix metalloproteinase inhibitors as anticancer agents, there are many facets of the biological and clinical relevance of the ADAMs that need to be understood before embarking with confidence on such an approach.
Collapse
Affiliation(s)
- Gillian Murphy
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
48
|
|
49
|
Kenny S, Duval C, Sammut SJ, Steele I, Pritchard DM, Atherton JC, Argent RH, Dimaline R, Dockray GJ, Varro A. Increased expression of the urokinase plasminogen activator system by Helicobacter pylori in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G431-41. [PMID: 18599586 PMCID: PMC2536790 DOI: 10.1152/ajpgi.90283.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastric pathogen Helicobacter pylori (H. pylori) is linked to peptic ulcer and gastric cancer, but the relevant pathophysiological mechanisms are unclear. We now report that H. pylori stimulates the expression of plasminogen activator inhibitor (PAI)-1, urokinase plasminogen activator (uPA), and its receptor (uPAR) in gastric epithelial cells and the consequences for epithelial cell proliferation. Real-time PCR of biopsies from gastric corpus, but not antrum, showed significantly increased PAI-1, uPA, and uPAR in H. pylori-positive patients. Transfection of primary human gastric epithelial cells with uPA, PAI-1, or uPAR promoters in luciferase reporter constructs revealed expression of all three in H+/K+ATPase- and vesicular monoamine transporter 2-expressing cells; uPA was also expressed in pepsinogen- and uPAR-containing trefoil peptide-1-expressing cells. In each case expression was increased in response to H. pylori and for uPA, but not PAI-1 or uPAR, required the virulence factor CagE. H. pylori also stimulated soluble and cell surface-bound uPA activity, and both were further increased by PAI-1 knockdown, consistent with PAI-1 inhibition of endogenous uPA. H. pylori stimulated epithelial cell proliferation, which was inhibited by uPA immunoneutralization and uPAR knockdown; exogenous uPA also stimulated proliferation that was further increased after PAI-1 knockdown. The proliferative effects of uPA were inhibited by immunoneutralization of the EGF receptor and of heparin-binding EGF (HB-EGF) by the mutant diphtheria toxin CRM197 and an EGF receptor tyrosine kinase inhibitor. H. pylori induction of uPA therefore leads to epithelial proliferation through activation of HB-EGF and is normally inhibited by concomitant induction of PAI-1; treatments directed at inhibition of uPA may slow the progression to gastric cancer.
Collapse
Affiliation(s)
- Susan Kenny
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Cedric Duval
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Stephen J. Sammut
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Islay Steele
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - D. Mark Pritchard
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - John C. Atherton
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Richard H. Argent
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Graham J. Dockray
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| |
Collapse
|
50
|
Herrlich A, Klinman E, Fu J, Sadegh C, Lodish H. Ectodomain cleavage of the EGF ligands HB-EGF, neuregulin1-beta, and TGF-alpha is specifically triggered by different stimuli and involves different PKC isoenzymes. FASEB J 2008; 22:4281-95. [PMID: 18757500 DOI: 10.1096/fj.08-113852] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metalloproteinase cleavage of transmembrane proteins (ectodomain cleavage), including the epidermal growth factor (EGF) ligands heparin-binding EGF-like growth factor (HB-EGF), neuregulin (NRG), and transforming growth factor-alpha (TGF-alpha), is important in many cellular signaling pathways and is disregulated in many diseases. It is largely unknown how physiological stimuli of ectodomain cleavage--hypertonic stress, phorbol ester, or activation of G-protein-coupled receptors [e.g., by lysophosphatidic acid (LPA)]--are molecularly connected to metalloproteinase activation. To study this question, we developed a fluorescence-activated cell sorting (FACS)- based assay that measures cleavage of EGF ligands in single living cells. EGF ligands expressed in mouse lung epithelial cells are differentially and specifically cleaved depending on the stimulus. Inhibition of protein kinase C (PKC) isoenzymes or metalloproteinase inhibition by batimastat (BB94) showed that different regulatory signals are used by different stimuli and EGF substrates, suggesting differential effects that act on the substrate, the metalloproteinase, or both. For example, hypertonic stress led to strong cleavage of HB-EGF and NRG but only moderate cleavage of TGF-alpha. HB-EGF, NRG, and TGF-alpha cleavage was not dependent on PKC, and only HB-EGF and NRG cleavage were inhibited by BB94. In contrast, phorbol 12-myristate-13-acetate (TPA) -induced cleavage of HB-EGF, NRG, and TGF-alpha was dependent on PKC and sensitive to BB94 inhibition. LPA led to significant cleavage of only NRG and TGF-alpha and was inhibited by BB94; only LPA-induced NRG cleavage required PKC. Surprisingly, specific inhibition of atypical PKCs zeta and iota [not activated by diacylglycerol (DAG) and calcium] significantly enhanced TPA-induced NRG cleavage. Employed in a high-throughput cloning strategy, our cleavage assay should allow the identification of candidate proteins involved in signal transduction of different extracellular stimuli into ectodomain cleavage.
Collapse
Affiliation(s)
- Andreas Herrlich
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|