1
|
Pan H, Kaur P, Barnes R, Detwiler AC, Sanford SL, Liu M, Xu P, Mahn C, Tang Q, Hao P, Bhattaram D, You C, Gu X, Lu W, Piehler J, Xu G, Weninger K, Riehn R, Opresko PL, Wang H. Structure, dynamics, and regulation of TRF1-TIN2-mediated trans- and cis-interactions on telomeric DNA. J Biol Chem 2021; 297:101080. [PMID: 34403696 PMCID: PMC8437784 DOI: 10.1016/j.jbc.2021.101080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023] Open
Abstract
TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.
Collapse
Affiliation(s)
- Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan Barnes
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samantha Lynn Sanford
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Pengning Xu
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Qingyu Tang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Pengyu Hao
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Dhruv Bhattaram
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University of Medicine, Atlanta, Georgia, USA
| | - Changjiang You
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück, Germany
| | - Xinyun Gu
- College of Art and Sciences, New York University, New York City, New York, USA
| | - Warren Lu
- Department of Pathology at NYU Grossman School of Medicine, New York University, New York City, New York, USA
| | - Jacob Piehler
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück, Germany
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Keith Weninger
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Molecular Biophysics and Structural Biology Graduate Program, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA; Toxicology Program, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
2
|
Jang S, Schaich MA, Khuu C, Schnable BL, Majumdar C, Watkins SC, David SS, Van Houten B. Single molecule analysis indicates stimulation of MUTYH by UV-DDB through enzyme turnover. Nucleic Acids Res 2021; 49:8177-8188. [PMID: 34232996 PMCID: PMC8373069 DOI: 10.1093/nar/gkab591] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4-5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.
Collapse
Affiliation(s)
- Sunbok Jang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Cindy Khuu
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, PA 15260, USA
| | - Chandrima Majumdar
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Simon C Watkins
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sheila S David
- Department of Chemistry and Biochemistry, Molecular, Cell and Development Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, PA 15260, USA
| |
Collapse
|
3
|
Kraithong T, Hartley S, Jeruzalmi D, Pakotiprapha D. A Peek Inside the Machines of Bacterial Nucleotide Excision Repair. Int J Mol Sci 2021; 22:ijms22020952. [PMID: 33477956 PMCID: PMC7835731 DOI: 10.3390/ijms22020952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). Below, we discuss the architecture of key proteins in bacterial NER and recent biochemical, structural and single-molecule studies that shed light on the lesion recognition steps of both the GGR and the TCR sub-pathways. Although a great deal has been learned about both of these sub-pathways, several important questions, including damage discrimination, roles of ATP and the orchestration of protein binding and conformation switching, remain to be addressed.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence: (D.J.); (D.P.)
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (D.J.); (D.P.)
| |
Collapse
|
4
|
Kraithong T, Sucharitakul J, Buranachai C, Jeruzalmi D, Chaiyen P, Pakotiprapha D. Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair. DNA Repair (Amst) 2020; 97:103024. [PMID: 33302090 DOI: 10.1016/j.dnarep.2020.103024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Thailand; Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Doctor of Philosophy Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Pimchai Chaiyen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Thakur M, Agarwal A, Muniyappa K. The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function. FEBS J 2020; 288:1179-1200. [PMID: 32602194 DOI: 10.1111/febs.15465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022]
Abstract
To ensure genome stability, bacteria have evolved a network of DNA repair mechanisms; among them, the UvrABC-dependent nucleotide excision repair (NER) pathway is essential for the incision of a variety of bulky adducts generated by exogenous chemicals, UV radiation and by-products of cellular metabolism. However, very little is known about the enzymatic properties of Mycobacterium tuberculosis UvrABC excinuclease complex. Furthermore, the biochemical properties of Escherichia coli UvrC (EcUvrC) are not well understood (compared to UvrA and UvrB), perhaps due to its limited availability and/or activity instability in vitro. In addition, homology modelling of M. tuberculosis UvrC (MtUvrC) revealed the presence of a putative ATP-binding pocket, although its function remains unknown. To elucidate the biochemical properties of UvrC, we constructed and purified wild-type MtUvrC and its eight variants harbouring mutations within the ATP-binding pocket. The data from DNA-binding studies suggest that MtUvrC exhibits high-affinity for duplex DNA containing a bubble or fluorescein-dT moiety, over fluorescein-adducted single-stranded DNA. Most notably, MtUvrC has an intrinsic UvrB-independent ATPase activity, which drives dual incision of the damaged DNA strand. In contrast, EcUvrC is devoid of ATPase activity; however, it retains the ability to bind ATP at levels comparable to that of MtUvrC. The ATPase-deficient variants map to residues lining the MtUvrC ATP-binding pocket. Further analysis of these variants revealed separation of function between ATPase and DNA-binding activities in MtUvrC. Altogether, these findings reveal functional diversity of the bacterial NER machinery and a paradigm for the evolution of a catalytic scaffold in UvrC.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
6
|
Thakur M, Muniyappa K. Deciphering the essentiality and function of SxSx motif in Mycobacterium tuberculosis UvrB. Biochimie 2020; 170:94-105. [PMID: 31923481 DOI: 10.1016/j.biochi.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
The UvrB subunit is a central component of the UvrABC incision complex and plays a pivotal role in damage recognition, strand excision and repair synthesis. A conserved structural motif (the SxSx motif) present in UvrB is analogous to a similar motif (TxGx) in the helicases of superfamily 2, whose function is not fully understood. To elucidate the significance of the SxSx (Ser143-Val144-Ser145-Cys146) motif in Mycobacterium tuberculosis UvrB (MtUvrB), different variants of MtUvrB subunit were constructed and characterized. The SxSx motif indeed was found to be essential for MtUvrB function: while Ser143 and Cys146 residues within this motif were crucial for MtUvrB function, Ser145 plays an important but less essential role. The SxSx motif-deleted mutant was drastically attenuated and three single (S143A, S145A and C146A) mutants and a double (S143A/S145A) mutant exhibited various degrees of severity in their DNA-binding, DNA helicase and ATPase activities. Taken together, these results highlight a hitherto unrecognized role for SxSx motif in the catalytic activities of UvrB.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
8
|
LeBlanc S, Wilkins H, Li Z, Kaur P, Wang H, Erie DA. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair. Methods Enzymol 2017; 592:187-212. [PMID: 28668121 PMCID: PMC5761736 DOI: 10.1016/bs.mie.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes.
Collapse
Affiliation(s)
- Sharonda LeBlanc
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hunter Wilkins
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zimeng Li
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Parminder Kaur
- North Carolina State University, Raleigh, NC, United States
| | - Hong Wang
- North Carolina State University, Raleigh, NC, United States
| | - Dorothy A Erie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
9
|
Kong M, Beckwitt EC, Springall L, Kad NM, Van Houten B. Single-Molecule Methods for Nucleotide Excision Repair: Building a System to Watch Repair in Real Time. Methods Enzymol 2017; 592:213-257. [PMID: 28668122 DOI: 10.1016/bs.mie.2017.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair.
Collapse
Affiliation(s)
- Muwen Kong
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Emily C Beckwitt
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Luke Springall
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Bennett Van Houten
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
10
|
Abstract
Ubiquitous conserved processes that repair DNA damage are essential for the maintenance and propagation of genomes over generations. Then again, inaccuracies in DNA transactions and failures to remove mutagenic lesions cause heritable genome changes. Building on decades of research using genetics and biochemistry, unprecedented quantitative insight into DNA repair mechanisms has come from the new-found ability to measure single proteins in vitro and inside individual living cells. This has brought together biologists, chemists, engineers, physicists, and mathematicians to solve long-standing questions about the way in which repair enzymes search for DNA lesions and form protein complexes that act in DNA repair pathways. Furthermore, unexpected discoveries have resulted from capabilities to resolve molecular heterogeneity and cell subpopulations, provoking new questions about the role of stochastic processes in DNA repair and mutagenesis. These studies are leading to new technologies that will find widespread use in basic research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| |
Collapse
|
11
|
Thakur M, Kumar MBJ, Muniyappa K. Mycobacterium tuberculosis UvrB Is a Robust DNA-Stimulated ATPase That Also Possesses Structure-Specific ATP-Dependent DNA Helicase Activity. Biochemistry 2016; 55:5865-5883. [PMID: 27618337 DOI: 10.1021/acs.biochem.6b00558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Much is known about the Escherichia coli nucleotide excision repair (NER) pathway; however, very little is understood about the proteins involved and the molecular mechanism of NER in mycobacteria. In this study, we show that Mycobacterium tuberculosis UvrB (MtUvrB), which exists in solution as a monomer, binds to DNA in a structure-dependent manner. A systematic examination of MtUvrB substrate specificity reveals that it associates preferentially with single-stranded DNA, duplexes with 3' or 5' overhangs, and linear duplex DNA with splayed arms. Whereas E. coli UvrB (EcUvrB) binds weakly to undamaged DNA and has no ATPase activity, MtUvrB possesses intrinsic ATPase activity that is greatly stimulated by both single- and double-stranded DNA. Strikingly, we found that MtUvrB, but not EcUvrB, possesses the DNA unwinding activity characteristic of an ATP-dependent DNA helicase. The helicase activity of MtUvrB proceeds in the 3' to 5' direction and is strongly modulated by a nontranslocating 5' single-stranded tail, indicating that in addition to the translocating strand it also interacts with the 5' end of the substrate. The fraction of DNA unwound by MtUvrB decreases significantly as the length of the duplex increases: it fails to unwind duplexes longer than 70 bp. These results, on one hand, reveal significant mechanistic differences between MtUvrB and EcUvrB and, on the other, support an alternative role for UvrB in the processing of key DNA replication intermediates. Altogether, our findings provide insights into the catalytic functions of UvrB and lay the foundation for further understanding of the NER pathway in M. tuberculosis.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - Mohan B J Kumar
- Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
12
|
Wirth N, Gross J, Roth HM, Buechner CN, Kisker C, Tessmer I. Conservation and Divergence in Nucleotide Excision Repair Lesion Recognition. J Biol Chem 2016; 291:18932-46. [PMID: 27405761 DOI: 10.1074/jbc.m116.739425] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is an important and highly conserved DNA repair mechanism with an exceptionally large range of chemically and structurally unrelated targets. Lesion verification is believed to be achieved by the helicases UvrB and XPD in the prokaryotic and eukaryotic processes, respectively. Using single molecule atomic force microscopy analyses, we demonstrate that UvrB and XPD are able to load onto DNA and pursue lesion verification in the absence of the initial lesion detection proteins. Interestingly, our studies show different lesion recognition strategies for the two functionally homologous helicases, as apparent from their distinct DNA strand preferences, which can be rationalized from the different structural features and interactions with other nucleotide excision repair protein factors of the two enzymes.
Collapse
Affiliation(s)
- Nicolas Wirth
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jonas Gross
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Heide M Roth
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Claudia N Buechner
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Caroline Kisker
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Ghosh S, Greenberg MM. Nucleotide excision repair of chemically stabilized analogues of DNA interstrand cross-links produced from oxidized abasic sites. Biochemistry 2014; 53:5958-65. [PMID: 25208227 PMCID: PMC4172206 DOI: 10.1021/bi500914d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nucleotide excision repair is a primary pathway in cells for coping with DNA interstrand cross-links (ICLs). Recently, C4'-oxidized (C4-AP) and C5'-oxidized abasic sites (DOB) that are produced following hydrogen atom abstraction from the DNA backbone were found to produce ICLs. Because some of the ICLs derived from C4-AP and DOB are too unstable to characterize in biochemical processes, chemically stable analogues were synthesized [Ghosh, S., and Greenberg, M. M. (2014) J. Org. Chem. 79, 5948-5957]. UvrABC incision of DNA substrates containing stabilized analogues of the ICLs derived from C4-AP and DOB was examined. The incision pattern for the ICL related to the C4'-oxidized abasic site was typical for UvrABC substrates. UvrABC cleaved both strands of the substrate containing the C4-AP ICL analogue, but it was a poor substrate. UvrABC incised <30% of the C4-AP ICL analogue over an 8 h period, raising the possibility that this cross-link will be inefficiently repaired in cells. Furthermore, double-strand breaks were not detected upon incision of an internally labeled hairpin substrate containing the C4-AP ICL analogue. UvrABC incised the stabilized analogue of the DOB ICL more efficiently (~20% in 1 h). Furthermore, the incision pattern was unique, and the cross-linked substrate was converted into a single product, a double-strand break. The template strand was exclusively incised on the template strand on the 3'-side of the cross-linked dA. Although the outcomes of the interaction between UvrABC and these two cross-linked substrates are different from one another, they provide additional examples of how seemingly simple lesions (C4-AP and DOB) can potentially exert significant deleterious effects on biochemical processes.
Collapse
Affiliation(s)
- Souradyuti Ghosh
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
14
|
Lin J, Kaur P, Countryman P, Opresko PL, Wang H. Unraveling secrets of telomeres: one molecule at a time. DNA Repair (Amst) 2014; 20:142-153. [PMID: 24569170 DOI: 10.1016/j.dnarep.2014.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/03/2014] [Accepted: 01/13/2014] [Indexed: 01/23/2023]
Abstract
Telomeres play important roles in maintaining the stability of linear chromosomes. Telomere maintenance involves dynamic actions of multiple proteins interacting with long repetitive sequences and complex dynamic DNA structures, such as G-quadruplexes, T-loops and t-circles. Given the heterogeneity and complexity of telomeres, single-molecule approaches are essential to fully understand the structure-function relationships that govern telomere maintenance. In this review, we present a brief overview of the principles of single-molecule imaging and manipulation techniques. We then highlight results obtained from applying these single-molecule techniques for studying structure, dynamics and functions of G-quadruplexes, telomerase, and shelterin proteins.
Collapse
Affiliation(s)
- Jiangguo Lin
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Preston Countryman
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
15
|
Van Houten B, Kad N. Investigation of bacterial nucleotide excision repair using single-molecule techniques. DNA Repair (Amst) 2014; 20:41-48. [PMID: 24472181 PMCID: PMC5053424 DOI: 10.1016/j.dnarep.2013.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022]
Abstract
Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER.
Collapse
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Neil Kad
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
16
|
Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair. PLoS Genet 2013; 9:e1003878. [PMID: 24244177 PMCID: PMC3820734 DOI: 10.1371/journal.pgen.1003878] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 12/02/2022] Open
Abstract
Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8th phosphodiester bond 5′ and 4th–5th phosphodiester bonds 3′ of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the broad list of helix-distorting modifications that are substrates for NER. Most DNA polymerases differentiate between ribo- and deoxyribonucleotides quite effectively, thereby deterring insertion of nucleotides with the “wrong” sugar into chromosomes. Nevertheless, a significant number of ribonucleotides still get stably incorporated into genomic DNA. E.coli pol V is among the most inaccurate DNA polymerases in terms of both sugar selectivity and base substitution fidelity. The umuC_Y11A steric gate variant of pol V is even less discriminating when selecting sugar of the incoming nucleotide while keeping a similar capacity to form non-Watson-Crick base pairs. In the present study, we describe mechanisms employed by E. coli to excise rNMPs from DNA and to concomitantly reduce the extent of spontaneous mutagenesis induced by umuC_Y11A. The first line of defense comes from Ribonuclease HII, which initiates the ribonucleotide excision repair pathway. In the absence of RNase HII, alternate repair pathways help remove the misincorporated ribonucleotides. Here, we present the first direct evidence that nucleotide excision repair (NER) has the capacity to recognize both correctly and incorrectly paired rNMPs embedded in DNA. The combined actions of RNase HII and NER thereby reduce the mutagenic potential of ribonucleotides errantly incorporated into prokaryotic genomes.
Collapse
|
17
|
McKibbin PL, Fleming AM, Towheed MA, Van Houten B, Burrows CJ, David SS. Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J Am Chem Soc 2013; 135:13851-61. [PMID: 23930966 PMCID: PMC3906845 DOI: 10.1021/ja4059469] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An important feature of the common DNA oxidation product 8-oxo-7,8-dihydroguanine (OG) is its susceptibility to further oxidation that produces guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) lesions. In the presence of amines, G or OG oxidation produces hydantoin amine adducts. Such adducts may form in cells via interception of oxidized intermediates by protein-derived nucleophiles or naturally occurring amines that are tightly associated with DNA. Gh and Sp are known to be substrates for base excision repair (BER) glycosylases; however, large Sp-amine adducts would be expected to be more readily repaired by nucleotide excision repair (NER). A series of Sp adducts differing in the size of the attached amine were synthesized to evaluate the relative processing by NER and BER. The UvrABC complex excised Gh, Sp, and the Sp-amine adducts from duplex DNA, with the greatest efficiency for the largest Sp-amine adducts. The affinity of UvrA for all of the lesion duplexes was found to be similar, whereas the efficiency of UvrB loading tracked with the efficiency of UvrABC excision. In contrast, the human BER glycosylase NEIL1 exhibited robust activity for all Sp-amine adducts irrespective of size. These studies suggest that both NER and BER pathways mediate repair of a diverse set of hydantoin lesions in cells.
Collapse
Affiliation(s)
- Paige L. McKibbin
- Department of Chemistry, One Shields Avenue, University of California, Davis, Davis, California 95616 United States
| | - Aaron M. Fleming
- Department of Chemistry, 315 S. 1400 East, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Mohammad Atif Towheed
- Department of Pharmacology and Chemical Biology, 5117 Centre Avenue, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 United States,
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, 5117 Centre Avenue, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 United States,
| | - Cynthia J. Burrows
- Department of Chemistry, 315 S. 1400 East, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Sheila S. David
- Department of Chemistry, One Shields Avenue, University of California, Davis, Davis, California 95616 United States
| |
Collapse
|
18
|
Hughes CD, Wang H, Ghodke H, Simons M, Towheed A, Peng Y, Van Houten B, Kad NM. Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes. Nucleic Acids Res 2013; 41:4901-12. [PMID: 23511970 PMCID: PMC3643590 DOI: 10.1093/nar/gkt177] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Nucleotide excision DNA repair is mechanistically conserved across all kingdoms of life. In prokaryotes, this multi-enzyme process requires six proteins: UvrA–D, DNA polymerase I and DNA ligase. To examine how UvrC locates the UvrB–DNA pre-incision complex at a site of damage, we have labeled UvrB and UvrC with different colored quantum dots and quantitatively observed their interactions with DNA tightropes under a variety of solution conditions using oblique angle fluorescence imaging. Alone, UvrC predominantly interacts statically with DNA at low salt. Surprisingly, however, UvrC and UvrB together in solution bind to form the previously unseen UvrBC complex on duplex DNA. This UvrBC complex is highly motile and engages in unbiased one-dimensional diffusion. To test whether UvrB makes direct contact with the DNA in the UvrBC–DNA complex, we investigated three UvrB mutants: Y96A, a β-hairpin deletion and D338N. These mutants affected the motile properties of the UvrBC complex, indicating that UvrB is in intimate contact with the DNA when bound to UvrC. Given the in vivo excess of UvrB and the abundance of UvrBC in our experiments, this newly identified complex is likely to be the predominant form of UvrC in the cell.
Collapse
Affiliation(s)
- Craig D Hughes
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation.
Collapse
Affiliation(s)
- Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|
20
|
Kuper J, Kisker C. DNA Helicases in NER, BER, and MMR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:203-24. [DOI: 10.1007/978-1-4614-5037-5_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Abstract
ATP-dependent nucleic acid helicases and translocases play essential roles in many aspects of DNA and RNA biology. In order to ensure that these proteins act only in specific contexts, their activity is often regulated by intramolecular contacts and interaction with partner proteins. We have studied the bacterial Mfd protein, which is an ATP-dependent DNA translocase that relocates or displaces transcription ECs in a variety of cellular contexts. When bound to RNAP, Mfd exhibits robust ATPase and DNA translocase activities, but when released from its substrate these activities are repressed by autoinhibitory interdomain contacts. In this work, we have identified an interface within the Mfd protein that is important for regulating the activity of the protein, and whose disruption permits Mfd to act indiscriminately at transcription complexes that lack the usual determinants of Mfd specificity. Our results indicate that regulation of Mfd occurs through multiple nodes, and that activation of Mfd may be a multi-stage process.
Collapse
Affiliation(s)
- Abigail J Smith
- DNA-protein interactions unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
22
|
Webster MPJ, Jukes R, Zamfir VS, Kay CWM, Bagnéris C, Barrett T. Crystal structure of the UvrB dimer: insights into the nature and functioning of the UvrAB damage engagement and UvrB-DNA complexes. Nucleic Acids Res 2012; 40:8743-58. [PMID: 22753105 PMCID: PMC3458569 DOI: 10.1093/nar/gks633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UvrB has a central role in the highly conserved UvrABC pathway functioning not only as a damage recognition element but also as an essential component of the lesion tracking machinery. While it has been recently confirmed that the tracking assembly comprises a UvrA2B2 heterotetramer, the configurations of the damage engagement and UvrB–DNA handover complexes remain obscure. Here, we present the first crystal structure of a UvrB dimer whose biological significance has been verified using both chemical cross-linking and electron paramagnetic resonance spectroscopy. We demonstrate that this dimeric species stably associates with UvrA and forms a UvrA2B2–DNA complex. Our studies also illustrate how signals are transduced between the ATP and DNA binding sites to generate the helicase activity pivotal to handover and formation of the UvrB2–DNA complex, providing key insights into the configurations of these important repair intermediates.
Collapse
Affiliation(s)
- Matthew P J Webster
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
23
|
Ganesan A, Spivak G, Hanawalt PC. Transcription-coupled DNA repair in prokaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:25-40. [PMID: 22749141 DOI: 10.1016/b978-0-12-387665-2.00002-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd.
Collapse
Affiliation(s)
- Ann Ganesan
- Department of Biology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
24
|
Dynamics of lesion processing by bacterial nucleotide excision repair proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:1-24. [PMID: 22749140 DOI: 10.1016/b978-0-12-387665-2.00001-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule approaches permit an unrivalled view of how complex systems operate and have recently been used to understand DNA-protein interactions. These tools have enabled advances in a particularly challenging problem, the search for damaged sites on DNA. DNA repair proteins are present at the level of just a few hundred copies in bacterial cells to just a few thousand in human cells, and they scan the entire genome in search of their specific substrates. How do these proteins achieve this herculean task when their targets may differ from undamaged DNA by only a single hydrogen bond? Here we examine, using single-molecule approaches, how the prokaryotic nucleotide excision repair system balances the necessity for speed against specificity. We discuss issues at a theoretical, biological, and technical level and finally pose questions for future research.
Collapse
|
25
|
Kuper J, Wolski SC, Michels G, Kisker C. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 2011; 31:494-502. [PMID: 22081108 DOI: 10.1038/emboj.2011.374] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/20/2011] [Indexed: 01/16/2023] Open
Abstract
The XPD protein is a vital subunit of the general transcription factor TFIIH which is not only involved in transcription but is also an essential component of the eukaryotic nucleotide excision DNA repair (NER) pathway. XPD is a superfamily-2 5'-3' helicase containing an iron-sulphur cluster. Its helicase activity is indispensable for NER and it plays a role in the damage verification process. Here, we report the first structure of XPD from Thermoplasma acidophilum (taXPD) in complex with a short DNA fragment, thus revealing the polarity of the translocated strand and providing insights into how the enzyme achieves its 5'-3' directionality. Accompanied by a detailed mutational and biochemical analysis of taXPD, we define the path of the translocated DNA strand through the protein and identify amino acids that are critical for protein function.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
26
|
Jung KY, Kodama T, Greenberg MM. Repair of the major lesion resulting from C5'-oxidation of DNA. Biochemistry 2011; 50:6273-9. [PMID: 21696131 DOI: 10.1021/bi200787e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation of the C5'-position of DNA results in direct strand scission. The 3'-fragments produced contain DNA lesions at their 5'-termini. The major DNA lesion contains an aldehyde at its C5'-position, but its nucleobase is unmodified. Excision of the lesion formed from oxidation of thymidine (T-al) is achieved by strand displacement synthesis by DNA polymerase β (Pol β) in the presence or absence of flap endonuclease 1 (FEN1). Pol β displaces T-al and thymidine with comparable efficiency, but less so than a chemically stabilized abasic site analogue (F). FEN1 cleaves the flaps produced during strand displacement synthesis that are two nucleotides or longer. A ternary complex containing T-al is also a substrate for the bacterial UvrABC nucleotide excision repair system. The sites of strand scission are identical in ternary complexes containing T-al, thymidine, or F. UvrABC incision efficiency of these ternary complexes is comparable as well but significantly slower than a duplex substrate containing a bulky substituted thymidine. However, cleavage occurs only on the 5'-fragment and does not remove the lesion. These data suggest that unlike many lesions the redundant nature of base excision and nucleotide excision repair systems does not provide a means for removing the major damage product produced by agents that oxidize the C5'-position. This may contribute to the high cytotoxicity of drugs that oxidize the C5'-position in DNA.
Collapse
Affiliation(s)
- Kwan-Young Jung
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | | | | |
Collapse
|
27
|
Abstract
The C2'-oxidized abasic lesion (C2-AP) is produced in DNA that is subjected to oxidative stress. The lesion disrupts replication and gives rise to mutations that are dependent upon the identity of the upstream nucleotide. Ape1 incises C2-AP, but the 5'-phosphorylated fragment is not a substrate for the lyase activity of DNA polymerase beta. Excision of the lesion is achieved by strand displacement synthesis in the presence of flap endonuclease during which C2-AP and the 3'-adjacent nucleotide are replaced. The oxidized abasic lesion is also a substrate for the bacterial UvrABC nucleotide excision repair system. These data suggest that the redundant nature of DNA repair systems provides a means for removing a lesion that resists excision by short patch base excision repair.
Collapse
Affiliation(s)
- Remus S. Wong
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, Phone: 410-516-8095 Fax: 410-516-7044
| | - Jonathan T. Sczepanski
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, Phone: 410-516-8095 Fax: 410-516-7044
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, Phone: 410-516-8095 Fax: 410-516-7044
| |
Collapse
|
28
|
Kad NM, Wang H, Kennedy GG, Warshaw DM, Van Houten B. Collaborative dynamic DNA scanning by nucleotide excision repair proteins investigated by single- molecule imaging of quantum-dot-labeled proteins. Mol Cell 2010; 37:702-13. [PMID: 20227373 DOI: 10.1016/j.molcel.2010.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/14/2009] [Accepted: 12/23/2009] [Indexed: 11/29/2022]
Abstract
How DNA repair proteins sort through a genome for damage is one of the fundamental unanswered questions in this field. To address this problem, we uniquely labeled bacterial UvrA and UvrB with differently colored quantum dots and visualized how they interacted with DNA individually or together using oblique-angle fluorescence microscopy. UvrA was observed to utilize a three-dimensional search mechanism, binding transiently to the DNA for short periods (7 s). UvrA also was observed jumping from one DNA molecule to another over approximately 1 microm distances. Two UvrBs can bind to a UvrA dimer and collapse the search dimensionality of UvrA from three to one dimension by inducing a substantial number of UvrAB complexes to slide along the DNA. Three types of sliding motion were characterized: random diffusion, paused motion, and directed motion. This UvrB-induced change in mode of searching permits more rapid and efficient scanning of the genome for damage.
Collapse
Affiliation(s)
- Neil M Kad
- Department of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK.
| | | | | | | | | |
Collapse
|
29
|
Peng X, Ghosh AK, Van Houten B, Greenberg MM. Nucleotide excision repair of a DNA interstrand cross-link produces single- and double-strand breaks. Biochemistry 2010; 49:11-9. [PMID: 20000382 DOI: 10.1021/bi901603h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA radical resulting from formal abstraction of a hydrogen atom from the thymidine methyl group, 5-(2'-deoxyuridinyl)methyl radical, forms interstrand cross-links with the opposing 2'-deoxyadenosine. This is the first chemically characterized, radical-mediated cross-link between two opposing nucleotides. In addition, cross-linking between opposing bases in the duplex is less common than between those separated by one or two nucleotides. The first step in cross-link repair was investigated using the UvrABC bacterial nucleotide excision repair system. UvrABC incised both strands of the cross-linked DNA, although the strand containing the cross-linked purine was preferred by the enzyme in two different duplexes. The incision sites in one strand were spaced 11-14 nucleotides apart, as is typical for UvrABC incision. The majority of incisions occur at the third phosphate from the 3'-side of the cross-link and eighth or ninth phosphate on the 5'-side. In addition, cleavage was found to occur on both strands, producing double-strand breaks in approximately 25-29% of the incision events. This is the first example of double-strand cleavage during nucleotide excision repair of cross-linked DNA that does not already contain a strand break in the vicinity of the cross-link.
Collapse
Affiliation(s)
- Xiaohua Peng
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
30
|
Jia L, Kropachev K, Ding S, Van Houten B, Geacintov NE, Broyde S. Exploring damage recognition models in prokaryotic nucleotide excision repair with a benzo[a]pyrene-derived lesion in UvrB. Biochemistry 2009; 48:8948-57. [PMID: 19681599 DOI: 10.1021/bi9010072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The UvrB protein is a central unit for damage recognition in the prokaryotic nucleotide excision repair system, which excises bulky DNA lesions. We have utilized molecular modeling and MD simulations based on crystal structures, mutagenesis, and fluorescence data, to model the 10R-(+)-cis-anti-B[a]P-N2-dG lesion, derived from the tumorigenic (+)-anti-B[a]PDE metabolite of benzo[a]pyrene, at different locations on the inner and outer strand in UvrB. Our results suggest that this lesion is accommodated on the inner strand where it might translocate through the tunnel created by the beta-hairpin and UvrB domain 1B and ultimately could be housed in the pocket behind the beta-hairpin prior to excision by UvrC. Lesions that vary in size and shape may be stopped at the gate to the tunnel, within the tunnel, or in the pocket when UvrC initiates excision. Common features of beta-hairpin intrusion between the two DNA strands and nucleotide flipping manifested in structures of prokaryotic and eukaryotic NER lesion recognition proteins are consistent with common recognition mechanisms, based on lesion-induced local thermodynamic distortion/destabilization and nucleotide flipping.
Collapse
Affiliation(s)
- Lei Jia
- Department of Biology, New York University, 100 Washington Square East, Room 1009, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
31
|
Murphy MN, Gong P, Ralto K, Manelyte L, Savery NJ, Theis K. An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd. Nucleic Acids Res 2009; 37:6042-53. [PMID: 19700770 PMCID: PMC2764443 DOI: 10.1093/nar/gkp680] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Motor proteins that translocate on nucleic acids are key players in gene expression and maintenance. While the function of these proteins is diverse, they are driven by highly conserved core motor domains. In transcription-coupled DNA repair, motor activity serves to remove RNA polymerase stalled on damaged DNA, making the lesion accessible for repair. Structural and biochemical data on the bacterial transcription-repair coupling factor Mfd suggest that this enzyme undergoes large conformational changes from a dormant state to an active state upon substrate binding. Mfd can be functionally dissected into an N-terminal part instrumental in recruiting DNA repair proteins (domains 1–3, MfdN), and a C-terminal part harboring motor activity (domains 4–7, MfdC). We show that isolated MfdC has elevated ATPase and motor activities compared to the full length protein. While MfdN has large effects on MfdC activity and thermostability in cis, these effects are not observed in trans. The structure of MfdN is independent of interactions with MfdC, implying that MfdN acts as a clamp that restrains motions of the motor domains in the dormant state. We conclude that releasing MfdN:MfdC interactions serves as a central molecular switch that upregulates Mfd functions during transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Michael N Murphy
- Department of Chemistry, Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
32
|
DNA wrapping is required for DNA damage recognition in the Escherichia coli DNA nucleotide excision repair pathway. Proc Natl Acad Sci U S A 2009; 106:12849-54. [PMID: 19549864 DOI: 10.1073/pnas.0902281106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Localized DNA melting may provide a general strategy for recognition of the wide array of chemically and structurally diverse DNA lesions repaired by the nucleotide excision repair (NER) pathway. However, it is not clear what causes such DNA melting and how it is driven. Here, we show a DNA wrapping-melting model supported by results from dynamic monitoring of the key DNA-protein and protein-protein interactions involved in the early stages of the Escherichia coli NER process. Using an analytical technique involving capillary electrophoresis coupled with laser-induced fluorescence polarization, which combines a mobility shift assay with conformational analysis, we demonstrate that DNA wrapping around UvrB, mediated by UvrA, is an early event in the damage-recognition process during E. coli NER. DNA wrapping of UvrB was confirmed by Förster resonance energy transfer and fluorescence lifetime measurements. This wrapping did not occur with readily denaturable damaged DNA substrates ("bubble" DNA), suggesting that DNA wrapping of UvrB plays an important role in the induction of DNA melting around the damage site. Analysis of DNA wrapping of mutant UvrB Y96A further suggests that a cooperative interaction between DNA wrapping of UvrA(2)B and contact of the beta-hairpin of UvrB with the bulky damage moiety may be involved in the local DNA melting at the damage site.
Collapse
|
33
|
Wagner K, Moolenaar G, van Noort J, Goosen N. Single-molecule analysis reveals two separate DNA-binding domains in the Escherichia coli UvrA dimer. Nucleic Acids Res 2009; 37:1962-72. [PMID: 19208636 PMCID: PMC2665241 DOI: 10.1093/nar/gkp071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The UvrA protein is the initial damage-recognizing factor in bacterial nucleotide excision repair. Each monomer of the UvrA dimer contains two ATPase sites. Using single-molecule analysis we show that dimerization of UvrA in the presence of ATP is significantly higher than with ADP or nonhydrolyzable ATPγS, suggesting that the active UvrA dimer contains a mixture of ADP and ATP. We also show that the UvrA dimer has a high preference of binding the end of a linear DNA fragment, independent on the presence or type of cofactor. Apparently ATP binding or hydrolysis is not needed to discriminate between DNA ends and internal sites. A significant number of complexes could be detected where one UvrA dimer bridges two DNA ends implying the presence of two separate DNA-binding domains, most likely present in each monomer. On DNA containing a site-specific lesion the damage-specific binding is much higher than DNA-end binding, but only in the absence of cofactor or with ATP. With ATPγS no discrimination between a DNA end and a DNA damage could be observed. We present a model where damage recognition of UvrA depends on the ability of both UvrA monomers to interact with the DNA flanking the lesion.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | | | | | | |
Collapse
|
34
|
Wang H, Tessmer I, Croteau DL, Erie DA, Van Houten B. Functional characterization and atomic force microscopy of a DNA repair protein conjugated to a quantum dot. NANO LETTERS 2008; 8:1631-7. [PMID: 18444686 PMCID: PMC3941028 DOI: 10.1021/nl080316l] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Quantum dots (QDs) possess highly desirable optical properties that make them ideal fluorescent labels for studying the dynamic behavior of proteins. However, a lack of characterization methods for reliably determining protein-quantum dot conjugate stoichiometry and functionality has impeded their widespread use in single-molecule studies. We used atomic force microscopic (AFM) imaging to demonstrate the 1:1 formation of UvrB-QD conjugates based on an antibody-sandwich method. We show that an agarose gel-based electrophoresis mobility shift assay and AFM can be used to evaluate the DNA binding function of UvrB-QD conjugates. Importantly, we demonstrate that quantum dots can serve as a molecular marker to unambiguously identify the presence of a labeled protein in AFM images.
Collapse
Affiliation(s)
| | | | | | - Dorothy A. Erie
- Corresponding authors: (D.A.E.); (B.V.H.). Telephone: (919) 962-6370 (D.A.E.); (919) 541-2799 (B.V.H.). Fax: (919) 962-2388 (D.A.E.); (919) 541-7593 (B.V.H.)
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, Department of Chemistry and Curriculum in Material Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
35
|
Imoto S, Bransfield LA, Croteau DL, Van Houten B, Greenberg MM. DNA tandem lesion repair by strand displacement synthesis and nucleotide excision repair. Biochemistry 2008; 47:4306-16. [PMID: 18341293 PMCID: PMC2432464 DOI: 10.1021/bi7021427] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA tandem lesions are comprised of two contiguously damaged nucleotides. This subset of clustered lesions is produced by a variety of oxidizing agents, including ionizing radiation. Clustered lesions can inhibit base excision repair (BER). We report the effects of tandem lesions composed of a thymine glycol and a 5'-adjacent 2-deoxyribonolactone (LTg) or tetrahydrofuran abasic site (FTg). Some BER enzymes that act on the respective isolated lesions do not accept the tandem lesion as a substrate. For instance, endonuclease III (Nth) does not excise thymine glycol (Tg) when it is part of either tandem lesion. Similarly, endonuclease IV (Nfo) does not incise L or F when they are in tandem with Tg. Long-patch BER overcomes inhibition by the tandem lesion. DNA polymerase beta (Pol beta) carries out strand displacement synthesis, following APE1 incision of the abasic site. Pol beta activity is enhanced by flap endonuclease (FEN1), which cleaves the resulting flap. The tandem lesion is also incised by the bacterial nucleotide excision repair system UvrABC with almost the same efficiency as an isolated Tg. These data reveal two solutions that DNA repair systems can use to counteract the formation of tandem lesions.
Collapse
Affiliation(s)
| | | | | | | | - Marc M. Greenberg
- * To whom correspondence should be addressed. Tel: 410-516-8095. Fax: 410-516-7044. E-mail:
| |
Collapse
|
36
|
Croteau DL, DellaVecchia MJ, Perera L, Van Houten B. Cooperative damage recognition by UvrA and UvrB: identification of UvrA residues that mediate DNA binding. DNA Repair (Amst) 2008; 7:392-404. [PMID: 18248777 PMCID: PMC2396233 DOI: 10.1016/j.dnarep.2007.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/24/2022]
Abstract
Nucleotide excision repair (NER) is responsible for the recognition and removal of numerous structurally unrelated DNA lesions. In prokaryotes, the proteins UvrA, UvrB and UvrC orchestrate the recognition and excision of aberrant lesions from DNA. Despite the progress we have made in understanding the NER pathway, it remains unclear how the UvrA dimer interacts with DNA to facilitate DNA damage recognition. The purpose of this study was to define amino acid residues in UvrA that provide binding energy to DNA. Based on conservation among approximately 300 UvrA sequences and 3D-modeling, two positively charged residues, Lys680 and Arg691, were predicted to be important for DNA binding. Mutagenesis and biochemical analysis of Bacillus caldontenax UvrA variant proteins containing site directed mutations at these residues demonstrate that Lys680 and Arg691 make a significant contribution toward the DNA binding affinity of UvrA. Replacing these side chains with alanine or negatively charged residues decreased UvrA binding 3-37-fold. Survival studies indicated that these mutant proteins complemented a WP2 uvrA(-) strain of bacteria 10-100% of WT UvrA levels. Further analysis by DNase I footprinting of the double UvrA mutant revealed that the UvrA DNA binding defects caused a slower rate of transfer of DNA to UvrB. Consequently, the mutants initiated the oligonucleotide incision assay nearly as well as WT UvrA thus explaining the observed mild phenotype in the survival assay. Based on our findings we propose a model of how UvrA binds to DNA.
Collapse
Affiliation(s)
- Deborah L. Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, RTP, NC 27709
| | - Matthew J. DellaVecchia
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, RTP, NC 27709
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, RTP, NC 27709
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, RTP, NC 27709
| |
Collapse
|
37
|
Richards JD, Johnson KA, Liu H, McRobbie AM, McMahon S, Oke M, Carter L, Naismith JH, White MF. Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains. J Biol Chem 2008; 283:5118-26. [PMID: 18056710 PMCID: PMC3434800 DOI: 10.1074/jbc.m707548200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as an autoinhibitory domain or molecular brake, clamping the single-stranded DNA extruded through the central pore of the helicase structure to limit the helicase activity of the enzyme. This provides an elegant mechanism to tune the processivity of the enzyme to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, and this activity is only partially inhibited when the DNA is pre-bound with abundant DNA-binding proteins RPA or Alba1, whereas pre-binding with the recombinase RadA has no effect on activity. These data suggest that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Crystallography, X-Ray
- DNA Helicases/chemistry
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Repair/physiology
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Archaeal/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Directed DNA Polymerase/chemistry
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- Drosophila
- Humans
- Molecular Sequence Data
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- Recombination, Genetic/physiology
- Structural Homology, Protein
- Sulfolobus solfataricus/enzymology
- Sulfolobus solfataricus/genetics
Collapse
Affiliation(s)
- Jodi D Richards
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brar SS, Sacho EJ, Tessmer I, Croteau DL, Erie DA, Diaz M. Activation-induced deaminase, AID, is catalytically active as a monomer on single-stranded DNA. DNA Repair (Amst) 2008; 7:77-87. [PMID: 17889624 PMCID: PMC2693009 DOI: 10.1016/j.dnarep.2007.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 11/18/2022]
Abstract
Hypermutation and class switch recombination of immunoglobulin genes are antigen-activated mechanisms triggered by AID, a cytidine deaminase. AID deaminates cytidine residues in the DNA of the variable and the switch regions of the immunoglobulin locus. The resulting uracil induces error-prone DNA synthesis in the case of hypermutation or DNA breaks that activate non-homologous recombination in the case of class switch recombination. In vitro studies have demonstrated that AID deaminates single-stranded but not double-stranded substrates unless AID is in a complex with RPA and the substrate is actively undergoing transcription. However, it is not clear whether AID deaminates its substrates primarily as a monomer or as a higher order oligomer. To examine the oligomerization state of AID alone and in the presence of single-stranded DNA substrates of various structures, including loops embedded in double-stranded DNA, we used atomic force microscopy (AFM) to visualize AID protein alone or in complex with DNA. Surprisingly, AFM results indicate that most AID molecules exist as a monomer and that it binds single-stranded DNA substrates as a monomer at concentrations where efficient deamination of single-stranded DNA substrates occur. The rate of deamination, under conditions of excess and limiting protein, also imply that AID can deaminate single-stranded substrates as a monomer. These results imply that non-phosphorylated AID is catalytically active as a monomer on single-stranded DNA in vitro, including single-stranded DNA found in loops similar to those transiently formed in the immunoglobulin switch regions during transcription.
Collapse
Affiliation(s)
- Sukhdev S. Brar
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health, Sciences/National Institutes of Health 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Elizabeth J. Sacho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ingrid Tessmer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah L. Croteau
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health, Sciences/National Institutes of Health 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Dorothy A. Erie
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Applied and Material Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health, Sciences/National Institutes of Health 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
39
|
DellaVecchia MJ, Merritt WK, Peng Y, Kirby TW, DeRose EF, Mueller GA, Van Houten B, London RE. NMR analysis of [methyl-13C]methionine UvrB from Bacillus caldotenax reveals UvrB-domain 4 heterodimer formation in solution. J Mol Biol 2007; 373:282-95. [PMID: 17822711 PMCID: PMC2626275 DOI: 10.1016/j.jmb.2007.07.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/19/2022]
Abstract
UvrB is a central DNA damage recognition protein involved in bacterial nucleotide excision repair. Structural information has been limited by the apparent disorder of the C-terminal domain 4 in crystal structures of intact UvrB; in solution, the isolated domain 4 is found to form a helix-loop-helix dimer. In order to gain insight into the behavior of UvrB in solution, we have performed NMR studies on [methyl-13C]methionine-labeled UvrB from Bacillus caldotenax (molecular mass=75 kDa). The 13 methyl resonances were assigned on the basis of site-directed mutagenesis and domain deletion. Solvent accessibility was assessed based on the relaxation and chemical shift responses of the probe methyl resonances to the stable nitroxide, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL). M632, located at the potential dimer interface of domain 4, provides an ideal probe for UvrB dimerization behavior. The M632 resonance of UvrB is very broad, consistent with some degree of monomer-dimer exchange and/or conformational instability of the exposed dimer interface. Upon addition of unlabeled domain 4 peptide, the M632 resonance of UvrB sharpens and shifts to a position consistent with a UvrB-domain 4 heterodimer. A dissociation constant (KD) value of 3.3 microM for the binding constant of UvrB with the domain 4 peptide was derived from surface plasmon resonance studies. Due to the flexibility of the domain 3-4 linker, inferred from limited proteolysis data and from the relaxation behavior of linker residue M607, the position of domain 4 is constrained not by the stiffness of the linking segment but by direct interactions with domains 1-3 in UvrB. In summary, UvrB homodimerization is disfavored, while domain 4 homodimerization and UvrB-domain 4 heterodimerization are allowed.
Collapse
Affiliation(s)
- Matthew J DellaVecchia
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Smith AJ, Szczelkun MD, Savery NJ. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Res 2007; 35:1802-11. [PMID: 17329375 PMCID: PMC1874598 DOI: 10.1093/nar/gkm019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/22/2006] [Accepted: 01/02/2007] [Indexed: 11/24/2022] Open
Abstract
Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes we have studied the bacterial transcription-repair coupling factor, Mfd, which is a helicase superfamily 2 member that binds to RNA polymerase (RNAP) and removes stalled transcription complexes from DNA. Using an oligonucleotide displacement assay that monitors protein movement on double-stranded DNA we show that Mfd has little motor activity in isolation, but exhibits efficient oligonucleotide displacement activity when bound to a stalled transcription complex. Deletion of the C-terminal domain of Mfd increases the ATPase activity of the protein and allows efficient oligo-displacement in the absence of RNAP. Our results suggest that an autoinhibitory domain ensures the motor activity of Mfd is only functional within the correct macromolecular context: recruitment of Mfd to a stalled transcription complex relieves the autoinhibition and unmasks the motor activity.
Collapse
Affiliation(s)
| | | | - Nigel J. Savery
- DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|