1
|
Rosenberg AM, Ayres CM, Medina-Cucurella AV, Whitehead TA, Baker BM. Enhanced T cell receptor specificity through framework engineering. Front Immunol 2024; 15:1345368. [PMID: 38545094 PMCID: PMC10967027 DOI: 10.3389/fimmu.2024.1345368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 04/12/2024] Open
Abstract
Development of T cell receptors (TCRs) as immunotherapeutics is hindered by inherent TCR cross-reactivity. Engineering more specific TCRs has proven challenging, as unlike antibodies, improving TCR affinity does not usually improve specificity. Although various protein design approaches have been explored to surmount this, mutations in TCR binding interfaces risk broadening specificity or introducing new reactivities. Here we explored if TCR specificity could alternatively be tuned through framework mutations distant from the interface. Studying the 868 TCR specific for the HIV SL9 epitope presented by HLA-A2, we used deep mutational scanning to identify a framework mutation above the mobile CDR3β loop. This glycine to proline mutation had no discernable impact on binding affinity or functional avidity towards the SL9 epitope but weakened recognition of SL9 escape variants and led to fewer responses in a SL9-derived positional scanning library. In contrast, an interfacial mutation near the tip of CDR3α that also did not impact affinity or functional avidity towards SL9 weakened specificity. Simulations indicated that the specificity-enhancing mutation functions by reducing the range of loop motions, limiting the ability of the TCR to adjust to different ligands. Although our results are likely to be TCR dependent, using framework engineering to control TCR loop motions may be a viable strategy for improving the specificity of TCR-based immunotherapies.
Collapse
Affiliation(s)
- Aaron M. Rosenberg
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | | | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
2
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
3
|
Potential immune escape mutations under inferred selection pressure in HIV-1 strains circulating in Medellín, Colombia. INFECTION GENETICS AND EVOLUTION 2018; 69:267-278. [PMID: 30808498 DOI: 10.1016/j.meegid.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has significantly improved life expectancy of HIV-infected patients; nevertheless, it does not eliminate the virus from hosts, so a cure for this infection is crucial. Some strategies have employed the induction of anti-HIV CD8+ T cells. However, the high genetic variability of HIV-1 represents the biggest obstacle for these strategies, since immune escape mutations within epitopes restricted by Human Leukocyte Antigen class I molecules (HLA-I) abrogate the antiviral activity of these cells. We used a bioinformatics pipeline for the determination of such mutations, based on selection pressure and docking/refinement analyses. Fifty HIV-1 infected patients were recruited; HLA-A and HLA-B alleles were typified using sequence-specific oligonucleotide approach, and viral RNA was extracted for the amplification of HIV-1 gag, which was bulk sequenced and aligned to perform selection pressure analysis, using Single Likelihood Ancestor Counting (SLAC) and Fast Unconstrained Bayesian Approximation (FUBAR) algorithms. Positively selected sites were mapped into HLA-I-specific epitopes, and both mutated and wild type epitopes were modelled using PEP-FOLD. Molecular docking and refinement assays were carried out using AutoDock Vina 4 and FlexPepDock. Five positively selected sites were found: S54 at HLA-A*02 GC9, T84 at HLA-A*02 SL9, S125 at HLA-B*35 HY9, S173 at HLA-A*02/B*57 KS12 and I223 at HLA-B*35 HA9. Although some mutations have been previously described as immune escape mutations, the majority of them have not been reported. Molecular docking/refinement analysis showed that one combination of mutations at GC9, one at SL9, and eight at HY9 epitopes could act as immune escape mutations. Moreover, HLA-A*02-positive patients harbouring mutations at KS12, and HLA-B*35-positive patients with mutations at HY9 have significantly higher plasma viral loads than patients lacking such mutations. Thus, HLA-A and -B alleles could be shaping the genetic diversity of HIV-1 through the selection of potential immune escape mutations.
Collapse
|
4
|
Cole DK, Fuller A, Dolton G, Zervoudi E, Legut M, Miles K, Blanchfield L, Madura F, Holland CJ, Bulek AM, Bridgeman JS, Miles JJ, Schauenburg AJA, Beck K, Evavold BD, Rizkallah PJ, Sewell AK. Dual Molecular Mechanisms Govern Escape at Immunodominant HLA A2-Restricted HIV Epitope. Front Immunol 2017; 8:1503. [PMID: 29209312 PMCID: PMC5701626 DOI: 10.3389/fimmu.2017.01503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 12/05/2022] Open
Abstract
Serial accumulation of mutations to fixation in the SLYNTVATL (SL9) immunodominant, HIV p17 Gag-derived, HLA A2-restricted cytotoxic T lymphocyte epitope produce the SLFNTIAVL triple mutant “ultimate” escape variant. These mutations in solvent-exposed residues are believed to interfere with TCR recognition, although confirmation has awaited structural verification. Here, we solved a TCR co-complex structure with SL9 and the triple escape mutant to determine the mechanism of immune escape in this eminent system. We show that, in contrast to prevailing hypotheses, the main TCR contact residue is 4N and the dominant mechanism of escape is not via lack of TCR engagement. Instead, mutation of solvent-exposed residues in the peptide destabilise the peptide–HLA and reduce peptide density at the cell surface. These results highlight the extraordinary lengths that HIV employs to evade detection by high-affinity TCRs with a broad peptide-binding footprint and necessitate re-evaluation of this exemplar model of HIV TCR escape.
Collapse
Affiliation(s)
- David K Cole
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Anna Fuller
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Garry Dolton
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Efthalia Zervoudi
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Mateusz Legut
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Kim Miles
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Florian Madura
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Christopher J Holland
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Anna M Bulek
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - John S Bridgeman
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - John J Miles
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom.,James Cook University, Cairns, QLD, Australia
| | - Andrea J A Schauenburg
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Konrad Beck
- Cardiff University School of Dentistry, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Pierre J Rizkallah
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Andrew K Sewell
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
5
|
Grille Coronel L, Acierno JP, Ermácora MR. Ultracompact states of native proteins. Biophys Chem 2017; 230:36-44. [DOI: 10.1016/j.bpc.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
6
|
TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr Opin Virol 2016; 16:77-85. [PMID: 26874617 DOI: 10.1016/j.coviro.2016.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/02/2023]
Abstract
Because of the enormous complexity and breadth of the overall HIV-specific CD8(+) T-cell response, invaluable information regarding important aspects of T-cell efficacy against HIV can be sourced from studies performed on individual clonotypes. Data gathered from ex vivo and in vitro analyses of T-cell responses and viral evolution bring us one step closer towards deciphering the correlates of protection against HIV. HIV-responsive CD8(+) T-cell populations are characterized by specific clonotypic immunodominance patterns and public TCRs. The TCR endows T-cells with two key features, important for the effective control of HIV: avidity and crossreactivity. While TCR avidity is a major determinant of CD8(+) T-cell functional efficacy against the virus, crossreactivity towards wildtype and mutant viral epitopes is crucial for adaptation to HIV evolution. The properties of CD4(+) T-cell responses in HIV controllers appear also to be shaped by high avidity public TCR clonotypes. The molecular nature of the TCR, together with the clonotypic composition of the HIV-specific T-cell response, emerge as major determinants of anti-viral efficacy.
Collapse
|
7
|
DockTope: a Web-based tool for automated pMHC-I modelling. Sci Rep 2015; 5:18413. [PMID: 26674250 PMCID: PMC4682062 DOI: 10.1038/srep18413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8+ T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (Cα RMSD below 1 Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design.
Collapse
|
8
|
Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Med Chem 2015; 7:1055-77. [DOI: 10.4155/fmc.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein–protein interactions (PPI) are essential in every step of the HIV replication cycle. Mapping the interactions between viral and host proteins is a fundamental target for the design and development of new therapeutics. In this review, we focus on rational development of anti-HIV-1 peptides based on mapping viral–host and viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the mechanism of action, specificity and stability of these peptides, which are designed to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that modulate PPI.
Collapse
|
9
|
Zanker D, Quinn K, Waithman J, Lata R, Murphy R, La Gruta NL, Chen W. T cells recognizing a 11mer influenza peptide complexed to H-2D(b) show promiscuity for peptide length. Immunol Cell Biol 2015; 93:500-7. [PMID: 25559620 DOI: 10.1038/icb.2014.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
T-cell repertoire is selected according to self peptide-MHC (major histocompatibility complex) complexes in the thymus. Although most peripheral T cells recognize specific pathogen-derived peptides complexed to self-MHC exclusively, some possess cross-reactivity to other self or foreign peptides presented by self-MHC molecules; a phenomenon often termed T-cell receptor (TCR) promiscuity or degeneracy. TCR promiscuity has been attributed to various autoimmune conditions. On the other hand, it is considered a mechanism for a relatively limited TCR repertoire to deal with a potentially much larger antigenic peptide repertoire. Such property has also been utilized to bypass self-tolerance for cancer vaccine development. Although many studies explored such degeneracy for peptide of the same length, few studies reported such properties for peptides of different length. In this study, we finely characterized the CD8(+) T-cell response specific for a 11mer peptide derived from influenza A viral polymerase basic protein 2. The short-term T-cell line, despite possessing highly biased TCR, was able to react with multiple peptides of different length sharing the same core sequence. Out data clearly showed the importance of detailed and quantitative assessments for such T-cell specificity. Our data also emphasize the importance of biochemical demonstration of the naturally presented minimal peptide.
Collapse
Affiliation(s)
- Damien Zanker
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Kylie Quinn
- Department of Microbiology and Immunology, Melbourne University, Parkville, Victoria, Australia
| | - Jason Waithman
- Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - Roleen Lata
- Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Roger Murphy
- Ludwig Institute for Cancer Research, Austin Health, Melbourne, Victoria, Australia
| | - Nicole Louise La Gruta
- Department of Microbiology and Immunology, Melbourne University, Parkville, Victoria, Australia
| | - Weisan Chen
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
10
|
Reiser JB, Legoux F, Gras S, Trudel E, Chouquet A, Léger A, Le Gorrec M, Machillot P, Bonneville M, Saulquin X, Housset D. Analysis of relationships between peptide/MHC structural features and naive T cell frequency in humans. THE JOURNAL OF IMMUNOLOGY 2014; 193:5816-26. [PMID: 25392532 DOI: 10.4049/jimmunol.1303084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The structural rules governing peptide/MHC (pMHC) recognition by T cells remain unclear. To address this question, we performed a structural characterization of several HLA-A2/peptide complexes and assessed in parallel their antigenicity, by analyzing the frequency of the corresponding Ag-specific naive T cells in A2(+) and A2(-) individuals, as well as within CD4(+) and CD8(+) subsets. We were able to find a correlation between specific naive T cell frequency and peptide solvent accessibility and/or mobility for a subset of moderately prominent peptides. However, one single structural parameter of the pMHC complexes could not be identified to explain each peptide antigenicity. Enhanced pMHC antigenicity was associated with both highly biased TRAV usage, possibly reflecting favored interaction between particular pMHC complexes and germline TRAV loops, and peptide structural features allowing interactions with a broad range of permissive CDR3 loops. In this context of constrained TCR docking mode, an optimal peptide solvent exposed surface leading to an optimal complementarity with TCR interface may constitute one of the key features leading to high frequency of specific T cells. Altogether our results suggest that frequency of specific T cells depends on the fine-tuning of several parameters, the structural determinants governing TCR-pMHC interaction being just one of them.
Collapse
Affiliation(s)
- Jean-Baptiste Reiser
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - François Legoux
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Stéphanie Gras
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Eric Trudel
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Anne Chouquet
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Alexandra Léger
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Madalen Le Gorrec
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Paul Machillot
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Marc Bonneville
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Xavier Saulquin
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and Université de Nantes, F-44000 Nantes, France
| | - Dominique Housset
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France;
| |
Collapse
|
11
|
Hoppes R, Oostvogels R, Luimstra JJ, Wals K, Toebes M, Bies L, Ekkebus R, Rijal P, Celie PHN, Huang JH, Emmelot ME, Spaapen RM, Lokhorst H, Schumacher TNM, Mutis T, Rodenko B, Ovaa H. Altered peptide ligands revisited: vaccine design through chemically modified HLA-A2-restricted T cell epitopes. THE JOURNAL OF IMMUNOLOGY 2014; 193:4803-13. [PMID: 25311806 DOI: 10.4049/jimmunol.1400800] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virus or tumor Ag-derived peptides that are displayed by MHC class I molecules are attractive starting points for vaccine development because they induce strong protective and therapeutic cytotoxic T cell responses. In thus study, we show that the MHC binding and consequent T cell reactivity against several HLA-A*02 restricted epitopes can be further improved through the incorporation of nonproteogenic amino acids at primary and secondary anchor positions. We screened more than 90 nonproteogenic, synthetic amino acids through a range of epitopes and tested more than 3000 chemically enhanced altered peptide ligands (CPLs) for binding affinity to HLA-A*0201. With this approach, we designed CPLs of viral epitopes, of melanoma-associated Ags, and of the minor histocompatibility Ag UTA2-1, which is currently being evaluated for its antileukemic activity in clinical dendritic cell vaccination trials. The crystal structure of one of the CPLs in complex with HLA-A*0201 revealed the molecular interactions likely responsible for improved binding. The best CPLs displayed enhanced affinity for MHC, increasing MHC stability and prolonging recognition by Ag-specific T cells and, most importantly, they induced accelerated expansion of antitumor T cell frequencies in vitro and in vivo as compared with the native epitope. Eventually, we were able to construct a toolbox of preferred nonproteogenic residues with which practically any given HLA-A*02 restricted epitope can be readily optimized. These CPLs could improve the therapeutic outcome of vaccination strategies or can be used for ex vivo enrichment and faster expansion of Ag-specific T cells for transfer into patients.
Collapse
Affiliation(s)
- Rieuwert Hoppes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rimke Oostvogels
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands Department of Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jolien J Luimstra
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Kim Wals
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Mireille Toebes
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Laura Bies
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Reggy Ekkebus
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Pramila Rijal
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Patrick H N Celie
- Division of Biochemistry, The Netherlands Cancer Institute Protein Facility, 1066 CX Amsterdam, the Netherlands; and
| | - Julie H Huang
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maarten E Emmelot
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Robbert M Spaapen
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Henk Lokhorst
- Department of Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Tuna Mutis
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Boris Rodenko
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
12
|
Anikeeva N, Steblyanko M, Fayngerts S, Kopylova N, Marshall DJ, Powers GD, Sato T, Campbell KS, Sykulev Y. Integrin receptors on tumor cells facilitate NK cell-mediated antibody-dependent cytotoxicity. Eur J Immunol 2014; 44:2331-9. [PMID: 24810893 DOI: 10.1002/eji.201344179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/03/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022]
Abstract
NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high antibody concentration, revealing a dose limiting effect. A similar effect was also observed with primary human NK cells. The effect was erased after IFN-γ treatment of tumor cells resulting in upregulation of ICAM-1. Furthermore, killing of the same tumor cells induced by Herceptin antibody was significantly impaired in the presence of CNTO 95Ala-Ala antibody variant that blocks αV integrins but is incapable of binding to CD16. These data suggest that αV integrins on tumor cells could compensate for the loss of ICAM-1 molecules, thereby facilitating ADCC by NK cells. Thus, NK cells could exercise cytolytic activity against ICAM-1 deficient tumor cells in the absence of proinflammatory cytokines, emphasizing the importance of NK cells in tumor-specific immunity at early stages of cancer.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
An exhaustive yet simple virtual screening campaign against Sortase A from multiple drug resistant Staphylococcus aureus. Mol Biol Rep 2014; 41:5167-75. [PMID: 24797540 DOI: 10.1007/s11033-014-3384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) is one of the challenging bacterial pathogen due to its acquired resistance to the β lactam antibiotics. The Sortase A is an enzyme of Gram-positive bacteria including S. aureus to anchor surface proteins to the cell wall. Sortase A is well studied enzyme and considered as the drug target against MRSA. Sortase A plays active role in anchoring the virulence proteins on the cell wall of the Gram-positive bacteria. The inhibition of Sortase A activity results in the separation of S. aureus from the host cells and ultimately alleviation of the infection. Here, we adapted a structure-based virtual screening protocol which helped in identification of novel potential inhibitors of Sortase A. The protocol involved the docking of a chemical library of druglike compounds with the Sortase A binding site represented by multiple crystal structures. The compounds were ranked by multiple scoring functions and shortlisted for future experimental screening. The method resulted in shortlisting of three compounds as potential novel inhibitors of Sortase A out of a large chemical library. The high rankings of shortlisted compounds estimated by multiple scoring functions showed their binding potential with Sortase A. The results are proved to be a simple yet efficient choice of structure-based virtual screening. The identified compounds are druglike and show high rankings among all set protocols of the virtual screening. We hope that the study would eventually help to expedite the discovery of novel drug candidates against MRSA.
Collapse
|
14
|
Park MS, Park SY, Miller KR, Collins EJ, Lee HY. Accurate structure prediction of peptide-MHC complexes for identifying highly immunogenic antigens. Mol Immunol 2013; 56:81-90. [PMID: 23688437 DOI: 10.1016/j.molimm.2013.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 12/26/2022]
Abstract
Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide-MHC complex. Here, we present an in silico protocol for predicting peptide-MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide-MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.
Collapse
Affiliation(s)
- Min-Sun Park
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
15
|
Allerbring EB, Duru AD, Uchtenhagen H, Madhurantakam C, Tomek MB, Grimm S, Mazumdar PA, Friemann R, Uhlin M, Sandalova T, Nygren PÅ, Achour A. Unexpected T-cell recognition of an altered peptide ligand is driven by reversed thermodynamics. Eur J Immunol 2012; 42:2990-3000. [PMID: 22837158 DOI: 10.1002/eji.201242588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 11/07/2022]
Abstract
The molecular basis underlying T-cell recognition of MHC molecules presenting altered peptide ligands is still not well-established. A hierarchy of T-cell activation by MHC class I-restricted altered peptide ligands has been defined using the T-cell receptor P14 specific for H-2D(b) in complex with the immunodominant lymphocytic choriomeningitis virus peptide gp33 (KAVYNFATM). While substitution of tyrosine to phenylalanine (Y4F) or serine (Y4S) abolished recognition by P14, the TCR unexpectedly recognized H-2D(b) in complex with the alanine-substituted semiagonist Y4A, which displayed the most significant structural modification. The observed functional hierarchy gp33 > Y4A > Y4S = Y4F was neither due to higher stabilization capacity nor to differences in structural conformation. However, thermodynamic analysis demonstrated that while recognition of the full agonist H-2D(b) /gp33 was strictly enthalpy driven, recognition of the weak agonist H-2D(b) /Y4A was instead entropy driven with a large reduction in the favorable enthalpy term. The fourfold larger negative heat capacity derived for the interaction of P14 with H-2D(b) /gp33 compared with H-2D(b) /Y4A can possibly be explained by higher water entrapment at the TCR/MHC interface, which is also consistent with the measured opposite entropy contributions for the interactions of P14 with both MHCs. In conclusion, this study demonstrates that P14 makes use of different strategies to adapt to structural modifications in the MHC/peptide complex.
Collapse
Affiliation(s)
- Eva B Allerbring
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Anikeeva N, Sykulev Y. Mechanisms controlling granule-mediated cytolytic activity of cytotoxic T lymphocytes. Immunol Res 2012; 51:183-94. [PMID: 22058021 DOI: 10.1007/s12026-011-8252-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytotoxic T lymphocytes (CTL) play a critical role in immunity against viruses and cancer. The antigen receptor or T-cell receptor (TCR) on CTL determines the specificity toward target cells. The CD8 co-receptor functions in concert with the TCR to enhance TCR-mediated signaling, accounting for the remarkable sensitivity and swift signaling kinetics of the CTL response. The latter ensures efficient delivery and release of lytic granules, resulting in sensitive and rapid destruction of target cells.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Kimmel Cancer Center and Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
17
|
Huang X, Reynolds AD, Mosley RL, Gendelman HE. CD 4+ T cells in the pathobiology of neurodegenerative disorders. J Neuroimmunol 2009; 211:3-15. [PMID: 19439368 PMCID: PMC2696588 DOI: 10.1016/j.jneuroim.2009.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 04/03/2009] [Indexed: 12/21/2022]
Abstract
CD4+ T cells orchestrate innate and adaptive immunity. In the central nervous system they modulate immune responses including cell trafficking and glial neuroregulatory functions through an array of soluble molecules cell-cell interactions affecting tissue homeostasis. During disease their roles evolve to an auto-aggressive or, alternatively, protective phenotype. How such a balance is struck in the setting of neurodegenerative disorders may reflect a dichotomy between regulatory T cell, anti-inflammatory and neuroprotective activities versus effector T cell inflammation and neurodegeneration. Interestingly, such roles may show commonalities amongst neurodegenerative diseases. Herein we focus on strategies to modulate such CD4+ T cell responses for therapeutic gain.
Collapse
Affiliation(s)
- Xiuyan Huang
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, 68198-5880, USA
| | | | | | | |
Collapse
|
18
|
Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L, Lamberth K, Chang CH, Harndahl M, Weimershaus M, Gerstoft J, Akkad N, Klenerman P, Fugger L, Jones EY, McMichael AJ, Buus S, Schild H, van Endert P, Iversen AKN. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol 2009; 10:636-46. [PMID: 19412183 DOI: 10.1038/ni.1728] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/12/2009] [Indexed: 11/09/2022]
Abstract
Although cytotoxic T lymphocytes (CTLs) in people infected with human immunodeficiency virus type 1 can potentially target multiple virus epitopes, the same few are recognized repeatedly. We show here that CTL immunodominance in regions of the human immunodeficiency virus type 1 group-associated antigen proteins p17 and p24 correlated with epitope abundance, which was strongly influenced by proteasomal digestion profiles, affinity for the transporter protein TAP, and trimming mediated by the endoplasmatic reticulum aminopeptidase ERAAP, and was moderately influenced by HLA affinity. Structural and functional analyses demonstrated that proteasomal cleavage 'preferences' modulated the number and length of epitope-containing peptides, thereby affecting the response avidity and clonality of T cells. Cleavage patterns were affected by both flanking and intraepitope CTL-escape mutations. Our analyses show that antigen processing shapes CTL response hierarchies and that viral evolution modifies cleavage patterns and suggest strategies for in vitro vaccine optimization.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute of Immunology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Spierings E, Gras S, Reiser JB, Mommaas B, Almekinders M, Kester MGD, Chouquet A, Le Gorrec M, Drijfhout JW, Ossendorp F, Housset D, Goulmy E. Steric Hindrance and Fast Dissociation Explain the Lack of Immunogenicity of the Minor Histocompatibility HA-1Arg Null Allele. THE JOURNAL OF IMMUNOLOGY 2009; 182:4809-16. [DOI: 10.4049/jimmunol.0803911] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG, Milicic A, Mahon T, Sutton DH, Laugel B, Moysey R, Cameron BJ, Vuidepot A, Purbhoo MA, Cole DK, Phillips RE, June CH, Jakobsen BK, Sewell AK, Riley JL. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008; 14:1390-5. [PMID: 18997777 DOI: 10.1038/nm.1779] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 04/28/2008] [Indexed: 11/09/2022]
Abstract
HIV's considerable capacity to vary its HLA-I-restricted peptide antigens allows it to escape from host cytotoxic T lymphocytes (CTLs). Nevertheless, therapeutics able to target HLA-I-associated antigens, with specificity for the spectrum of preferred CTL escape mutants, could prove effective. Here we use phage display to isolate and enhance a T-cell antigen receptor (TCR) originating from a CTL line derived from an infected person and specific for the immunodominant HLA-A(*)02-restricted, HIVgag-specific peptide SLYNTVATL (SL9). High-affinity (K(D) < 400 pM) TCRs were produced that bound with a half-life in excess of 2.5 h, retained specificity, targeted HIV-infected cells and recognized all common escape variants of this epitope. CD8 T cells transduced with this supraphysiologic TCR produced a greater range of soluble factors and more interleukin-2 than those transduced with natural SL9-specific TCR, and they effectively controlled wild-type and mutant strains of HIV at effector-to-target ratios that could be achieved by T-cell therapy.
Collapse
Affiliation(s)
- Angel Varela-Rohena
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Anikeeva N, Mareeva T, Liu W, Sykulev Y. Can oligomeric T-cell receptor be used as a tool to detect viral peptide epitopes on infected cells? Clin Immunol 2008; 130:98-109. [PMID: 18845488 DOI: 10.1016/j.clim.2008.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 07/19/2008] [Indexed: 11/25/2022]
Abstract
We have utilized soluble HIV Gag-specific T-cell receptor (TCR) D3 with low affinity and TCR-like antibody 25-D1.16 recognizing its natural peptide-MHC (pMHC) ligand with high affinity to determine how affinity and off-rate of the receptor-pMHC interactions affect the sensitivity of pMHC detection on the cell surface. We found that with soluble TCR cognate pMHCs can be detected only at relatively high cell surface densities when the TCR was oligomerized using either Streptavidin or quantum dot (QD) scaffolds. While the higher affinity probe led to a greater sensitivity of pMHC detection, monomers and oligomers of the probe showed essentially the same detection limit, which is restricted by the sensitivity of standard flow cytometry technique. We have also shown that imaging of QD/TCR specifically bound to cognate pMHC on the cell surface yielded a very bright fluorescent signal that can enhance the sensitivity of viral peptide detection on infected cells.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology and Kimmel Cancer Center, BLSB 650, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
22
|
Kinetic evidence for a ligand-binding-induced conformational transition in the T cell receptor. Proc Natl Acad Sci U S A 2007; 104:16639-44. [PMID: 17921250 DOI: 10.1073/pnas.0707061104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermodynamics and kinetics of the interaction between T cell receptor specific for cytomegalovirus peptide (TCR(CMV)) and its specific ligand, pp65-HLA-A*0201 complex, were studied by surface plasmon resonance and stopped-flow methods. In the latter measurements, fluorescence resonance energy transfer (FRET) between fluorescently labeled reactants was used. Thermodynamic data derived from surface plasmon resonance measurements suggest that the complex formation is driven by both favorable enthalpy and entropy. Two reaction phases were resolved by the stopped-flow measurements. The rate constant of the first step was calculated to be close to the diffusion-controlled limit rate (3x10(5) to 10(6) M(-1) s(-1)), whereas the second step's reaction rate was found to be concentration independent and relatively slow (2-4 s(-1) at 25 degrees C). These findings strongly suggest that the interactions between the TCR and its ligand, the peptide-MHC complex, proceed by a two-step mechanism, in which the second step is an induced-fit process, rate determining for antigen recognition by TCR.
Collapse
|