1
|
Gautam D, Behera JR, Shinde S, Pattada SD, Roth M, Yao L, Welti R, Kilaru A. Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations. BIOLOGY 2024; 13:726. [PMID: 39336153 PMCID: PMC11429132 DOI: 10.3390/biology13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Membrane lipid composition is critical for an organism's growth, adaptation, and functionality. Mosses, as early non-vascular land colonizers, show significant adaptations and changes, but their dynamic membrane lipid alterations remain unexplored. Here, we investigated the temporal changes in membrane lipid composition of the moss Physcomitrium patens during five developmental stages and analyzed the acyl content and composition of the lipids. We observed a gradual decrease in total lipid content from the filamentous protonema stage to the reproductive sporophytes. Notably, we found significant levels of very long-chain polyunsaturated fatty acids, particularly arachidonic acid (C20:4), which are not reported in vascular plants and may aid mosses in cold and abiotic stress adaptation. During vegetative stages, we noted high levels of galactolipids, especially monogalactosyldiacylglycerol, associated with chloroplast biogenesis. In contrast, sporophytes displayed reduced galactolipids and elevated phosphatidylcholine and phosphatidic acid, which are linked to membrane integrity and environmental stress protection. Additionally, we observed a gradual decline in the average double bond index across all lipid classes from the protonema stage to the gametophyte stage. Overall, our findings highlight the dynamic nature of membrane lipid composition during moss development, which might contribute to its adaptation to diverse growth conditions, reproductive processes, and environmental challenges.
Collapse
Affiliation(s)
- Deepshila Gautam
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| | - Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| | - Suhas Shinde
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shivakumar D. Pattada
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
- BioStrategies LC, 504 University Loop, Jonesboro, AR 72401, USA
| | - Mary Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Libin Yao
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| |
Collapse
|
2
|
Wang Y, Zhai J, Qi Z, Liu W, Cui J, Zhang X, Bai S, Li L, Shui G, Cui S. The specific glycerolipid composition is responsible for maintaining the membrane stability of Physcomitrella patens under dehydration stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153590. [PMID: 34911032 DOI: 10.1016/j.jplph.2021.153590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Land colonization is a major event in plant evolution. Little is known about the evolutionary characteristics of lipids during this process. Here, we proved that Physcomitrella patens, a bryophyte that appeared in the early evolution of terrestrial plants, has short-term desiccation resistance. The maintenance of membrane integrity is related to its specific glycerolipid composition and key genes for lipid metabolism. We analyzed 414 types of lipid molecules, and found that phospholipids accounted for 61.7%, mainly PC and PI; glycolipids accounted for only 26.5%, with a special MGDG molecular map. The most abundant MDGD, that is, MGDG34:6, contained rare 15- and 19-carbon acyl chains; the level of neutral lipids was higher. This was consistent with the results observed by TEM, with fewer lamellae and obvious lipid droplets. Slight dehydration accumulated a large number of TAG molecules, and severe dehydration degraded phospholipids and caused membrane leakage, but PA and MGDG fluctuated less. The key genes of lipid metabolism, DGAT and PAP, were actively transcribed, suggesting that PA was one of the main DAG sources for TAG synthesis. This work proves that Physcomitrella patens adopts high-constitutive PC and PI similar to plant seeds, abundant TAG, and its own specific MGDG to resist extreme dehydration. This result provides a new insight into the lipid evolution of early terrestrial plants against unfavorable terrestrial environments.
Collapse
Affiliation(s)
- Yingchun Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jianan Zhai
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Zhenyu Qi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wanping Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jipeng Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xi Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Sulan Bai
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| |
Collapse
|
3
|
Resemann HC, Herrfurth C, Feussner K, Hornung E, Ostendorf AK, Gömann J, Mittag J, van Gessel N, Vries JD, Ludwig-Müller J, Markham J, Reski R, Feussner I. Convergence of sphingolipid desaturation across over 500 million years of plant evolution. NATURE PLANTS 2021; 7:219-232. [PMID: 33495556 DOI: 10.1038/s41477-020-00844-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/18/2020] [Indexed: 05/16/2023]
Abstract
For plants, acclimation to low temperatures is fundamental to survival. This process involves the modification of lipids to maintain membrane fluidity. We previously identified a new cold-induced putative desaturase in Physcomitrium (Physcomitrella) patens. Lipid profiles of null mutants of this gene lack sphingolipids containing monounsaturated C24 fatty acids, classifying the new protein as sphingolipid fatty acid denaturase (PpSFD). PpSFD mutants showed a cold-sensitive phenotype as well as higher susceptibility to the oomycete Pythium, assigning functions in stress tolerance for PpSFD. Ectopic expression of PpSFD in the Atads2.1 (acyl coenzyme A desaturase-like 2) Arabidopsis thaliana mutant functionally complemented its cold-sensitive phenotype. While these two enzymes catalyse a similar reaction, their evolutionary origin is clearly different since AtADS2 is a methyl-end desaturase whereas PpSFD is a cytochrome b5 fusion desaturase. Altogether, we suggest that adjustment of membrane fluidity evolved independently in mosses and seed plants, which diverged more than 500 million years ago.
Collapse
Affiliation(s)
- Hanno Christoph Resemann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Cornelia Herrfurth
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kirstin Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ellen Hornung
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Anna K Ostendorf
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jasmin Gömann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Jennifer Mittag
- Institute of Botany, Technical University Dresden, Dresden, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jan de Vries
- Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| | | | - Jennifer Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany.
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
- Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
4
|
Thiyagarajan S, Arumugam M, Kathiresan S. Identification and Functional Characterization of Two Novel Fatty Acid Genes from Marine Microalgae for Eicosapentaenoic Acid Production. Appl Biochem Biotechnol 2019; 190:1371-1384. [DOI: 10.1007/s12010-019-03176-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022]
|
5
|
Resemann HC, Lewandowska M, G�mann J, Feussner I. Membrane Lipids, Waxes and Oxylipins in the Moss Model Organism Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2019; 60:1166-1175. [PMID: 30698763 PMCID: PMC6553664 DOI: 10.1093/pcp/pcz006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/24/2018] [Indexed: 05/26/2023]
Abstract
The moss Physcomitrella patens receives increased scientific interest since its genome was sequenced a decade ago. As a bryophyte, it represents the first group of plants that evolved in a terrestrial habitat still without a vascular system that developed later in tracheophytes. It is easily transformable via homologous recombination, which enables the formation of targeted loss-of-function mutants. Even though genetics, development and life cycle in Physcomitrella are well studied nowadays, research on lipids in Physcomitrella is still underdeveloped. This review aims on presenting an overview on the state of the art of lipid research with a focus on membrane lipids, surface lipids and oxylipins. We discuss in this review that Physcomitrella possesses very interesting features regarding its membrane lipids. Here, the presence of very-long-chain polyunsaturated fatty acids (VLC-PUFA) still shows a closer similarity to marine microalgae than to vascular plants. Unlike algae, Physcomitrella has a cuticle comparable to vascular plants composed of cutin and waxes. The presence of VLC-PUFA in Physcomitrella also leads to a greater variability of signaling lipids even though the phytohormone jasmonic acid is not present in this organism, which is different to vascular plants. In summary, the research on lipids in Physcomitrella is still in its infancy, especially considering membrane lipids. We hope that this review will help to promote the further advancement of lipid research in this important model organism in the future, so we can better understand how lipids are involved in the evolution of land plants.
Collapse
Affiliation(s)
- Hanno C Resemann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Milena Lewandowska
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Jasmin G�mann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
6
|
Gachet MS, Schubert A, Calarco S, Boccard J, Gertsch J. Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Sci Rep 2017; 7:41177. [PMID: 28120902 PMCID: PMC5264637 DOI: 10.1038/srep41177] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
The remarkable absence of arachidonic acid (AA) in seed plants prompted us to systematically study the presence of C20 polyunsaturated fatty acids, stearic acid, oleic acid, jasmonic acid (JA), N-acylethanolamines (NAEs) and endocannabinoids (ECs) in 71 plant species representative of major phylogenetic clades. Given the difficulty of extrapolating information about lipid metabolites from genetic data we employed targeted metabolomics using LC-MS/MS and GC-MS to study these signaling lipids in plant evolution. Intriguingly, the distribution of AA among the clades showed an inverse correlation with JA which was less present in algae, bryophytes and monilophytes. Conversely, ECs co-occurred with AA in algae and in the lower plants (bryophytes and monilophytes), thus prior to the evolution of cannabinoid receptors in Animalia. We identified two novel EC-like molecules derived from the eicosatetraenoic acid juniperonic acid, an omega-3 structural isomer of AA, namely juniperoyl ethanolamide and 2-juniperoyl glycerol in gymnosperms, lycophytes and few monilophytes. Principal component analysis of the targeted metabolic profiles suggested that distinct NAEs may occur in different monophyletic taxa. This is the first report on the molecular phylogenetic distribution of apparently ancient lipids in the plant kingdom, indicating biosynthetic plasticity and potential physiological roles of EC-like lipids in plants.
Collapse
Affiliation(s)
- María Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Alexandra Schubert
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Serafina Calarco
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Science, University of Geneva, University of Lausanne, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Functional identification and regulatory analysis of Δ6-fatty acid desaturase from the oleaginous fungus Mucor sp. EIM-10. Biotechnol Lett 2016; 39:453-461. [DOI: 10.1007/s10529-016-2268-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023]
|
8
|
Kim SH, Roh KH, Park JS, Kim KS, Kim HU, Lee KR, Kang HC, Kim JB. Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:768478. [PMID: 26339641 PMCID: PMC4538586 DOI: 10.1155/2015/768478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/31/2014] [Accepted: 12/31/2014] [Indexed: 11/24/2022]
Abstract
Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA) biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ(6)-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ(5)-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES) under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3) and docosatetraenoic acid (22:4 n-6) as well as eicosapentaenoic acid (20:5 n-3) and arachidonic acid (20:4 n-6) in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3) could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible.
Collapse
Affiliation(s)
- Sun Hee Kim
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Kyung Hee Roh
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Jong-Sug Park
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Kwang-Soo Kim
- National Institute of Crop Science, Rural Development Administration, Seodun-dong, Suwon 441-707, Republic of Korea
| | - Hyun Uk Kim
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Kyeong-Ryeol Lee
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Han-Chul Kang
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Jong-Bum Kim
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| |
Collapse
|
9
|
de León IP, Hamberg M, Castresana C. Oxylipins in moss development and defense. FRONTIERS IN PLANT SCIENCE 2015; 6:483. [PMID: 26191067 PMCID: PMC4490225 DOI: 10.3389/fpls.2015.00483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 05/08/2023]
Abstract
Oxylipins are oxygenated fatty acids that participate in plant development and defense against pathogen infection, insects, and wounding. Initial oxygenation of substrate fatty acids is mainly catalyzed by lipoxygenases (LOXs) and α-dioxygenases but can also take place non-enzymatically by autoxidation or singlet oxygen-dependent reactions. The resulting hydroperoxides are further metabolized by secondary enzymes to produce a large variety of compounds, including the hormone jasmonic acid (JA) and short-chain green leaf volatiles. In flowering plants, which lack arachidonic acid, oxylipins are produced mainly from oxidation of polyunsaturated C18 fatty acids, notably linolenic and linoleic acids. Algae and mosses in addition possess polyunsaturated C20 fatty acids including arachidonic and eicosapentaenoic acids, which can also be oxidized by LOXs and transformed into bioactive compounds. Mosses are phylogenetically placed between unicellular green algae and flowering plants, allowing evolutionary studies of the different oxylipin pathways. During the last years the moss Physcomitrella patens has become an attractive model plant for understanding oxylipin biosynthesis and diversity. In addition to the advantageous evolutionary position, functional studies of the different oxylipin-forming enzymes can be performed in this moss by targeted gene disruption or single point mutations by means of homologous recombination. Biochemical characterization of several oxylipin-producing enzymes and oxylipin profiling in P. patens reveal the presence of a wider range of oxylipins compared to flowering plants, including C18 as well as C20-derived oxylipins. Surprisingly, one of the most active oxylipins in plants, JA, is not synthesized in this moss. In this review, we present an overview of oxylipins produced in mosses and discuss the current knowledge related to the involvement of oxylipin-producing enzymes and their products in moss development and defense.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Inés Ponce de León, Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay,
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Castresana
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
10
|
Beike AK, Jaeger C, Zink F, Decker EL, Reski R. High contents of very long-chain polyunsaturated fatty acids in different moss species. PLANT CELL REPORTS 2014; 33:245-54. [PMID: 24170342 PMCID: PMC3909245 DOI: 10.1007/s00299-013-1525-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 05/21/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C₂₀) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6-31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology.
Collapse
Affiliation(s)
- Anna K. Beike
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Carsten Jaeger
- Core Facility Metabolomics, ZBSA, Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
| | - Felix Zink
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, 79104 Freiburg, Germany
- FRIAS-Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Identification and functional characterization of two Δ12-fatty acid desaturases associated with essential linoleic acid biosynthesis in Physcomitrella patens. ACTA ACUST UNITED AC 2013; 40:901-13. [DOI: 10.1007/s10295-013-1285-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Abstract
Two Δ12-desaturases associated with the primary steps of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis were successfully cloned from Physcomitrella patens and their functions identified. The open reading frames (ORFs) of PpFAD2-1 and PpFAD2-2 consisted of 1,128 bp and code for 375 amino acids. Their deduced polypeptides showed 62–64 % identity to microsomal Δ12-desaturases from other higher plants, and each contained the three histidine clusters typical of the catalytic domains of such enzymes. Yeast cells transformed with plasmid constructs containing PpFAD2-1 or PpFAD2-2 produced an appreciable amount of hexadecadienoic (16:2 Δ9,12) and linoleic acids (18:2 Δ9,12), not normally present in wild-type yeast cells, indicating that the genes encoded functional Δ12-desaturase enzymes. In addition, reduction of the growth temperature from 30 to 15 °C resulted in increased accumulation of unsaturated fatty acid products.
Collapse
|
12
|
Synthesis of Wax Esters from Crude Fish Fat by Lipase of Burkholderia sp. EQ3 and Commercial Lipases. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2183-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Two novel Physcomitrella patens fatty acid elongases (ELOs): identification and functional characterization. Appl Microbiol Biotechnol 2012; 97:3485-97. [DOI: 10.1007/s00253-012-4556-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
|
14
|
The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 2011; 47:227-37. [PMID: 22009657 DOI: 10.1007/s11745-011-3617-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/26/2011] [Indexed: 10/16/2022]
Abstract
Very long chain polyunsaturated fatty acids such as arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are essential components of cell membranes, and are precursors for a group of hormone-like bioactive compounds (eicosanoids and docosanoids) involved in regulation of various physiological activities in animals and humans. The biosynthesis of these fatty acids involves an alternating process of fatty acid desaturation and elongation. The desaturation is catalyzed by a unique class of oxygenases called front-end desaturases that introduce double bonds between the pre-existing double bond and the carboxyl end of polyunsaturated fatty acids. The first gene encoding a front-end desaturase was cloned in 1993 from cyanobacteria. Since then, front-end desaturases have been identified and characterized from a wide range of eukaryotic species including algae, protozoa, fungi, plants and animals including humans. Unlike front-end desaturases from bacteria, those from eukaryotes are structurally characterized by the presence of an N-terminal cytochrome b₅-like domain fused to the main desaturation domain. Understanding the structure, function and evolution of front-end desaturases, as well as their roles in the biosynthesis of very long chain polyunsaturated fatty acids offers the opportunity to engineer production of these fatty acids in transgenic oilseed plants for nutraceutical markets.
Collapse
|
15
|
Metabolic Engineering and Oil Supplementation of Physcomitrella patens for Activation of C22 Polyunsaturated Fatty Acid Production. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Santigosa E, Geay F, Tonon T, Le Delliou H, Kuhl H, Reinhardt R, Corcos L, Cahu C, Zambonino-Infante JL, Mazurais D. Cloning, tissue expression analysis, and functional characterization of two Δ6-desaturase variants of sea bass (Dicentrarchus labrax L.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:22-31. [PMID: 20333428 DOI: 10.1007/s10126-010-9264-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 12/16/2009] [Indexed: 05/29/2023]
Abstract
Fish are the main source of the n-3 highly unsaturated fatty acids, which are crucial for human health. Their synthesis from C(18) precursors is mediated by desaturases and elongases, but the activity of these enzymes has not been conclusively established in marine fish species. This study reports the cloning, tissue expression, and functional characterization of a sea bass (Dicentrarchus labrax L.) Δ6-desaturase and one of its splicing variants. Two cDNAs with open reading frames of 1,346 and 1,354 bp were cloned and named D6D and D6D-V, respectively. Both deduced protein sequences (445 and 387 amino acids, respectively) contained two transmembrane regions and the N-terminal cytochrome b(5) domain with the HPGG motif characteristic of microsomal desaturases. D6D presents three histidine-rich regions, whereas in D6D-V, an insertion of eight nucleotides in the boundaries of exons 10 and 11 modified the third histidine-rich domain and led to insertion of a premature STOP codon, resulting in a shorter predicted protein. Quantitative real-time polymerase chain reaction assay of gene expression showed that D6D was highly expressed in the brain and intestine, and to a lesser extent, in muscle and liver; meanwhile, D6D-V was expressed in all tissues tested, but at level at least 200-fold lower than D6D. Functional analysis in yeast showed that sea bass D6D encodes a fully functional Δ6-desaturase with no residual Δ5-desaturase activity. This desaturase does not exhibit a clear preference for n-3 versus n-6 C(18) substrates. Interestingly, D6D-V is a nonfunctional protein, suggesting that the C-terminal end is indispensable for protein activity.
Collapse
Affiliation(s)
- Ester Santigosa
- Ifremer Marine Fish Nutrition Team, Nutrition Aquaculture and Genomics Research Unit, UMR 1067, Ifremer, Technopole Brest-Iroise, BP 70, 29280, Plouzané, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang JZ, Jiang XZ, Xia XF, Yu AQ, Mao RY, Chen XF, Tian BY. Cloning and functional identification of delta5 fatty acid desaturase gene and its 5'-upstream region from marine fungus Thraustochytrium sp. FJN-10. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:12-21. [PMID: 20358240 DOI: 10.1007/s10126-010-9262-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/14/2009] [Indexed: 05/29/2023]
Abstract
A gene encoding delta5 fatty acid desaturase (fad5) was cloned from marine fungus Thraustochytrium sp. FJN-10, a species capable of producing docosahexaenoic acid. The open reading frame of fad5 was 1,320 bp and encoded a protein comprising 439 amino acids. Expression of the fad5 in Saccharomyces cerevisiae INVSC1 revealed that FAD5 is able to introduce a double bond at position 5 of the dihomo-γ-linolenic acid (20:3 Δ(8,11,14)), resulting in arachidonic acid (20:4 Δ(5,8,11,14)) with a conversion rate of 56.40% which is the highest among engineering yeasts reported so far. The 5'-upstream region of fad5 was cloned by LA-PCR and analyzed. Phylogenetic analysis of this sequence with the 5'-upstream region of other delta5 desaturases showed that the 5'-upstream region of fad5 from Thraustochytrium share the smallest evolution distance with human and rhesus. Computational analysis of the nucleotide sequence of the 5'-upstream region of fad5 has revealed several basic transcriptional elements including five TATA boxes, three CCAAT boxes, 12 GC boxes, and several putative target-binding sites for transcription factors such as HSF, CAP, and ADR1. Preliminary functional analysis of this promoter in S. cerevisiae shows that the 5'-upstream region of fad5 could drive the expression of green fluorescent protein.
Collapse
Affiliation(s)
- Jian-Zhong Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, Fujian, 350108, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Saidi Y, Peter M, Finka A, Cicekli C, Vigh L, Goloubinoff P. Membrane lipid composition affects plant heat sensing and modulates Ca(2+)-dependent heat shock response. PLANT SIGNALING & BEHAVIOR 2010; 5:1530-3. [PMID: 21139423 PMCID: PMC3115095 DOI: 10.4161/psb.5.12.13163] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 05/19/2023]
Abstract
Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patens demonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.
Collapse
Affiliation(s)
- Younousse Saidi
- Department of Plant Molecular Biology; University of Lausanne; Switzerland
| | - Maria Peter
- Institute of Biochemistry; Biological Research Centre; Szeged, Hungary
| | - Andrija Finka
- Department of Plant Molecular Biology; University of Lausanne; Switzerland
| | - Cyril Cicekli
- Department of Plant Molecular Biology; University of Lausanne; Switzerland
| | - Laszlo Vigh
- Institute of Biochemistry; Biological Research Centre; Szeged, Hungary
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology; University of Lausanne; Switzerland
| |
Collapse
|
19
|
Cove DJ, Perroud PF, Charron AJ, McDaniel SF, Khandelwal A, Quatrano RS. The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harb Protoc 2010; 2009:pdb.emo115. [PMID: 20147063 DOI: 10.1101/pdb.emo115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David J Cove
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
20
|
Identification and Characterization of Δ12, Δ6, and Δ5 Desaturases from the Green Microalga Parietochloris incisa. Lipids 2010; 45:519-30. [DOI: 10.1007/s11745-010-3421-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
21
|
The Plackett–Burman Design for Evaluating the Production of Polyunsaturated Fatty Acids by Physcomitrella patens. J AM OIL CHEM SOC 2010. [DOI: 10.1007/s11746-009-1532-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Cloning and Characterization of the ∆6 Polyunsaturated Fatty Acid Elongase from the Green Microalga Parietochloris incisa. Lipids 2009; 44:545-54. [DOI: 10.1007/s11745-009-3301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/04/2009] [Indexed: 10/20/2022]
|
23
|
|
24
|
Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma Z, Frank W, Axtell MJ. Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet 2008; 4:e1000314. [PMID: 19096705 PMCID: PMC2600652 DOI: 10.1371/journal.pgen.1000314] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022] Open
Abstract
Endogenous 24 nt short interfering RNAs (siRNAs), derived mostly from intergenic and repetitive genomic regions, constitute a major class of endogenous small RNAs in flowering plants. Accumulation of Arabidopsis thaliana 24 nt siRNAs requires the Dicer family member DCL3, and clear homologs of DCL3 exist in both flowering and non-flowering plants. However, the absence of a conspicuous 24 nt peak in the total RNA populations of several non-flowering plants has raised the question of whether this class of siRNAs might, in contrast to the ancient 21 nt microRNAs (miRNAs) and 21–22 nt trans-acting siRNAs (tasiRNAs), be an angiosperm-specific innovation. Analysis of non-miRNA, non-tasiRNA hotspots of small RNA production within the genome of the moss Physcomitrella patens revealed multiple loci that consistently produced a mixture of 21–24 nt siRNAs with a peak at 23 nt. These Pp23SR loci were significantly enriched in transposon content, depleted in overlap with annotated genes, and typified by dense concentrations of the 5-methyl cytosine (5 mC) DNA modification. Deep sequencing of small RNAs from two independent Ppdcl3 mutants showed that the P. patens DCL3 homolog is required for the accumulation of 22–24 nt siRNAs, but not 21 nt siRNAs, at Pp23SR loci. The 21 nt component of Pp23SR-derived siRNAs was also unaffected by a mutation in the RNA-dependent RNA polymerase mutant Pprdr6. Transcriptome-wide, Ppdcl3 mutants failed to accumulate 22–24 nt small RNAs from repetitive regions while transcripts from two abundant families of long terminal repeat (LTR) retrotransposon-associated reverse transcriptases were up-regulated. Ppdcl3 mutants also displayed an acceleration of leafy gametophore production, suggesting that repetitive siRNAs may play a role in the development of P. patens. We conclude that intergenic/repeat-derived siRNAs are indeed a broadly conserved, distinct class of small regulatory RNAs within land plants. Very small RNAs (between ∼21 and ∼30 single-stranded bases) are a ubiquitous component of gene regulation in nearly all eukaryotic organisms. The small RNA repertoire of angiosperms (the flowering plants) is exceptionally diverse and includes conspicuous populations of 21 nt microRNAs, as well a diverse set of 24 nt short, interfering RNAs (siRNAs). The 24 nt siRNAs have well-documented roles in enforcing the silence of parasitic regions of the genome, but are not readily apparent in the small RNA populations of several lineages of ancient, non-flowering plants. We found numerous “hotspots” of small RNA production from the genome of the moss P. patens that produced a mix of 21–24 nt siRNAs. Except for their broad mix of sizes, these hotspots were reminiscent of the 24 nt siRNA loci of angiosperms: they tended to associate with decayed transposons, to avoid annotated genes, and to be densely modified with the epigenetic mark 5-methyl cytosine. Deletion of a P. patens Dicer gene abolished production of 22–24 nt siRNAs both from these loci and transcriptome-wide, especially from repetitive regions. We conclude that both microRNAs and intergenic/repeat-associated siRNAs are ancient small RNA regulators in plants, but that the sizes of the siRNAs themselves have drifted over time.
Collapse
Affiliation(s)
- Sung Hyun Cho
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Charles Addo-Quaye
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ceyda Coruh
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - M. Asif Arif
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Zhaorong Ma
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wolfgang Frank
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael J. Axtell
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Lee JC, Anbu P, Kim WH, Noh MJ, Lee SJ, Seo JW, Hur BK. Identification of Δ9-elongation activity from Thraustochytrium aureum by heterologous expression in Pichia pastoris. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0032-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Coexpression of Elo-like enzyme and Δ5, Δ4-desaturases derived from Thraustochytrium aureum ATCC 34304 and the production of DHA and DPA in Pichia pastoris. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0156-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Dyer JM, Stymne S, Green AG, Carlsson AS. High-value oils from plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:640-55. [PMID: 18476869 DOI: 10.1111/j.1365-313x.2008.03430.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The seed oils of domesticated oilseed crops are major agricultural commodities that are used primarily for nutritional applications, but in recent years there has been increasing use of these oils for production of biofuels and chemical feedstocks. This is being driven in part by the rapidly rising costs of petroleum, increased concern about the environmental impact of using fossil oil, and the need to develop renewable domestic sources of fuel and industrial raw materials. There is also a need to develop sustainable sources of nutritionally important fatty acids such as those that are typically derived from fish oil. Plant oils can provide renewable sources of high-value fatty acids for both the chemical and health-related industries. The value and application of an oil are determined largely by its fatty acid composition, and while most vegetable oils contain just five basic fatty acid structures, there is a rich diversity of fatty acids present in nature, many of which have potential usage in industry. In this review, we describe several areas where plant oils can have a significant impact on the emerging bioeconomy and the types of fatty acids that are required in these various applications. We also outline the current understanding of the underlying biochemical and molecular mechanisms of seed oil production, and the challenges and potential in translating this knowledge into the rational design and engineering of crop plants to produce high-value oils in plant seeds.
Collapse
Affiliation(s)
- John M Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ 85238, USA.
| | | | | | | |
Collapse
|
28
|
Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R. An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 2007; 7:130. [PMID: 17683536 PMCID: PMC1952061 DOI: 10.1186/1471-2148-7-130] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 08/02/2007] [Indexed: 11/13/2022] Open
Abstract
Background: Analyses of complete genomes and large collections of gene transcripts have shown that most, if not all seed plants have undergone one or more genome duplications in their evolutionary past. Results: In this study, based on a large collection of EST sequences, we provide evidence that the haploid moss Physcomitrella patens is a paleopolyploid as well. Based on the construction of linearized phylogenetic trees we infer the genome duplication to have occurred between 30 and 60 million years ago. Gene Ontology and pathway association of the duplicated genes in P. patens reveal different biases of gene retention compared with seed plants. Conclusion: Metabolic genes seem to have been retained in excess following the genome duplication in P. patens. This might, at least partly, explain the versatility of metabolism, as described for P. patens and other mosses, in comparison to other land plants.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Julia Ick
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Jeffrey A Fawcett
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Bioinformatics and Evolutionary Genomics, Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Andreas Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Bioinformatics and Evolutionary Genomics, Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|