1
|
McGuire ST, Shockey J, Bates PD. The first intron and promoter of Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 1 exert synergistic effects on pollen and embryo lipid accumulation. THE NEW PHYTOLOGIST 2025; 245:263-281. [PMID: 39501618 PMCID: PMC11617664 DOI: 10.1111/nph.20244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. In Arabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in a dgat1-1/pdat1-2 double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue-specific expression of either gene has not yet been identified. We transformed a dgat1-1/dgat1-1//PDAT1/pdat1-2 parent with transgenic constructs containing the Arabidopsis DGAT1 promoter fused to the AtDGAT1 open reading frame either with or without the first intron. Triple homozygous plants were obtained, however, in the absence of the DGAT1 first intron anthers fail to fill with pollen, seed yield is c. 10% of wild-type, seed oil content remains reduced (similar to dgat1-1/dgat1-1), and non-Mendelian segregation of the PDAT1/pdat1-2 locus occurs. Whereas plants expressing the AtDGAT1pro:AtDGAT1 transgene containing the first intron mostly recover phenotypes to wild-type. This study establishes that a combination of the promoter and first intron of AtDGAT1 provides the proper context for temporal and tissue-specific expression of AtDGAT1 in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes in Arabidopsis.
Collapse
Affiliation(s)
- Sean T. McGuire
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Service1100 Allen Toussaint BlvdNew OrleansLA70124USA
| | - Philip D. Bates
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| |
Collapse
|
2
|
Irving K, Wellenreuther M, Ritchie PA. Description of the growth hormone gene of the Australasian snapper, Chrysophrys auratus, and associated intra- and interspecific genetic variation. JOURNAL OF FISH BIOLOGY 2021; 99:1060-1070. [PMID: 34036582 DOI: 10.1111/jfb.14810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The growth hormone (GH) gene of the marine teleost, the Australasian snapper (Chrysophrys auratus), was identified and characterized from the reference genome showing it was approximately 5577 bp in length and consisted of six exons and five introns. Large polymorphic repeat regions were found in the first and third introns, and putative transcription factor binding sites were identified. Phylogenetic analysis of the GH genes of perciform fish showed largely conserved coding regions and highly variable noncoding regions among species. Despite some exon sequence variation and an amino acid deletion identified between C. auratus and its sister species Chrysophrys/Pagrus major, the amino acid sequences and putative secondary structures were largely conserved across the Sparidae. A population-level assessment of 99 samples caught at five separate coastal locations in New Zealand revealed six variable alleles at the intron 1 site of the C. auratus GH gene. A population genetic analysis suggested that C. auratus from the five sample locations were largely panmictic, with no evidence for departure from the Hardy-Weinberg equilibrium, and have a high level of heterozygosity. Overall these results suggest that the GH gene is largely conserved across the coding regions, but some variability could be detected.
Collapse
Affiliation(s)
- Kate Irving
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter A Ritchie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Tanizaki Y, Bao L, Shi B, Shi YB. A Role of Endogenous Histone Acetyltransferase Steroid Hormone Receptor Coactivator 3 in Thyroid Hormone Signaling During Xenopus Intestinal Metamorphosis. Thyroid 2021; 31:692-702. [PMID: 33076783 PMCID: PMC8195878 DOI: 10.1089/thy.2020.0410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) plays an important role in regulating vertebrate developmental, cellular, and metabolic processes via T3 receptor (TR). Liganded TR recruit coactivator complexes that include steroid receptor coactivators (SRC1, SRC2 or SRC3), which are histone acetyltransferases, to T3-responsive promoters. The functions of endogenous coactivators during T3-dependent mammalian adult organ development remain largely unclear, in part, due to the difficulty to access and manipulate late-stage embryos and neonates. We use Xenopus metamorphosis as a model for postembryonic development in vertebrates. This process is controlled by T3, involves drastic changes in every organ/tissue, and can be easily manipulated. We have previously found that SRC3 was upregulated in the intestine during amphibian metamorphosis. Methods: To determine the function of endogenous SRC3 during intestinal remodeling, we have generated Xenopus tropicalis animals lacking a functional SRC3 gene and analyzed the resulting phenotype. Results: Although removing SRC3 had no apparent effect on external development and animal gross morphology, the SRC3 (-/-) tadpoles displayed a reduction in the acetylation of histone H4 in the intestine compared with that in wild-type animals. Further, the expression of TR target genes was also reduced in SRC3 (-/-) tadpoles during intestinal remodeling. Importantly, SRC3 (-/-) tadpoles had inhibited/delayed intestinal remodeling during natural and T3-induced metamorphosis, including reduced adult intestinal stem cell proliferation and apoptosis of larval epithelial cells. Conclusion: Our results, thus, demonstrate that SRC3 is a critical component of the TR-signaling pathway in vivo during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Shibata Y, Tanizaki Y, Shi YB. Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:46. [PMID: 32231780 PMCID: PMC7099810 DOI: 10.1186/s13578-020-00411-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRβ) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. Results We have generated TRβ knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRβ knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRβ knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. Conclusions Our data suggest that TRβ plays a critical role in intestinal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
5
|
Nakajima K, Tanizaki Y, Luu N, Zhang H, Shi YB. Comprehensive RNA-Seq analysis of notochord-enriched genes induced during Xenopus tropicalis tail resorption. Gen Comp Endocrinol 2020; 287:113349. [PMID: 31794731 PMCID: PMC6956247 DOI: 10.1016/j.ygcen.2019.113349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Anuran metamorphosis is perhaps the most dramatic developmental process regulated by thyroid hormone (TH). One of the unique processes that occur during metamorphosis is the complete resorption of the tail, including the notochord. Interestingly, recent gene knockout studies have shown that of the two known vertebrate TH receptors, TRα and TRβ, TRβ appears to be critical for notochord regression during tail resorption in Xenopus tropicalis. To determine the mechanisms underlying notochord regression, we carried out a comprehensive gene expression analysis in the notochord during metamorphosis by using RNA-Seq analyses of whole tail at stage 60 before any noticeable tail length reduction, whole tail at stage 63 when the tail length is reduced by about one half, and the rest of the tail at stage 63 after removing the notochord. This allowed us to identify many notochord-enriched, metamorphosis-induced genes at stage 63. Future studies on these genes should help to determine if they are regulated by TRβ and play any roles in notochord regression.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739 8526, Japan.
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hongen Zhang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yun Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
6
|
Shibata Y, Wen L, Okada M, Shi YB. Organ-Specific Requirements for Thyroid Hormone Receptor Ensure Temporal Coordination of Tissue-Specific Transformations and Completion of Xenopus Metamorphosis. Thyroid 2020; 30:300-313. [PMID: 31854240 PMCID: PMC7047119 DOI: 10.1089/thy.2019.0366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) is essential for the development throughout vertebrates. Anuran metamorphosis mimics mammalian postembryonic development, a period around birth when plasma T3 level peaks and many organs/tissues mature into their adult forms. Compared with the uterus-enclosed mammalian embryos, tadpoles can be easily manipulated to study the roles of T3 and T3 receptors (TRs) in tissue remodeling and adult organ development. We and others have previously knocked out TRα or TRβ in the diploid anuran Xenopus tropicalis and reported distinct effects of the two receptor knockouts on metamorphosis. However, animals lacking either TRα or TRβ can complete metamorphosis and develop into reproductive adults. Methods: We have generated TRα and TRβ double knockout animals and carried out molecular and morphological analyses to determine if TR is required for Xenopus development. Results: We found that the TR double knockout tadpoles do not respond to T3, supporting the view that there are no other TR genes in X. tropicalis and that TR is essential for mediating the effects of T3 in vivo. Surprisingly, the double knockout tadpoles are able to initiate metamorphosis and accomplish many metamorphic changes, such as limb development. However, all double knockout tadpoles stall and eventually die at stage 61, the climax of metamorphosis, before tail resorption takes place. Analyses of the knockout tadpoles at stage 61 revealed various developmental abnormalities, including precocious ossification and extra vertebrae. Conclusions: Our data indicate that TRs are not required for the initiation of metamorphosis but is essential for the completion of metamorphosis. Furthermore, the differential effects of TR knockout on different organs/tissues suggest tissue-specific roles for TR to control temporal coordination and progression of metamorphosis in various organs.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Luan Wen
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Morihiro Okada
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Nakajima K, Tazawa I, Shi YB. A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis. Gen Comp Endocrinol 2019; 277:66-72. [PMID: 30851299 PMCID: PMC6535367 DOI: 10.1016/j.ygcen.2019.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Tail resorption during anuran metamorphosis is perhaps the most dramatic tissue transformation that occurs during vertebrate development. Earlier studies in highly related anuran species Xenopus laevis and Xenopus tropicalis have shown that thyroid hormone (T3) receptor (TR) plays a necessary and sufficient role to mediate the causative effect of T3 on metamorphosis. Of the two known TR genes in vertebrates, TRα is highly expressed during both premetamorphosis and metamorphosis while TRβ expression is low in premetamorphic tadpoles but highly upregulated as a direct target gene of T3 during metamorphosis, suggesting potentially different functions during metamorphosis. Indeed, gene knockout studies have shown that knocking out TRα and TRβ has different effects on tadpole development. In particularly, homozygous TRβ knockout tadpoles become tailed frogs well after sibling wild type ones complete metamorphosis. Most noticeably, in TRβ-knockout tadpoles, an apparently normal notochord is present when the notochord in wild-type and TRα-knockout tadpoles disappears. Here, we have investigated how tail notochord resorption is regulated by TR. We show that TRβ is selectively very highly expressed in the notochord compared to TRα. We have also discovered differential regulation of several matrix metalloproteinases (MMPs), which are known to be upregulated by T3 and implicated to play a role in tissue resorption by degrading the extracellular matrix (ECM). In particular, MMP9-TH and MMP13 are extremely highly expressed in the notochord compared to the rest of the tail. In situ hybridization analyses show that these MMPs are expressed in the outer sheath cells and/or the connective tissue sheath surrounding the notochord. Our findings suggest that high levels of TRβ expression in the notochord specifically upregulate these MMPs, which in turn degrades the ECM, leading to the collapse of the notochord and its subsequent resorption during metamorphosis.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan; Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
8
|
Fujimoto K, Hasebe T, Kajita M, Ishizuya-Oka A. Expression of hyaluronan synthases upregulated by thyroid hormone is involved in intestinal stem cell development during Xenopus laevis metamorphosis. Dev Genes Evol 2018; 228:267-273. [PMID: 30430240 DOI: 10.1007/s00427-018-0623-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
During amphibian intestinal remodeling, thyroid hormone (TH) induces adult stem cells, which newly generate the absorptive epithelium analogous to the mammalian one. We have previously shown that hyaluronan (HA) is newly synthesized and plays an essential role in the development of the stem cells via its major receptor CD44 in the Xenopus laevis intestine. We here focused on HA synthase (HAS) and examined how the expression of HAS family genes is regulated during natural and TH-induced metamorphosis. Our quantitative RT-PCR analysis indicated that the mRNA expression of HAS2 and HAS3, but not that of HAS1 and HAS-rs, a unique Xenopus HAS-related sequence, is upregulated concomitantly with the development of adult epithelial primordia consisting of the stem/progenitor cells during the metamorphic climax. In addition, our in situ hybridization analysis indicated that the HAS3 mRNA is specifically expressed in the adult epithelial primordia, whereas HAS2 mRNA is expressed in both the adult epithelial primordia and nearby connective tissue cells during this period. Furthermore, by treating X. laevis tadpoles with 4-methylumbelliferone, a HA synthesis inhibitor, we have experimentally shown that inhibition of HA synthesis leads to suppression of TH-upregulated expression of leucine-rich repeat-containing G protein-coupled 5 (LGR5), an intestinal stem cell marker, CD44, HAS2, HAS3, and gelatinase A in vivo. These findings suggest that HA newly synthesized by HAS2 and/or HAS3 is required for intestinal stem cell development through a positive feedback loop and is involved in the formation of the stem cell niche during metamorphosis.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Mitsuko Kajita
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
9
|
Ishizuya-Oka A. How thyroid hormone regulates transformation of larval epithelial cells into adult stem cells in the amphibian intestine. Mol Cell Endocrinol 2017; 459:98-103. [PMID: 28232053 DOI: 10.1016/j.mce.2017.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
In the amphibian intestine during metamorphosis, a small number of larval epithelial cells dedifferentiate into adult stem cells that newly form the adult epithelium analogous to the mammalian counterpart, while most of them undergo apoptosis. Because this larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) both in vivo and in vitro, TH response genes identified in the Xenopus intestine provide us valuable clues to investigating how adult stem cells and their niche are formed during postembryonic development. Their expression and functional analyses by using the culture and recent transgenic (Tg) techniques have shed light on key signaling pathways essential for intestinal stem cell development. The present review focuses on such recent findings and discusses the evolutionally conserved roles of TH in development or maintenance of the stem cells which are common to the terrestrial vertebrate intestines.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Musashino, Tokyo 180-0023, Japan.
| |
Collapse
|
10
|
Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis. Sci Rep 2017; 7:6414. [PMID: 28743885 PMCID: PMC5527017 DOI: 10.1038/s41598-017-06679-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone (T3) affects development and metabolism in vertebrates. We have been studying intestinal remodeling during T3-dependent Xenopus metamorphosis as a model for organ maturation and formation of adult organ-specific stem cells during vertebrate postembryonic development, a period characterized by high levels of plasma T3. T3 is believed to affect development by regulating target gene transcription through T3 receptors (TRs). While many T3 response genes have been identified in different animal species, few have been shown to be direct target genes in vivo, especially during development. Here we generated a set of genomic microarray chips covering about 8000 bp flanking the predicted transcription start sites in Xenopus tropicalis for genome wide identification of TR binding sites. By using the intestine of premetamorphic tadpoles treated with or without T3 and for chromatin immunoprecipitation assays with these chips, we determined the genome-wide binding of TR in the control and T3-treated tadpole intestine. We further validated TR binding in vivo and analyzed the regulation of selected genes. We thus identified 278 candidate direct TR target genes. We further provided evidence that these genes are regulated by T3 and likely involved in the T3-induced formation of adult intestinal stem cells during metamorphosis.
Collapse
|
11
|
Wen L, Fu L, Shi YB. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J 2017; 31:4821-4831. [PMID: 28739643 DOI: 10.1096/fj.201700131r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Histone modifications are associated with transcriptional regulation by diverse transcription factors. Genome-wide correlation studies have revealed that histone activation marks and repression marks are associated with activated and repressed gene expression, respectively. Among the histone activation marks is histone H3 K79 methylation, which is carried out by only a single methyltransferase, disruptor of telomeric silencing-1-like (DOT1L). We have been studying thyroid hormone (T3)-dependent amphibian metamorphosis in two highly related species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, as a model for postembryonic development, a period around birth in mammals that is difficult to study. We previously showed that H3K79 methylation levels are induced at T3 target genes during natural and T3-induced metamorphosis and that Dot1L is itself a T3 target gene. These suggest that T3 induces Dot1L expression, and Dot1L in turn functions as a T3 receptor (TR) coactivator to promote vertebrate development. We show here that in cotransfection studies or in the reconstituted frog oocyte in vivo transcription system, overexpression of Dot1L enhances gene activation by TR in the presence of T3. Furthermore, making use of the ability to carry out transgenesis in X. laevis and gene knockdown in X. tropicalis, we demonstrate that endogenous Dot1L is critical for T3-induced activation of endogenous TR target genes while transgenic Dot1L enhances endogenous TR function in premetamorphic tadpoles in the presence of T3. Our studies thus for the first time provide complementary gain- and loss-of functional evidence in vivo for a cofactor, Dot1L, in gene activation by TR during vertebrate development.-Wen, L., Fu, L., Shi, Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology 2017; 158:1985-1998. [PMID: 28324024 PMCID: PMC5460924 DOI: 10.1210/en.2016-1953] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Dan Su
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nga Luu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Dentice M, Antonini D, Salvatore D. Type 3 deiodinase and solid tumors: an intriguing pair. Expert Opin Ther Targets 2013; 17:1369-79. [DOI: 10.1517/14728222.2013.833189] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci 2013; 3:18. [PMID: 23547658 PMCID: PMC3621685 DOI: 10.1186/2045-3701-3-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Nakahara-ku, Kosugi-cho, Kawasaki, Kanagawa, 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Ishizuya-Oka A, Hasebe T. Establishment of intestinal stem cell niche during amphibian metamorphosis. Curr Top Dev Biol 2013; 103:305-27. [PMID: 23347524 DOI: 10.1016/b978-0-12-385979-2.00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the amphibian intestine during metamorphosis, most of the larval epithelial cells undergo apoptosis, whereas a small number of them survive. These cells dedifferentiate into stem cells through interactions with the microenvironment referred to as "stem cell niche" and generate the adult epithelium analogous to the mammalian counterpart. Since all processes of the larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) both in vivo and in vitro, the amphibian intestine provides us a valuable opportunity to study how adult stem cells and their niche are formed during postembryonic development. To address this issue, a number of expression and functional analyses of TH response genes have been intensely performed in the Xenopus laevis over the past two decades, by using organ culture and transgenic techniques. We here review recent progress in this field, focusing on key signaling pathways involved in establishment of the stem cell niche and discuss their evolutionarily conserved roles in the vertebrate intestine.
Collapse
|
16
|
Cytological and morphological analyses reveal distinct features of intestinal development during Xenopus tropicalis metamorphosis. PLoS One 2012; 7:e47407. [PMID: 23071801 PMCID: PMC3468569 DOI: 10.1371/journal.pone.0047407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/14/2012] [Indexed: 01/29/2023] Open
Abstract
Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development.
Collapse
|
17
|
Fu L, Sun G, Fiorentino M, Shi YB. Characterization of Xenopus tissue inhibitor of metalloproteinases-2: a role in regulating matrix metalloproteinase activity during development. PLoS One 2012; 7:e36707. [PMID: 22693555 PMCID: PMC3365048 DOI: 10.1371/journal.pone.0036707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/05/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Frog metamorphosis is totally dependent on thyroid hormone (T3) and mimics the postembryonic period around birth in mammals. It is an excellent model to study the molecular basis of postembryonic development in vertebrate. We and others have shown that many, if not all, matrix metalloproteinases (MMPs), which cleave proteins of the extracellular matrix as well as other substrates, are induced by T3 and important for metamorphosis. MMP activity can be inhibited by tissue inhibitors of metalloproteinase (TIMPs). There are 4 TIMPs in vertebrates and their roles in postembryonic development are poorly studied. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the TIMP2 genes in Xenopus laevis and the highly related species Xenopus tropicalis and discovered that TIMP2 is a single copy gene in Xenopus tropicalis as in mammals but is duplicated in Xenopus laevis. Furthermore, the TIMP2 locus in Xenopus tropicalis genome is different from that in human, suggesting an evolutionary reorganization of the locus. More importantly, we found that the duplicated TIMP2 genes were similarly regulated in the developing limb, remodeling intestine, resorbing tail during metamorphosis. Unexpectedly, like its MMP target genes, the TIMP2 genes were upregulated by T3 during both natural and T3-induced metamorphosis. CONCLUSIONS/SIGNIFICANCE Our results indicate that TIMP2 is highly conserved among vertebrates and that the TIMP2 locus underwent a chromosomal reorganization during evolution. Furthermore, the unexpected upregulation of TIMP2 genes during metamorphosis suggests that proper balance of MMP activity is important for metamorphosis.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Guihong Sun
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- Key Laboratory of Allergy and Immune-related Diseases and Centre for Medical Research, School of Medicine, Wuhan University, Wuhan, People‘s Republic of China
| | - Maria Fiorentino
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ishizuya-Oka A. Amphibian organ remodeling during metamorphosis: Insight into thyroid hormone-induced apoptosis. Dev Growth Differ 2011; 53:202-12. [DOI: 10.1111/j.1440-169x.2010.01222.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Abstract
During amphibian metamorphosis, the larval tissues/organs rapidly degenerate to adapt from the aquatic to the terrestrial life. At the cellular level, a large quantity of apoptosis occurs in a spatiotemporally-regulated fashion in different organs to ensure timely removal of larval organs/tissues and the development of adult ones for the survival of the individuals. Thus, amphibian metamorphosis provides us a good opportunity to understand the mechanisms regulating apoptosis. To investigate this process at the molecular level, a number of thyroid hormone (TH) response genes have been isolated from several organs of Xenopus laevis tadpoles and their expression and functional analyses are now in progress using modern molecular and genetic technologies. In this review, we will first summarize when and where apoptosis occurs in typical larva-specific and larval-to-adult remodeling amphibian organs to highlight that the timing of apoptosis is different in different tissues/organs, even though all are induced by the same circulating TH. Next, to discuss how TH spatiotemporally regulates the apoptosis, we will focus on apoptosis of the X. laevis small intestine, one of the best characterized remodeling organs. Functional studies of TH response genes using transgenic frogs and culture techniques have shown that apoptosis of larval epithelial cells can be induced by TH either cell-autonomously or indirectly through interactions with extracellular matrix (ECM) components of the underlying basal lamina. Here, we propose that multiple intra- and extracellular apoptotic pathways are coordinately controlled by TH to ensure massive but well-organized apoptosis, which is essential for the proper progression of amphibian metamorphosis.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Yun-Bo Shi
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, MD 20892-5431, USA
| |
Collapse
|
20
|
Mathew S, Fu L, Hasebe T, Ishizuya-Oka A, Shi YB. Tissue-dependent induction of apoptosis by matrix metalloproteinase stromelysin-3 during amphibian metamorphosis. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:55-66. [PMID: 20301218 PMCID: PMC3412310 DOI: 10.1002/bdrc.20170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are a superfamily of Zn(2+)-dependent proteases that are capable of cleaving the proteinaceous component of the extracellular matrix (ECM). The ECM is a critical medium for cell-cell interactions and can also directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation by MMPs are expected to affect cell fate and behavior during many developmental and pathological processes. Numerous studies have shown that the expression of MMP mRNAs and proteins associates tightly with diverse developmental and pathological processes, such as tumor metastasis and mammary gland involution. In vivo evidence to support the roles of MMPs in these processes has been much harder to get. Here, we will review some of our studies on MMP11, or stromelysin-3, during the thyroid hormone-dependent amphibian metamorphosis, a process that resembles the so-called postembryonic development in mammals (from a few months before to several months after birth in humans when organ growth and maturation take place). Our investigations demonstrate that stromelysin-3 controls apoptosis in different tissues via at least two distinct mechanisms.
Collapse
Affiliation(s)
- Smita Mathew
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| |
Collapse
|
21
|
|
22
|
Zbinden S, Wang J, Adenika R, Schmidt M, Tilan JU, Najafi AH, Peng X, Lassance-Soares RM, Iantorno M, Morsli H, Gercenshtein L, Jang GJ, Epstein SE, Burnett MS. Metallothionein enhances angiogenesis and arteriogenesis by modulating smooth muscle cell and macrophage function. Arterioscler Thromb Vasc Biol 2010; 30:477-82. [PMID: 20056912 DOI: 10.1161/atvbaha.109.200949] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In a previous study we identified metallothionein (MT) as a candidate gene potentially influencing collaterogenesis. In this investigation, we determined the effect of MT on collaterogenesis and examined the mechanisms contributing to the effects we found. METHODS AND RESULTS Collateral blood flow recovery was assessed using laser Doppler perfusion imaging, and angiogenesis was measured using a Matrigel plug assay. Smooth muscle cells were isolated from MT knockout (KO) mice for functional assays. Gene expression of matrix metalloproteinase-9, platelet-derived growth factor, vascular endothelial growth factor, and Fat cadherin in smooth muscle cells was measured by real-time polymerase chain reaction, and protein levels of vascular endothelial growth factor and matrix metalloproteinase-9 were determined using enzyme-linked immunosorbent assay and Western blot. CD11b(+) macrophages were tested for invasiveness using a real-time impedance assay. Both flow recovery and angiogenesis were impaired in MT KO mice. Proliferation, migration, and invasion were decreased in MT KO smooth muscle cells, and matrix metalloproteinase-9, platelet-derived growth factor, and vascular endothelial growth factor expression were also decreased, whereas FAT-1 cadherin expression was elevated. MT KO CD11b(+) cells were more invasive than wild-type cells. CONCLUSIONS MT plays an important role in collateral flow recovery and angiogenesis, an activity that appears to be mediated, in part, by the effects of MT on the functionality of 3 cell types essential for these processes: endothelial cells, smooth muscle cells, and macrophages.
Collapse
Affiliation(s)
- Stephan Zbinden
- Cardiovascular Research Institute, MedStar Research Institute, 108 Irving Street, NW, Room 214, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Das B, Heimeier RA, Buchholz DR, Shi YB. Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. J Biol Chem 2009; 284:34167-78. [PMID: 19801647 PMCID: PMC2797187 DOI: 10.1074/jbc.m109.066084] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 09/25/2009] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone (T3) is essential for normal development and organ function throughout vertebrates. Its effects are mainly mediated through transcriptional regulation by T3 receptor (TR). The identification and characterization of the immediate early, direct target genes are thus of critical importance in understanding the molecular pathways induced by T3. Unfortunately, this has been hampered by the difficulty to study gene regulation by T3 in uterus-enclosed mammalian embryos. Here we used Xenopus metamorphosis as a model for vertebrate postembryonic development to identify direct T3 response genes in vivo. We took advantage of the ability to easily induce metamorphosis with physiological levels of T3 and to carry out microarray analysis in Xenopus laevis and genome-wide sequence analysis in Xenopus tropicalis. This allowed us to identify 188 up-regulated and 249 down-regulated genes by T3 in the absence of new protein synthesis in whole animals. We further provide evidence to show that these genes contain functional TREs that are bound by TR in tadpoles and that their promoters are regulated by TR in vivo. More importantly, gene ontology analysis showed that the direct up-regulated genes are enriched in categories important for transcriptional regulation and protein degradation-dependent signaling processes but not DNA replication. Our findings thus revealed the existence of interesting pathways induced by T3 at the earliest step of metamorphosis.
Collapse
Affiliation(s)
- Biswajit Das
- From the Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Rachel A. Heimeier
- From the Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Daniel R. Buchholz
- the Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0006
| | - Yun-Bo Shi
- From the Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
24
|
Lorenz C, Opitz R, Lutz I, Kloas W. Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:314-21. [PMID: 19481173 DOI: 10.1016/j.cbpc.2009.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Although thyroid hormones (TH) are the primary morphogens regulating amphibian metamorphosis, other hormones including corticosteroids are known to participate in this regulation. The present study investigated effects of corticosteroids on larval development of the amphibian Xenopus laevis. Premetamorphic tadpoles (stage 51) were treated with aldosterone (ALDO; 100 nM), corticosterone (B; 10, 100, 500 nM) and dexamethasone (DEX; 10, 100, 500 nM) for 21 days and organismal responses were assessed by gross morphology determining stage development, whole body length (WBL), and hind limb length (HLL). B and DEX reduced WBL and HLL and caused abnormal development including the lack of fore limb emergence while ALDO treatment showed no significant effect. Gene expression analyses using RT-PCR revealed up-regulation of prolactin (PRL) in brain, but down-regulation of type III deiodinase in tail tissue induced by the glucocorticoids B and DEX. Additionally, stromelysin-3 transcript in tail tissue was decreased by B. ALDO at 100 nM had no effect on mRNA expression, neither in brain nor in tail tissue. These findings indicate that corticosteroids modulate TH-dependent metamorphosis by complex mechanisms that even include indirect effects triggered by increased PRL mRNA expression.
Collapse
Affiliation(s)
- Claudia Lorenz
- Department of Aquaculture and Ecophysiology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | | | | | | |
Collapse
|
25
|
Mathew S, Fu L, Fiorentino M, Matsuda H, Das B, Shi YB. Differential regulation of cell type-specific apoptosis by stromelysin-3: a potential mechanism via the cleavage of the laminin receptor during tail resorption in Xenopus laevis. J Biol Chem 2009; 284:18545-56. [PMID: 19429683 DOI: 10.1074/jbc.m109.017723] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been extensively studied because of their functional attributes in development and diseases. However, relatively few in vivo functional studies have been reported on the roles of MMPs in postembryonic organ development. Amphibian metamorphosis is a unique model for studying MMP function during vertebrate development because of its dependence on thyroid hormone (T3) and the ability to easily manipulate this process with exogenous T3. The MMP stromelysin-3 (ST3) is induced by T3, and its expression correlates with cell death during metamorphosis. We have previously shown that ST3 is both necessary and sufficient for larval epithelial cell death in the remodeling intestine. To investigate the roles of ST3 in other organs and especially on different cell types, we have analyzed the effect of transgenic overexpression of ST3 in the tail of premetamorphic tadpoles. We report for the first time that ST3 expression, in the absence of T3, caused significant muscle cell death in the tail of premetamorphic transgenic tadpoles. On the other hand, only relatively low levels of epidermal cell death were induced by precocious ST3 expression in the tail, contrasting what takes place during natural and T3-induced metamorphosis when ST3 expression is high. This cell type-specific apoptotic response to ST3 in the tail suggests distinct mechanisms regulating cell death in different tissues. Furthermore, our analyses of laminin receptor, an in vivo substrate of ST3 in the intestine, suggest that laminin receptor cleavage may be an underlying mechanism for the cell type-specific effects of ST3.
Collapse
Affiliation(s)
- Smita Mathew
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
26
|
Suzuki KI, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K. Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis. Dev Growth Differ 2009; 51:411-27. [DOI: 10.1111/j.1440-169x.2009.01100.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Fu L, Das B, Mathew S, Shi YB. Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians. BMC Genomics 2009; 10:81. [PMID: 19222855 PMCID: PMC2656525 DOI: 10.1186/1471-2164-10-81] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 02/17/2009] [Indexed: 01/17/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are members of the superfamily of Zn2+ dependent extracellular or membrane-bound endopeptidases which have been implicated to play critical roles in vertebrate development and human pathogenesis. A number of MMP genes have been found to be upregulated in some or all organs during frog metamorphosis, suggesting that different MMPs may have different functions in various organs/tissues. The recent advances in EST (expressed sequence tag) sequencing and the completion of the genome of Xenopus (X.) tropicalis prompted us to systematically analyze the existence of MMPs in the Xenopus genome. Results We examined X. laevis and X. tropicalis ESTs and genomic sequences for MMPs and obtained likely homologs for 20 out of the 25 MMPs known in higher vertebrates. Four of the five missing MMPs, i.e. MMPs 8, 10, 12 and 27, were all encoded on human Chromosome 11 and the other missing MMP, MMP22 (a chicken MMP), was also absent in human genome. In addition, we identified several novel MMPs which appears to be derived from unique duplications over evolution, are present in the genomes of both Xenopus species. Conclusion We identified the homologs of most of the mammalian MMPs in Xenopus and discovered a number of novel MMPs. Our results suggest that MMP genes undergo dynamic changes over evolution. It will be of interest in the future to investigate whether MMP expression and functions during vertebrate development are conserved. The sequence information reported here should facilitate such an endeavor in the near future.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, PCRM, NICHD, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
28
|
Ishizuya-Oka A, Shi YB. Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol 2008; 288:71-8. [PMID: 18400374 DOI: 10.1016/j.mce.2008.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/28/2008] [Accepted: 02/26/2008] [Indexed: 11/26/2022]
Abstract
During amphibian metamorphosis the small intestine is remodeled from larval to adult form, analogous to the mammalian intestine. The larval epithelium mostly undergoes apoptosis, while a small number of stem cells appear, actively proliferate, and differentiate into the adult epithelium possessing a cell-renewal system. Because amphibian intestinal remodeling is completely controlled by thyroid hormone (T3) through T3 receptors (TRs), it serves as an excellent model for studying the molecular mechanism of the mammalian intestinal development. TRs bind T3 response elements in target genes and have dual functions by interacting with coactivators or corepressors in a T3-dependent manner. A number of T3 response genes have been isolated from the Xenopus laevis intestine. They include signaling molecules, matrix metalloproteinases, and transcription factors. Functional studies have been carried out on many such genes in vitro and in vivo by using transgenic and culture technologies. Here we will review recent findings from such studies with a special emphasis on the adult intestinal stem cells, and discuss the evolutionarily conserved roles of T3 in the epithelial cell-renewal in the vertebrate intestine.
Collapse
|
29
|
Shi YB, Fu L, Hasebe T, Ishizuya-Oka A. Regulation of extracellular matrix remodeling and cell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development. Pharmacol Ther 2007; 116:391-400. [PMID: 17919732 PMCID: PMC2754841 DOI: 10.1016/j.pharmthera.2007.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 01/23/2023]
Abstract
Interactions between cells and extracellular matrix (ECM), in particular the basement membrane (BM), are fundamentally important for the regulation of a wide variety of physiological and pathological processes. Matrix metalloproteinases (MMP) play critical roles in ECM remodeling and/or regulation of cell-ECM interactions because of their ability to cleave protein components of the ECM. Of particular interest among MMP is stromelysin-3 (ST3), which was first isolated from a human breast cancer and also shown to be correlated with apoptosis during development and invasion of tumor cells in mammals. We have been using intestinal remodeling during thyroid hormone (TH)-dependent amphibian metamorphosis as a model to study the role of ST3 during post-embryonic tissue remodeling and organ development in vertebrates. This process involves complete degeneration of the tadpole or larval epithelium through apoptosis and de novo development of the adult epithelium. Here, we will first summarize expression studies by us and others showing a tight spatial and temporal correlation of the expression of ST3 mRNA and protein with larval cell death and adult tissue development. We will then review in vitro and in vivo data supporting a critical role of ST3 in TH-induced larval epithelial cell death and ECM remodeling. We will further discuss the potential mechanisms of ST3 function during metamorphosis and its broader implications.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T, Rm. 106, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T, Rm. 106, Bethesda, MD 20892, USA
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan
| |
Collapse
|
30
|
Walsh LA, Carere DA, Cooper CA, Damjanovski S. Membrane type-1 matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 RNA levels mimic each other during Xenopus laevis metamorphosis. PLoS One 2007; 2:e1000. [PMID: 17912339 PMCID: PMC1991586 DOI: 10.1371/journal.pone.0001000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 09/16/2007] [Indexed: 11/30/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.
Collapse
Affiliation(s)
- Logan A. Walsh
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Deanna A. Carere
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Colin A. Cooper
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Sashko Damjanovski
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Fujimoto K, Nakajima K, Yaoita Y. Expression of matrix metalloproteinase genes in regressing or remodeling organs during amphibian metamorphosis. Dev Growth Differ 2007; 49:131-43. [PMID: 17335434 DOI: 10.1111/j.1440-169x.2007.00916.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several matrix metalloproteinases (MMP) are induced by thyroid hormone (TH) during the climax of amphibian metamorphosis and play a pivotal role in the remodeling of the intestine and the regressing tail and gills by degrading the extracellular matrix (ECM). We compared MMP gene expression levels precisely by quantitative real-time reverse transcription-polymerase chain reaction. The expression of MMP genes increases prominently at Nieuwkoop and Faber (NF) stages 60, 60-61 and 62 in the intestine, gills and tail, respectively, when the drastic morphological changes start in each organ. Gene expression analysis in the TH-treated tadpoles and cell line revealed that MMP mRNAs are upregulated in response to TH quickly within several hours to low levels and then increase in a day to high levels. All TH-induced MMP genes have TH response elements (TREs). The presence of high affinity TREs in MMP genes correlates with early TH-induction. Based on these results, we propose that TH stimulates the transcription of MMP genes through TREs within several hours to low levels and then brings about the main increase of mRNAs by TH-induced transcriptional factors, including TH receptor beta, in a cell type-specific transcriptional environment.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
32
|
Paul BD, Buchholz DR, Fu L, Shi YB. SRC-p300 Coactivator Complex Is Required for Thyroid Hormone-induced Amphibian Metamorphosis. J Biol Chem 2007; 282:7472-81. [PMID: 17218308 DOI: 10.1074/jbc.m607589200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene activation by the thyroid hormone (T3) receptor (TR) involves the recruitment of specific coactivator complexes to T3-responsive promoters. A large number of coactivators for TR have been isolated and characterized in vitro. However, their roles and functions in vivo during development have remained largely unknown. We have utilized metamorphosis in Xenopus laevis to study the role of these coactivators during post-embryonic development. Metamorphosis is totally dependent on the thyroid hormone, and TR mediates a vast majority, if not all, of the developmental effects of the hormone. We have previously shown that TR recruits the coactivator SRC3 (steroid receptor coactivator-3) and that coactivator recruitment is essential for metamorphosis. To determine whether SRCs are indeed required, we have analyzed the in vivo role of the histone acetyltransferase p300/CREB-binding protein (CBP), which was reported to be a component of the SRC.coactivator complexes. Chromatin immunoprecipitation revealed that p300 is recruited to T3-responsive promoters, implicating a role of p300 in TR function. Further, transgenic tadpoles overexpressing a dominant negative form of p300, F-dnp300, containing only the SRC-interacting domain, displayed arrested or delayed metamorphosis. Molecular analyses of the transgenic F-dnp300 animals showed that F-dnp300 was recruited by TR (displacing endogenous p300) and inhibited the expression of T3-responsive genes. Our results thus suggest that p300 and/or its related CBP is an essential component of the TR-signaling pathway in vivo and support the notion that p300/CBP and SRC proteins are part of the same coactivator complex in vivo during post-embryonic development.
Collapse
Affiliation(s)
- Bindu D Paul
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
33
|
Ishizuya-Oka A, Shi YB. Regulation of adult intestinal epithelial stem cell development by thyroid hormone duringXenopus laevis metamorphosis. Dev Dyn 2007; 236:3358-68. [PMID: 17705305 DOI: 10.1002/dvdy.21291] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During amphibian metamorphosis, most or all of the larval intestinal epithelial cells undergo apoptosis. In contrast, stem cells of yet-unknown origin actively proliferate and, under the influence of the connective tissue, differentiate into the adult epithelium analogous to the mammalian counterpart. Thus, amphibian intestinal remodeling is useful for studying the stem cell niche, the clarification of which is urgently needed for regenerative therapies. This review highlights the molecular aspects of the niche using the Xenopus laevis intestine as a model. Because amphibian metamorphosis is completely controlled by thyroid hormone (TH), the analysis of TH response genes serves as a powerful means for clarifying its molecular mechanisms. Although functional analysis of the genes is still on the way, recent progresses in organ culture and transgenic studies have gradually uncovered important roles of cell-cell and cell-extracellular matrix interactions through stromelysin-3 and sonic hedgehog/bone morphogenetic protein-4 signaling pathway in the epithelial stem cell development.
Collapse
|
34
|
Hasebe T, Kajita M, Fujimoto K, Yaoita Y, Ishizuya-Oka A. Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells duringXenopus laevis metamorphosis. Dev Dyn 2007; 236:2338-45. [PMID: 17654707 DOI: 10.1002/dvdy.21252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play a pivotal role in development and/or pathogenesis through degrading extracellular matrix (ECM) components. We have previously shown that Xenopus MMP-9 gene is duplicated. To assess possible roles of MMP-9 and MMP-9TH in X. laevis intestinal remodeling, we here analyzed their expression profiles by in situ hybridization and show that their expression is transiently up-regulated during thyroid hormone-dependent metamorphosis. Of interest, MMP-9TH mRNA is strictly localized in the connective tissue and most highly expressed just beneath the larval epithelium that begins to undergo apoptosis. On the other hand, cells expressing MMP-9 mRNA become first detectable in the connective tissue and then, after the start of epithelial apoptosis, also in the larval epithelium. These results strongly suggest that MMP-9TH is responsible in the larval epithelial apoptosis through degrading ECM components in the basal lamina, whereas MMP-9 is involved in the removal of dying epithelial cells during amphibian intestinal remodeling.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Nakahara-ku, Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|