1
|
Bhatt PA, Gurav TP, Kondhare KR, Giri AP. MYB proteins: Versatile regulators of plant development, stress responses, and secondary metabolite biosynthetic pathways. Int J Biol Macromol 2025; 288:138588. [PMID: 39672414 DOI: 10.1016/j.ijbiomac.2024.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
MYB proteins are ubiquitous in nature, regulating key aspects of plant growth and development. Although MYB proteins are known for regulating genes involved in secondary metabolite biosynthesis, particularly phenylpropanoids, their roles in terpenoid, glucosinolate, and alkaloid biosynthesis remain less understood. This review explores the structural and functional differences between activator and repressor MYB proteins along with their roles in plant growth, development, stress responses, and secondary metabolite production. MYB proteins serve as central hubs in protein-protein interaction networks that regulate expression of numerous genes involved in the adaptation of plants to varying environmental conditions. Thus, we also highlight key interacting partners of MYB proteins and their roles in these adaptation mechanisms. We further discuss the mechanisms regulating MYB proteins, including autoregulation, epigenetics, and post-transcriptional and post-translational modifications. Overall, we propose MYB proteins as versatile regulators for improving plant traits, stress responses, and secondary metabolite production.
Collapse
Affiliation(s)
- Preshita A Bhatt
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Tanuja P Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Hou H, Jin Q, Ren Y, Chen Z, Wang Q, Xu Y. Structure of the SNAPc-bound RNA polymerase III preinitiation complex. Cell Res 2023; 33:565-568. [PMID: 37165065 PMCID: PMC10313668 DOI: 10.1038/s41422-023-00819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianwei Jin
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenguo Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
- Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Structural basis of SNAPc-dependent snRNA transcription initiation by RNA polymerase II. Nat Struct Mol Biol 2022; 29:1159-1169. [PMID: 36424526 PMCID: PMC9758055 DOI: 10.1038/s41594-022-00857-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
RNA polymerase II (Pol II) carries out transcription of both protein-coding and non-coding genes. Whereas Pol II initiation at protein-coding genes has been studied in detail, Pol II initiation at non-coding genes, such as small nuclear RNA (snRNA) genes, is less well understood at the structural level. Here, we study Pol II initiation at snRNA gene promoters and show that the snRNA-activating protein complex (SNAPc) enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro. We then resolve cryo-EM structures of the SNAPc-containing Pol IIpre-initiation complex (PIC) assembled on U1 and U5 snRNA promoters. The core of SNAPc binds two turns of DNA and recognizes the snRNA promoter-specific proximal sequence element (PSE), located upstream of the TATA box-binding protein TBP. Two extensions of SNAPc, called wing-1 and wing-2, bind TFIIA and TFIIB, respectively, explaining how SNAPc directs Pol II to snRNA promoters. Comparison of structures of closed and open promoter complexes elucidates TFIIH-independent DNA opening. These results provide the structural basis of Pol II initiation at non-coding RNA gene promoters.
Collapse
|
4
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
5
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
6
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
7
|
Ohtani M, Takebayashi A, Hiroyama R, Xu B, Kudo T, Sakakibara H, Sugiyama M, Demura T. Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2015; 128:371-80. [PMID: 25740809 DOI: 10.1007/s10265-015-0704-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals. Mol Cell Biol 2012; 32:4642-50. [PMID: 22966203 DOI: 10.1128/mcb.00906-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of transcription of RNA polymerase II (RNAPII)-dependent genes requires the participation of a host of basal transcription factors. Among genes requiring RNAPII for transcription, small nuclear RNAs (snRNAs) display a further requirement for a factor known as snRNA-activating protein complex (SNAPc). The scope of the biological function of SNAPc and its requirement for transcription of protein-coding genes has not been elucidated. To determine the genome-wide occupancy of SNAPc, we performed chromatin immunoprecipitation followed by high-throughput sequencing using antibodies against SNAPC4 and SNAPC1 subunits. Interestingly, while SNAPC4 occupancy was limited to snRNA genes, SNAPC1 chromatin residence extended beyond snRNA genes to include a large number of transcriptionally active protein-coding genes. Notably, SNAPC1 occupancy on highly active genes mirrored that of elongating RNAPII extending through the bodies and 3' ends of protein-coding genes. Inhibition of transcriptional elongation resulted in the loss of SNAPC1 from the 3' ends of genes, reflecting a functional association between SNAPC1 and elongating RNAPII. Importantly, while depletion of SNAPC1 had a small effect on basal transcription, it diminished the transcriptional responsiveness of a large number of genes to two distinct extracellular stimuli, epidermal growth factor (EGF) and retinoic acid (RA). These results highlight a role for SNAPC1 as a general transcriptional coactivator that functions through elongating RNAPII.
Collapse
|
9
|
Voz ML, Coppieters W, Manfroid I, Baudhuin A, Von Berg V, Charlier C, Meyer D, Driever W, Martial JA, Peers B. Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing. PLoS One 2012; 7:e34671. [PMID: 22496837 PMCID: PMC3319596 DOI: 10.1371/journal.pone.0034671] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/06/2012] [Indexed: 02/03/2023] Open
Abstract
Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish.
Collapse
Affiliation(s)
- Marianne L Voz
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Sart Tilman, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hung KH, Stumph WE. Localization of residues in a novel DNA-binding domain of DmSNAP43 required for DmSNAPc DNA-binding activity. FEBS Lett 2012; 586:841-6. [PMID: 22449969 DOI: 10.1016/j.febslet.2012.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/05/2012] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
Abstract
Transcription of snRNA genes depends upon the recognition of the proximal sequence element (PSE) by the snRNA activating protein complex SNAPc. In Drosophila melanogaster, all subunits of DmSNAPc (DmSNAP43, DmSNAP50, and DmSNAP190) are required for PSE-binding activity. Previous work demonstrated that a non-canonical DmSNAP43 domain bounded by residues 193-272 was essential for DmSNAPc to bind to the PSE. In this study, the contribution of amino acid residues within this domain to DNA binding by DmSNAPc was investigated by alanine-scanning mutagenesis. The results have identified two clusters of residues within this domain required for the sequence-specific DNA-binding activity of DmSNAPc.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Department of Biology, San Diego State University, San Diego, CA 92182-1030, United States
| | | |
Collapse
|
11
|
Hung KH, Stumph WE. Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Crit Rev Biochem Mol Biol 2010; 46:11-26. [PMID: 20925482 DOI: 10.3109/10409238.2010.518136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The small nuclear RNAs (snRNAs) are an essential class of non-coding RNAs first identified over 30 years ago. Many of the well-characterized snRNAs are involved in RNA processing events. However, it is now evident that other small RNAs, synthesized using similar mechanisms, play important roles at many stages of gene expression. The accurate and efficient control of the expression of snRNA (and related) genes is thus critical for cell survival. All snRNA genes share a very similar promoter structure, and their transcription is dependent upon the same multi-subunit transcription factor, termed the snRNA activating protein complex (SNAPc). Despite those similarities, some snRNA genes are transcribed by RNA polymerase II (Pol II), but others are transcribed by RNA polymerase III (Pol III). Thus snRNA genes provide a unique opportunity to understand how RNA polymerase specificity is determined and how distinct transcription machineries can interact with a common factor. This review will describe efforts taken toward solving those questions by using the fruit fly as a model organism. Drosophila melanogaster SNAPc (DmSNAPc) binds to a proximal sequence element (PSEA) present in both Pol II and Pol III snRNA promoters. Just a few differences in nucleotide sequence in the Pol II and Pol III PSEAs play a major role in determining RNA polymerase specificity. Furthermore, these same nucleotide differences result in alternative conformations of DmSNAPc on Pol II and Pol III snRNA gene promoters. It seems likely that these DNA-induced alternative DmSNAPc conformations are responsible for the differential recruitment of the distinct transcriptional machineries.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-1030, USA
| | | |
Collapse
|
12
|
Kim MK, Kang YS, Lai HT, Barakat NH, Magante D, Stumph WE. Identification of SNAPc subunit domains that interact with specific nucleotide positions in the U1 and U6 gene promoters. Mol Cell Biol 2010; 30:2411-23. [PMID: 20212087 PMCID: PMC2863707 DOI: 10.1128/mcb.01508-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/15/2009] [Accepted: 02/25/2010] [Indexed: 11/20/2022] Open
Abstract
The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is essential for transcription of genes coding for the snRNAs (U1, U2, etc.). In Drosophila melanogaster, the heterotrimeric DmSNAPc recognizes a 21-bp DNA sequence, the proximal sequence element A (PSEA), located approximately 40 to 60 bp upstream of the transcription start site. Upon binding the PSEA, DmSNAPc establishes RNA polymerase II preinitiation complexes on U1 to U5 promoters but RNA polymerase III preinitiation complexes on U6 promoters. Minor differences in nucleotide sequence of the U1 and U6 PSEAs determine RNA polymerase specificity; moreover, DmSNAPc adopts different conformations on these different PSEAs. We have proposed that such conformational differences in DmSNAPc play a key role in determining the different polymerase specificities of the U1 and U6 promoters. To better understand the structure of DmSNAPc-PSEA complexes, we have developed a novel protocol that combines site-specific protein-DNA photo-cross-linking with site-specific chemical cleavage of the protein. This protocol has allowed us to map regions within each of the three DmSNAPc subunits that contact specific nucleotide positions within the U1 and U6 PSEAs. These data help to establish the orientation of each DmSNAPc subunit on the DNA and have revealed cases in which different domains of the subunits differentially contact the U1 versus U6 PSEAs.
Collapse
Affiliation(s)
- Mun Kyoung Kim
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Yoon Soon Kang
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Hsien-Tsung Lai
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Nermeen H. Barakat
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Deodato Magante
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - William E. Stumph
- Molecular Biology Institute, Department of Biology, Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| |
Collapse
|
13
|
Hung KH, Titus M, Chiang SC, Stumph WE. A map of Drosophila melanogaster small nuclear RNA-activating protein complex (DmSNAPc) domains involved in subunit assembly and DNA binding. J Biol Chem 2009; 284:22568-79. [PMID: 19556241 DOI: 10.1074/jbc.m109.027961] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of genes coding for the small nuclear RNAs (snRNAs) is dependent upon a unique transcription factor known as the small nuclear RNA-activating protein complex (SNAPc). SNAPc binds to an essential proximal sequence element located about 40-65 base pairs upstream of the snRNA transcription start site. In the fruit fly Drosophila melanogaster, DmSNAPc contains three distinct polypeptides (DmSNAP190, DmSNAP50, and DmSNAP43) that are stably associated with each other and bind to the DNA as a complex. We have used mutational analysis to identify domains within each subunit that are involved in complex formation with the other two subunits in vivo. We have also identified domains in each subunit required for sequence-specific DNA binding. With one exception, domains required for subunit-subunit interactions lie in the most evolutionarily conserved regions of the proteins. However, DNA binding by DmSNAPc is dependent not only upon the conserved regions but is also highly dependent upon domains outside the conserved regions. Comparison with functional domains identified in human SNAPc indicates many parallels but also reveals significant differences in this ancient yet rapidly evolving system.
Collapse
Affiliation(s)
- Ko-Hsuan Hung
- Molecular Biology Institute, Department of Biology, San Diego State University, San Diego, California 92182-1030, USA
| | | | | | | |
Collapse
|
14
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
15
|
Human U2 snRNA genes exhibit a persistently open transcriptional state and promoter disassembly at metaphase. Mol Cell Biol 2008; 28:3573-88. [PMID: 18378697 DOI: 10.1128/mcb.00087-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In mammals, small multigene families generate spliceosomal U snRNAs that are nearly as abundant as rRNA. Using the tandemly repeated human U2 genes as a model, we show by footprinting with DNase I and permanganate that nearly all sequences between the enhancer-like distal sequence element and the initiation site are protected during interphase whereas the upstream half of the U2 snRNA coding region is exposed. We also show by chromatin immunoprecipitation that the SNAPc complex, which binds the TATA-like proximal sequence element, is removed at metaphase but remains bound under conditions that induce locus-specific metaphase fragility of the U2 genes, such as loss of CSB, BRCA1, or BRCA2 function, treatment with actinomycin D, or overexpression of the tetrameric p53 C terminus. We propose that the U2 snRNA promoter establishes a persistently open state to facilitate rapid reinitiation and perhaps also to bypass TFIIH-dependent promoter melting; this open state would then be disassembled to allow metaphase chromatin condensation.
Collapse
|
16
|
Gu L, Husain-Ponnampalam R, Hoffmann-Benning S, Henry RW. The protein kinase CK2 phosphorylates SNAP190 to negatively regulate SNAPC DNA binding and human U6 transcription by RNA polymerase III. J Biol Chem 2007; 282:27887-96. [PMID: 17670747 DOI: 10.1074/jbc.m702269200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human U6 small nuclear RNA gene transcription by RNA polymerase III requires the general transcription factor SNAP(C), which binds to human small nuclear RNA core promoter elements and nucleates pre-initiation complex assembly with the Brf2-TFIIIB complex. Multiple components in this pathway are phosphorylated by the protein kinase CK2, including the Bdp1 subunit of the Brf2-TFIIIB complex, and RNA polymerase III, with negative and positive outcomes for U6 transcription, respectively. However, a role for CK2 phosphorylation of SNAP(C) in U6 transcription has not been defined. In this report, we investigated the role of CK2 in modulating the transcriptional properties of SNAP(C) and demonstrate that within SNAP(C), CK2 phosphorylates the N-terminal half of the SNAP190 subunit at two regions (amino acids 20-63 and 514-545) that each contain multiple CK2 consensus sites. SNAP190 phosphorylation by CK2 inhibits both SNAP(C) DNA binding and U6 transcription activity. Mutational analyses of SNAP190 support a model wherein CK2 phosphorylation triggers an allosteric inhibition of the SNAP190 Myb DNA binding domain.
Collapse
Affiliation(s)
- Liping Gu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|