1
|
Li Z, Qiao X, Liu XM, Shi SH, Qiao X, Xu JY. Blocking xCT and PI3K/Akt pathway synergized with DNA damage of Riluzole-Pt(IV) prodrugs for cancer treatment. Eur J Med Chem 2023; 250:115233. [PMID: 36863224 DOI: 10.1016/j.ejmech.2023.115233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Cancer treatment requires the participation of multiple targets/pathways, and single approach is hard to effectively curb the proliferation and metastasis of carcinoma cells. In this work, we conjugated FDA-approved riluzole and platinum(II) drugs into a series of unreported riluzole-Pt(IV) compounds, which were designed to simultaneously target DNA, the solute carrier family 7 member 11 (SLC7A11, xCT), and the human ether a go-go related gene 1 (hERG1), to exert synergistic anticancer effect. Among them, c,c,t-[PtCl2(NH3)2(OH)(glutarylriluzole)] (compound 2) displayed excellent antiproliferative activity with IC50 value of 300-times lower than that of cisplatin in HCT-116, and optimal selectivity index between carcinoma and human normal liver cells (LO2). Mechanism studies indicated that compound 2 released riluzole and active Pt(II) species after entering cells to exhibit a prodrug behavior against cancer, which obviously increased DNA-damage and cell apoptosis, as well as suppressed metastasis in HCT-116. Compound 2 persisted in the xCT-target of riluzole and blocked the biosynthesis of glutathione (GSH) to trigger oxidative stress, which could boost the killing to cancer cells and reduce Pt-drug resistance. Meanwhile, compound 2 significantly inhibited invasion and metastasis of HCT-116 cells by targeting hERG1 to interrupt the phosphorylation of phosphatidylinositide 3-kinases/proteinserine-threonine kinase (PI3K/Akt), and reverse epithelial-mesenchymal transformation (EMT). Based on our results, the riluzole-Pt(IV) prodrugs studied in this work could be regarded as a new class of very promising candidates for cancer treatment compared to traditional platinum drugs.
Collapse
Affiliation(s)
- Zhe Li
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Shu-Hao Shi
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Rullo-Tubau J, Bartoccioni P, Llorca O, Errasti-Murugarren E, Palacín M. HATs meet structural biology. Curr Opin Struct Biol 2022; 74:102389. [DOI: 10.1016/j.sbi.2022.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
|
3
|
Ca 2+-mediated higher-order assembly of heterodimers in amino acid transport system b 0,+ biogenesis and cystinuria. Nat Commun 2022; 13:2708. [PMID: 35577790 PMCID: PMC9110406 DOI: 10.1038/s41467-022-30293-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.
Collapse
|
4
|
Fort J, Nicolàs-Aragó A, Palacín M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules 2021; 26:6231. [PMID: 34684812 PMCID: PMC8537225 DOI: 10.3390/molecules26206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.
Collapse
Affiliation(s)
- Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Errasti-Murugarren E, Palacín M. Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology. Neurochem Res 2021; 47:23-36. [PMID: 33606172 DOI: 10.1007/s11064-021-03261-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
In humans, more than 50 transporters are responsible for the traffic and balance of amino acids within and between cells and tissues, and half of them have been associated with disease [1]. Covering all common amino acids, Heteromeric Amino acid Transporters (HATs) are one class of such transporters. This review first highlights structural and functional studies that solved the atomic structure of HATs and revealed molecular clues on substrate interaction. Moreover, this review focuses on HATs that have a role in the central nervous system (CNS) and that are related to neurological diseases, including: (i) LAT1/CD98hc and its role in the uptake of branched chain amino acids trough the blood brain barrier and autism. (ii) LAT2/CD98hc and its potential role in the transport of glutamine between plasma and cerebrospinal fluid. (iii) y+LAT2/CD98hc that is emerging as a key player in hepatic encephalopathy. xCT/CD98hc as a potential therapeutic target in glioblastoma, and (iv) Asc-1/CD98hc as a potential therapeutic target in pathologies with alterations in NMDA glutamate receptors.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain.
| | - Manuel Palacín
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Wang J, Wang F, Mai D, Qu S. Molecular Mechanisms of Glutamate Toxicity in Parkinson's Disease. Front Neurosci 2020; 14:585584. [PMID: 33324150 PMCID: PMC7725716 DOI: 10.3389/fnins.2020.585584] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease, the pathological features of which include the presence of Lewy bodies and the neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta. However, until recently, research on the pathogenesis and treatment of PD have progressed slowly. Glutamate and dopamine are both important central neurotransmitters in mammals. A lack of enzymatic decomposition of extracellular glutamate results in glutamate accumulating at synapses, which is mainly absorbed by excitatory amino acid transporters (EAATs). Glutamate exerts its physiological effects by binding to and activating ligand-gated ion channels [ionotropic glutamate receptors (iGluRs)] and a class of G-protein-coupled receptors [metabotropic glutamate receptors (mGluRs)]. Timely clearance of glutamate from the synaptic cleft is necessary because high levels of extracellular glutamate overactivate glutamate receptors, resulting in excitotoxic effects in the central nervous system. Additionally, increased concentrations of extracellular glutamate inhibit cystine uptake, leading to glutathione depletion and oxidative glutamate toxicity. Studies have shown that oxidative glutamate toxicity in neurons lacking functional N-methyl-D-aspartate (NMDA) receptors may represent a component of the cellular death pathway induced by excitotoxicity. The association between inflammation and excitotoxicity (i.e., immunoexcitotoxicity) has received increased attention in recent years. Glial activation induces neuroinflammation and can stimulate excessive release of glutamate, which can induce excitotoxicity and, additionally, further exacerbate neuroinflammation. Glutamate, as an important central neurotransmitter, is closely related to the occurrence and development of PD. In this review, we discuss recent progress on elucidating glutamate as a relevant neurotransmitter in PD. Additionally, we summarize the relationship and commonality among glutamate excitotoxicity, oxidative toxicity, and immunoexcitotoxicity in order to posit a holistic view and molecular mechanism of glutamate toxicity in PD.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China.,Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
| | - Dongmei Mai
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Structural basis for amino acid exchange by a human heteromeric amino acid transporter. Proc Natl Acad Sci U S A 2020; 117:21281-21287. [PMID: 32817565 DOI: 10.1073/pnas.2008111117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heteromeric amino acid transporters (HATs) comprise a group of membrane proteins that belong to the solute carrier (SLC) superfamily. They are formed by two different protein components: a light chain subunit from an SLC7 family member and a heavy chain subunit from the SLC3 family. The light chain constitutes the transport subunit whereas the heavy chain mediates trafficking to the plasma membrane and maturation of the functional complex. Mutation, malfunction, and dysregulation of HATs are associated with a wide range of pathologies or represent the direct cause of inherited and acquired disorders. Here we report the cryogenic electron microscopy structure of the neutral and basic amino acid transport complex (b[0,+]AT1-rBAT) which reveals a heterotetrameric protein assembly composed of two heavy and light chain subunits, respectively. The previously uncharacterized interaction between two HAT units is mediated via dimerization of the heavy chain subunits and does not include participation of the light chain subunits. The b(0,+)AT1 transporter adopts a LeuT fold and is captured in an inward-facing conformation. We identify an amino-acid-binding pocket that is formed by transmembrane helices 1, 6, and 10 and conserved among SLC7 transporters.
Collapse
|
9
|
Yan R, Li Y, Shi Y, Zhou J, Lei J, Huang J, Zhou Q. Cryo-EM structure of the human heteromeric amino acid transporter b 0,+AT-rBAT. SCIENCE ADVANCES 2020; 6:eaay6379. [PMID: 32494597 PMCID: PMC7159911 DOI: 10.1126/sciadv.aay6379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/22/2020] [Indexed: 05/16/2023]
Abstract
Heteromeric amino acid transporters (HATs) catalyze the transmembrane movement of amino acids, comprising two subunits, a heavy chain and a light chain, linked by a disulfide bridge. The b0,+AT (SLC7A9) is a representative light chain of HATs, forming heterodimer with rBAT, a heavy chain which mediates the membrane trafficking of b0,+AT. The b0,+AT-rBAT complex is an obligatory exchanger, which mediates the influx of cystine and cationic amino acids and the efflux of neutral amino acids in kidney and small intestine. Here, we report the cryo-EM structure of the human b0,+AT-rBAT complex alone and in complex with arginine substrate at resolution of 2.7 and 2.3 Å, respectively. The overall structure of b0,+AT-rBAT exists as a dimer of heterodimer consistent with the previous study. A ligand molecule is bound to the substrate binding pocket, near which an occluded pocket is identified, to which we found that it is important for substrate transport.
Collapse
Affiliation(s)
- Renhong Yan
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Shi
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiayao Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
10
|
Asc-1 Transporter (SLC7A10): Homology Models And Molecular Dynamics Insights Into The First Steps Of The Transport Mechanism. Sci Rep 2020; 10:3731. [PMID: 32111919 PMCID: PMC7048771 DOI: 10.1038/s41598-020-60617-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/14/2020] [Indexed: 12/02/2022] Open
Abstract
The alanine-serine-cysteine transporter Asc-1 regulates the synaptic availability of d-serine and glycine (the two co-agonists of the NMDA receptor) and is regarded as an important drug target. To shuttle the substrate from the extracellular space to the cytoplasm, this transporter undergoes multiple distinct conformational states. In this work, homology modeling, substrate docking and molecular dynamics simulations were carried out to learn more about the transition between the “outward-open” and “outward-open occluded” states. We identified a transition state involving the highly-conserved unwound TM6 region in which the Phe243 flips close to the d-serine substrate without major movements of TM6. This feature and those of other key residues are proposed to control the binding site and substrate translocation. Competitive inhibitors ACPP, LuAE00527 and SMLC were docked and their binding modes at the substrate binding site corroborated the key role played by Phe243 of TM6. For ACPP and LuAE00527, strong hydrophobic interactions with this residue hinder its mobility and prevent the uptake and the efflux of substrates. As for SMLC, the weaker interactions maintain the flexibility of Phe243 and the efflux process. Overall, we propose a molecular basis for the inhibition of substrate translocation of the Asc-1 transporter that should be valuable for rational drug design.
Collapse
|
11
|
Choroid plexus LAT2 and SNAT3 as partners in CSF amino acid homeostasis maintenance. Fluids Barriers CNS 2020; 17:17. [PMID: 32046769 PMCID: PMC7014681 DOI: 10.1186/s12987-020-0178-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/01/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is mainly produced by the choroid plexus (CP) located in brain ventricles. Although derived from blood plasma, it is nearly protein-free (~ 250-fold less) and contains about 2-20-fold less free amino acids, with the exception of glutamine (Gln) which is nearly equal. The aim of this study was to determine which amino acid transporters are expressed in mouse CP epithelium in order to gain understanding about how this barrier maintains the observed amino acid concentration gradient. METHODS Expression of amino acid transporters was assessed in isolated choroid plexuses (CPs) by qRT-PCR followed by localization studies using immunofluorescence with specific antibodies. The impact of LAT2 (Slc7a8) antiporter deletion on CSF amino acids was determined. RESULTS The purity of isolated choroid plexuses was tested on the mRNA level using specific markers, in particular transthyretin (Ttr) that was enriched 330-fold in CP compared to cerebral tissue. In a first experimental round, 14 out of 32 Slc amino acid transporters tested on the mRNA level by qPCR were selected for further investigation. Out of these, five were considered highly expressed, SNAT1 (Slc38a1), SNAT3 (Slc38a3), LAT2 (Slc7a8), ASC1 (Slc7a10) and SIT1 (Slc6a20b). Three of them were visualized by immunofluorescence: SNAT1 (Slc38a1), a neutral amino acid-Na+ symporter, found at the blood side basolateral membrane of CP epithelium, while SNAT3 (Slc38a3), an amino acid-Na+ symporter and H+ antiporter, as well as LAT2 (Slc7a8), a neutral amino acid antiporter, were localized at the CSF-facing luminal membrane. In a LAT2 knock-out mouse model, CSF Gln was unchanged, whereas other amino acids normally 2-20-fold lower than in plasma, were increased, in particular the LAT2 uptake substrates leucine (Leu), valine (Val) and tryptophan (Trp) and some other amino acids such as glutamate (Glu), glycine (Gly) and proline (Pro). CONCLUSION These results suggest that Gln is actively transported by SNAT1 from the blood into CP epithelial cells and then released luminally into CSF via SNAT3 and LAT2. Its efflux via LAT2 may drive the reuptake from the CSF of essential amino acid substrates of this antiporter and thereby participates to maintaining the amino acid gradient between plasma and CSF.
Collapse
|
12
|
Bartoccioni P, Fort J, Zorzano A, Errasti-Murugarren E, Palacín M. Functional characterization of the alanine-serine-cysteine exchanger of Carnobacterium sp AT7. J Gen Physiol 2019; 151:505-517. [PMID: 30696726 PMCID: PMC6445583 DOI: 10.1085/jgp.201812195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 01/18/2023] Open
Abstract
Proteins of the L-type amino acid transporter (LAT) subfamily take up amino acids from the environment for use in the cell. Bartoccioni et al. show that the bacterial amino acid exchanger BasC is functionally similar to the human LAT Asc1, making BasC a useful model for this class of transporters. Many key cell processes require prior cell uptake of amino acids from the environment, which is facilitated by cell membrane amino acid transporters such as those of the L-type amino acid transporter (LAT) subfamily. Alterations in LAT subfamily amino acid transport are associated with several human diseases, including cancer, aminoacidurias, and neurodegenerative conditions. Therefore, from the perspective of human health, there is considerable interest in obtaining structural information about these transporter proteins. We recently solved the crystal structure of the first LAT transporter, the bacterial alanine-serine-cysteine exchanger of Carnobacterium sp AT7 (BasC). Here, we provide a complete functional characterization of detergent-purified, liposome-reconstituted BasC transporter to allow the extension of the structural insights into mechanistic understanding. BasC is a sodium- and proton-independent small neutral amino acid exchanger whose substrate and inhibitor selectivity are almost identical to those previously described for the human LAT subfamily member Asc-1. Additionally, we show that, like its human counterparts, this transporter has apparent affinity asymmetry for the intra- and extracellular substrate binding sites—a key feature in the physiological role played by these proteins. BasC is an excellent paradigm of human LAT transporters and will contribute to our understanding of the molecular mechanisms underlying substrate recognition and translocation at both sides of the plasma membrane.
Collapse
Affiliation(s)
- Paola Bartoccioni
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Joana Fort
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Cheng Q, Fang L, Feng D, Tang S, Yue S, Huang Y, Han J, Lan J, Liu W, Gao L, Luo Z. Memantine ameliorates pulmonary inflammation in a mice model of COPD induced by cigarette smoke combined with LPS. Biomed Pharmacother 2019; 109:2005-2013. [PMID: 30551456 DOI: 10.1016/j.biopha.2018.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023] Open
Abstract
An enhanced chronic inflammatory response in the airways has been regarded as a critical characteristic of chronic obstructive pulmonary disease (COPD). Memantine, an N-methyl-d-aspartate (NMDA) receptors antagonist, has been reported to alleviate lung inflammation. In this study, we investigated the effect and mechanism of memantine on the COPD model induced by cigarette smoke (CS) combined with LPS. Mice and RAW264.7 cells were treated with LPS in the presence or absence of CS. We performed H&E staining to analysis the lung histopathological characteristics. Cytokines (IL-6, TNF-α, and IFN-γ) levels in bronchoalveolar lavage fluid (BALF), lung tissue homogenates and RAW264.7 cell culture medium were determined. Glutamate levels in plasma and culture medium of RAW264.7 were determined. The intracellular Ca2+ flux in RAW264.7 cells was measured by fluo-3 AM staining. The protein levels of NR-1, xCT, ERK1/2, and AKT signaling in the lung tissue and cells were investigated. The result showed that CS and LPS stimulation caused inflammation response, a significant increase in the release of cytokines, including TNF-α, IL-6, and IFN-γ, the elevated release of glutamate and protein levels of NR-1 and xCT, increased Ca2+ influx, and the activation of the ERK1/2 pathway in vitro and in vivo. The above effects of CS and LPS stimulation could be significantly attenuated by memantine treatment. In conclusion, memantine can effectively ameliorate pulmonary inflammation in CS + LPS-induced COPD in mice via reducing NR-1 and xCT expression, glutamate release, Ca2+ influx, and the phosphorylation of Erk1/2. We provided a possible mechanism by which memantine ameliorates COPD in mice.
Collapse
Affiliation(s)
- Qingmei Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lijuan Fang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianzhong Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinrong Lan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Lihua Gao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Vilches C, Boiadjieva-Knöpfel E, Bodoy S, Camargo S, López de Heredia M, Prat E, Ormazabal A, Artuch R, Zorzano A, Verrey F, Nunes V, Palacín M. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids. J Am Soc Nephrol 2018; 29:1624-1635. [PMID: 29610403 DOI: 10.1681/asn.2017111205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y+LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivoMethods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo, we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice).Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y+LAT1/CD98hc.Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo, and y+LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans.
Collapse
Affiliation(s)
- Clara Vilches
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Emilia Boiadjieva-Knöpfel
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Susanna Bodoy
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain.,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Simone Camargo
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Miguel López de Heredia
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and
| | - Esther Prat
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain; and
| | - Aida Ormazabal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain.,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) - CB07/08/0017, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - François Verrey
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Virginia Nunes
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain; and
| | - Manuel Palacín
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain; .,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and
| |
Collapse
|
16
|
Tostivint I, Royer N, Nicolas M, Bourillon A, Czerkiewicz I, Becker PH, Muller F, Benoist JF. Spectrum of mutations in cystinuria patients presenting with prenatal hyperechoic colon. Clin Genet 2017. [PMID: 28646536 DOI: 10.1111/cge.13079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cystinuria is a heterogeneous, rare but important cause of inherited kidney stone disease due to mutations in 2 genes: SLC3A1 and SLC7A9. Antenatal hyperechoic colon (HEC) has been reported in some patients as a non-pathological consequence of the intestinal transport defect. We report 83 patients affected by cystinuria: 44 presented prenatally with a HEC (HEC group) and 39 with a classical postnatal form (CC group). SLC3A1 and SLC7A9 were sequenced. All patients were fully genotyped, and the relationship between the genotype and clinical features was analyzed. We identified mutations in SLC3A1 in 80% of the HEC group and in only 49% of the CC group. The SLC3A1 p.Thr216Met mutation was found in 21% of the alleles in the HEC group but was never found in the CC group. Most of the mutations found in the HEC group were considered severe mutations in contrast with the CC group. Twenty-five novel mutations were reported. This study shows a relationship between genotype and the clinical form of cystinuria, suggesting that only the patients with the most severe mutations presented with an HEC. These results emphasized the need for prenatal cystinuria screening using classical third-trimester ultrasound scan and the early management of suspected newborns.
Collapse
Affiliation(s)
- I Tostivint
- Department of Urology and Nephrology, Interdisciplinary Urolithiasis Center, Pitié-Salpêtrière Universitary Teaching Hospital, Paris, France
| | - N Royer
- Service de Biochimie Hormonologie, APHP, Paris, France
| | - M Nicolas
- Service de Biochimie Hormonologie, APHP, Paris, France
| | - A Bourillon
- Service de Biochimie Hormonologie, APHP, Paris, France
| | - I Czerkiewicz
- Service de Biochimie Hormonologie, APHP, Paris, France
| | - P-H Becker
- Service de Biochimie Hormonologie, APHP, Paris, France
| | - F Muller
- Service de Biochimie Hormonologie, APHP, Paris, France
| | - J-F Benoist
- Service de Biochimie Hormonologie, APHP, Paris, France
| |
Collapse
|
17
|
Jin C, Zhang P, Zhang M, Zhang X, Lv L, Liu H, Liu Y, Zhou Y. Inhibition of SLC7A11 by Sulfasalazine Enhances Osteogenic Differentiation of Mesenchymal Stem Cells by Modulating BMP2/4 Expression and Suppresses Bone Loss in Ovariectomized Mice. J Bone Miner Res 2017; 32:508-521. [PMID: 27696501 DOI: 10.1002/jbmr.3009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022]
Abstract
An imbalance in osteogenesis and adipogenesis is a crucial pathological factor in the development of osteoporosis. Many attempts have been made to develop drugs to prevent and treat this disease. In the present study, we investigated the phenomenon whereby downregulation of SLC7A11 significantly enhanced the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro, and promoted the bone formation in vivo. Sulfasalazine (SAS), an inhibitor of SLC7A11, increased the osteogenic potential effectively. Mechanistically, inhibition of SLC7A11 by SAS treatment or knockdown of SLC7A11 increased BMP2/4 expression dramatically. In addition, we detected increased Slc7a11 expression in bone marrow MSCs of ovariectomized (OVX) mice. Remarkably, SAS treatment attenuated bone loss in ovariectomized mice. Together, our data suggested that SAS could be used to treat osteoporosis by enhancing osteogenic differentiation of MSCs. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
18
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
19
|
Coady MJ, El Tarazi A, Santer R, Bissonnette P, Sasseville LJ, Calado J, Lussier Y, Dumayne C, Bichet DG, Lapointe JY. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2. J Am Soc Nephrol 2016; 28:85-93. [PMID: 27288013 DOI: 10.1681/asn.2015111282] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/05/2016] [Indexed: 11/03/2022] Open
Abstract
The renal proximal tubule reabsorbs 90% of the filtered glucose load through the Na+-coupled glucose transporter SGLT2, and specific inhibitors of SGLT2 are now available to patients with diabetes to increase urinary glucose excretion. Using expression cloning, we identified an accessory protein, 17 kDa membrane-associated protein (MAP17), that increased SGLT2 activity in RNA-injected Xenopus oocytes by two orders of magnitude. Significant stimulation of SGLT2 activity also occurred in opossum kidney cells cotransfected with SGLT2 and MAP17. Notably, transfection with MAP17 did not change the quantity of SGLT2 protein at the cell surface in either cell type. To confirm the physiologic relevance of the MAP17-SGLT2 interaction, we studied a cohort of 60 individuals with familial renal glucosuria. One patient without any identifiable mutation in the SGLT2 coding gene (SLC5A2) displayed homozygosity for a splicing mutation (c.176+1G>A) in the MAP17 coding gene (PDZK1IP1). In the proximal tubule and in other tissues, MAP17 is known to interact with PDZK1, a scaffolding protein linked to other transporters, including Na+/H+ exchanger 3, and to signaling pathways, such as the A-kinase anchor protein 2/protein kinase A pathway. Thus, these results provide the basis for a more thorough characterization of SGLT2 which would include the possible effects of its inhibition on colocalized renal transporters.
Collapse
Affiliation(s)
- Michael J Coady
- Physics Department & Groupe d'étude des protéines membranaires
| | - Abdulah El Tarazi
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Pierre Bissonnette
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | | | - Joaquim Calado
- Department of Nephrology, ToxOmics, Centre for Toxicogenomics and Human Health, NOVA Medical School, New University of Lisbon, Lisbon, Portugal
| | - Yoann Lussier
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | - Christopher Dumayne
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | - Daniel G Bichet
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and.,Department of Medicine, Centre de recherche de l'Hôpital du Sacré-Cœur, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
20
|
Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms1. Biochem Soc Trans 2016; 44:745-52. [DOI: 10.1042/bst20150294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 01/18/2023]
Abstract
Heteromeric amino acid transporters (HATs) are relevant targets for structural studies. On the one hand, HATs are involved in inherited and acquired human pathologies. On the other hand, these molecules are the only known examples of solute transporters composed of two subunits (heavy and light) linked by a disulfide bridge. Unfortunately, structural knowledge of HATs is scarce and limited to the atomic structure of the ectodomain of a heavy subunit (human 4F2hc-ED) and distant prokaryotic homologues of the light subunits that share a LeuT-fold. Recent data on human 4F2hc/LAT2 at nanometer resolution revealed 4F2hc-ED positioned on top of the external loops of the light subunit LAT2. Improved resolution of the structure of HATs, combined with conformational studies, is essential to establish the structural bases for light subunit recognition and to evaluate the functional relevance of heavy and light subunit interactions for the amino acid transport cycle.
Collapse
|
21
|
The role of N-glycans and the C-terminal loop of the subunit rBAT in the biogenesis of the cystinuria-associated transporter. Biochem J 2015; 473:233-44. [PMID: 26537754 DOI: 10.1042/bj20150846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
The transport system b(0,+) mediates reabsorption of dibasic amino acids and cystine in the kidney. It is made up of two disulfide-linked membrane subunits: the carrier, b(0,+)AT and the helper, rBAT (related to b(0,+) amino acid transporter). rBAT mutations that impair biogenesis of the transporter cause type I cystinuria. It has been shown that upon assembly, b(0,+)AT prevents degradation and promotes folding of rBAT; then, rBAT traffics b(0,+)AT from the endoplasmic reticulum (ER) to the plasma membrane. The role of the N-glycans of rBAT and of its C-terminal loop, which has no homology to any other sequence, in biogenesis of system b(0,+) is unknown. In the present study, we studied these points. We first identified the five N-glycans of rBAT. Elimination of the N-glycan Asn(575), but not of the others, delayed transporter maturation, as measured by pulse chase experiments and endoglycosidase H assays. Moreover, a transporter with only the N-glycan Asn(575) displayed similar maturation compared with wild-type, suggesting that this N-glycan was necessary and sufficient to achieve the maximum rate of transporter maturation. Deletion of the rBAT C-terminal disulfide loop (residues 673-685) prevented maturation and prompted degradation of the transporter. Alanine-scanning mutagenesis uncovered loop residues important for stability and/or maturation of system b(0,+). Further, double-mutant cycle analysis showed partial additivity of the effects of the Asn(679) loop residue and the N-glycan Asn(575) on transporter maturation, indicating that they may interact during system b(0,+) biogenesis. These data highlight the important role of the N-glycan Asn(575) and the C-terminal disulfide loop of rBAT in biogenesis of the rBAT-b(0,+)AT heterodimer.
Collapse
|
22
|
Abstract
Most extracellular glutamate in the brain is released by xCT, a glial antiporter that exports glutamate and imports cystine. The function of xCT, and extracellular glutamate in general, remains unclear. Several lines of evidence suggest that glutamate from xCT could act in a paracrine fashion to suppress glutamatergic synapse strength by triggering removal of postsynaptic glutamate receptors. To test this idea, we used whole-cell patch-clamp electrophysiology and immunohistochemistry to quantify receptor number and synapse function in xCT knock-out mouse hippocampal CA3-CA1 synapses. Consistent with the hypothesis that xCT suppresses glutamate receptor number and synapse strength, xCT knock-out synapses showed increased AMPA receptor abundance with concomitant large enhancements of spontaneous and evoked synaptic transmission. We saw no evidence for changes in GABA receptor abundance or the overall number of glutamatergic synapses. The xCT knock-out phenotype was replicated by incubating slices in the xCT inhibitor (S)-4-carboxyphenylglycine, and consistent with the idea that xCT works by regulating extracellular glutamate, the xCT knock-out phenotype could be reproduced in controls by incubating the slices in glutamate-free aCSF. We conclude that glutamate secreted via xCT suppresses glutamatergic synapse strength by triggering removal of postsynaptic AMPA receptors.
Collapse
|
23
|
Featherstone DE, Yanoga F, Grosjean Y. Accelerated bang recovery in Drosophila genderblind mutants. Commun Integr Biol 2014; 1:14-17. [PMID: 19430543 DOI: 10.4161/cib.1.1.6437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystine-glutamate transporters import cystine into cells for glutathione synthesis and protection from oxidative stress, but also export significant amounts of glutamate. Increasing evidence suggests that 'ambient extracellular glutamate' secreted by cystine-glutamate transporters in the nervous system modulates glutamatergic synapse strength and behavior. To date, the only cystine-glutamate transporter mutants examined behaviorally are Drosophila genderblind mutants. These animals contain loss-of-function mutations in the 'genderblind' gene, which encodes an xCT subunit essential for cystine-glutamate transporter function. Genderblind was named based on a mutant courtship phenotype: male genderblind mutants are attracted to normally aversive male pheromones and thus court and attempt to copulate with both male and female partners equally. However, genderblind protein is expressed in many parts of the fly brain and thus might be expected to also regulate other behaviors, including behaviors not related to male courtship or chemosensation. Here, we show that genderblind mutants display faster recovery and increased negative geotaxis after strong mechanical stimuli (e.g., they climb faster and farther after vial banging). This phenotype is displayed by both males and females, consistent with strong genderblind expression in both sexes.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences; University of Illinois at Chicago; Chicago, Illinois, USA
| | | | | |
Collapse
|
24
|
Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc Natl Acad Sci U S A 2014; 111:2966-71. [PMID: 24516142 DOI: 10.1073/pnas.1323779111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Heteromeric amino acid transporters (HATs) are the unique example, known in all kingdoms of life, of solute transporters composed of two subunits linked by a conserved disulfide bridge. In metazoans, the heavy subunit is responsible for the trafficking of the heterodimer to the plasma membrane, and the light subunit is the transporter. HATs are involved in human pathologies such as amino acidurias, tumor growth and invasion, viral infection and cocaine addiction. However structural information about interactions between the heavy and light subunits of HATs is scarce. In this work, transmission electron microscopy and single-particle analysis of purified human 4F2hc/L-type amino acid transporter 2 (LAT2) heterodimers overexpressed in the yeast Pichia pastoris, together with docking analysis and crosslinking experiments, reveal that the extracellular domain of 4F2hc interacts with LAT2, almost completely covering the extracellular face of the transporter. 4F2hc increases the stability of the light subunit LAT2 in detergent-solubilized Pichia membranes, allowing functional reconstitution of the heterodimer into proteoliposomes. Moreover, the extracellular domain of 4F2hc suffices to stabilize solubilized LAT2. The interaction of 4F2hc with LAT2 gives insights into the structural bases for light subunit recognition and the stabilizing role of the ancillary protein in HATs.
Collapse
|
25
|
The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 2013; 34:139-58. [PMID: 23506863 DOI: 10.1016/j.mam.2012.10.007] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/15/2012] [Indexed: 01/18/2023]
Abstract
Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.
Collapse
|
26
|
Brons AK, Henthorn PS, Raj K, Fitzgerald CA, Liu J, Sewell AC, Giger U. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system. J Vet Intern Med 2013; 27:1400-8. [PMID: 24001348 DOI: 10.1111/jvim.12176] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cystinuria, one of the first recognized inborn errors of metabolism, has been reported in many dog breeds. HYPOTHESIS/OBJECTIVES To determine urinary cystine concentrations, inheritance, and mutations in the SLC3A1 and SLC7A9 genes associated with cystinuria in 3 breeds. ANIMALS Mixed and purebred Labrador Retrievers (n = 6), Australian Cattle Dogs (6), Miniature Pinschers (4), and 1 mixed breed dog with cystine urolithiasis, relatives and control dogs. METHODS Urinary cystinuria and aminoaciduria was assessed and exons of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA. RESULTS In each breed, male and female dogs, independent of neuter status, were found to form calculi. A frameshift mutation in SLC3A1 (c.350delG) resulting in a premature stop codon was identified in autosomal-recessive (AR) cystinuria in Labrador Retrievers and mixed breed dogs. A 6 bp deletion (c.1095_1100del) removing 2 threonines in SLC3A1 was found in autosomal-dominant (AD) cystinuria with a more severe phenotype in homozygous than in heterozygous Australian Cattle Dogs. A missense mutation in SLC7A9 (c.964G>A) was discovered in AD cystinuria in Miniature Pinschers with only heterozygous affected dogs observed to date. Breed-specific DNA tests were developed, but the prevalence of each mutation remains unknown. CONCLUSIONS AND CLINICAL IMPORTANCE These studies describe the first AD inheritance and the first putative SLC7A9 mutation to cause cystinuria in dogs and expand our understanding of this phenotypically and genetically heterogeneous disease, leading to a new classification system for canine cystinuria and better therapeutic management and genetic control in these breeds.
Collapse
Affiliation(s)
- A-K Brons
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | |
Collapse
|
27
|
Schweikhard ES, Ziegler CM. Amino acid secondary transporters: toward a common transport mechanism. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177982 DOI: 10.1016/b978-0-12-394316-3.00001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solute carriers (SLC) that transport amino acids are key players in health and diseases in humans. Their prokaryotic relatives are often involved in essential physiological processes in microorganisms, e.g. in homeostasis and acidic/osmotic stress response. High-resolution X-ray structures of the sequence-unrelated amino acid transporters unraveled a striking structural similarity between carriers, which were formerly assigned to different families. The highly conserved fold is characterized by two inverted structural repeats of five transmembrane helices each and indicates common mechanistic transport concepts if not an evolutionary link among a large number of amino acid transporters. Therefore, these transporters are classified now into the structural amino acid-polyamine-organocation superfamily (APCS). The APCS includes among others the mammalian SLC6 transporters and the heterodimeric SLC7/SLC3 transporters. However, it has to be noted that the APCS is not limited entirely to amino acid transporters but contains also transporters for, e.g. amino acid derivatives and sugars. For instance, the betaine-choline-carnitine transporter family of bacterial activity-regulated Na(+)- and H(+)-coupled symporters for glycine betaine and choline is also part of this second largest structural superfamily. The APCS fold provides different possibilities to transport the same amino acid. Arginine can be transported by an H(+)-coupled symport or by antiport mechanism in exchange against agmatine for example. The convergence of the mechanistic concept of transport under comparable physiological conditions allows speculating if structurally unexplored amino acid transporters, e.g. the members of the SLC36 and SLC38 family, belong to the APCS, too. In the kidney, which is an organ that depends critically on the regulated amino acid transport, these different SLC transporters have to work together to account for proper function. Here, we will summarize the basic concepts of Na(+)- and H(+)-coupled amino acid symport and amino acid-product antiport in the light of the respective physiological requirements.
Collapse
Affiliation(s)
- Eva S Schweikhard
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
28
|
Rapid screening of membrane protein expression in transiently transfected insect cells. Protein Expr Purif 2013; 88:134-42. [DOI: 10.1016/j.pep.2012.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 01/09/2023]
|
29
|
Expression of human heteromeric amino acid transporters in the yeast Pichia pastoris. Protein Expr Purif 2012; 87:35-40. [PMID: 23085088 DOI: 10.1016/j.pep.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/20/2022]
Abstract
Human heteromeric amino acid transporters (HATs) play key roles in renal and intestinal re-absorption, cell redox balance and tumor growth. These transporters are composed of a heavy and a light subunit, which are connected by a disulphide bridge. Heavy subunits are the two type II membrane N-glycoproteins rBAT and 4F2hc, while L-type amino acid transporters (LATs) are the light and catalytic subunits of HATs. We tested the expression of human 4F2hc and rBAT as well as seven light subunits in the methylotrophic yeast Pichia pastoris. 4F2hc and the light subunit LAT2 showed the highest expression levels and yields after detergent solubilization. Co-transformation of both subunits in Pichia cells resulted in overexpression of the disulphide bridge-linked 4F2hc/LAT2 heterodimer. Two sequential affinity chromatography steps were applied to purify detergent-solubilized heterodimers yielding ~1mg of HAT from 2l of cell culture. Our results indicate that P. pastoris is a convenient system for the expression and purification of human 4F2hc/LAT2 for structural studies.
Collapse
|
30
|
Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney. PLoS One 2012; 7:e33522. [PMID: 22438943 PMCID: PMC3305329 DOI: 10.1371/journal.pone.0033522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/15/2012] [Indexed: 02/07/2023] Open
Abstract
The transcription factor HNF1B, encoded by the TCF2 gene, plays an important role in the organogenesis of vertebrates. In humans, heterozygous mutations of HNF1B are associated with several diseases, such as pancreatic β-cell dysfunction leading to maturity-onset diabetes of the young (MODY5), defective kidney development, disturbed liver function, pancreas atrophy, and malformations of the genital tract. The African claw frog Xenopus laevis is an excellent model to study the processes involved in embryogenesis and organogenesis, as it can be manipulated easily with a series of methods. In the present study, we overexpressed HNF1β mutants in the developing Xenopus embryo to assess their roles during organogenesis, particularly in the developing pronephric kidney. Towards this goal, we developed a heat-shock inducible binary Cre/loxP system with activator and effector strains. Heat-shock activation of the mutant HNF1B variants P328L329del and A263insGG resulted in malformations of various organs and the affected larvae developed large edemas. Defects in the pronephros were primarily confined to malformed proximal tubules. Furthermore, the expression of the proximal tubule marker genes tmem27 and slc3a1, both involved in amino acid transport, was affected. Both P328L329del and A263insGG downregulated expression of slc3a1. In addition, P328L329del reduced tmem27 expression while A263insGG overexpression decreased expression of the chloride channel clcnk and the transcription factor pax2. Overexpression of two mutant HNF1B derivatives resulted in distinct phenotypes reflected by either a reduction or an enlargement of pronephros size. The expression of selected pronephric marker genes was differentially affected upon overexpression of HNF1B mutations. Based on our findings, we postulate that HNF1B mutations influence gene regulation upon overexpression in specific and distinct manners. Furthermore, our study demonstrates that the newly established Cre/loxP system for Xenopus embryos is an attractive alternative to examine the gene regulatory potential of transcription factors in developing pronephric kidney as exemplified here for HNF1B.
Collapse
|
31
|
Abstract
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.
Collapse
|
32
|
Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci U S A 2011; 108:3935-40. [PMID: 21368142 DOI: 10.1073/pnas.1018081108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transporters of the amino acid, polyamine and organocation (APC) superfamily play essential roles in cell redox balance, cancer, and aminoacidurias. The bacterial L-arginine/agmatine antiporter, AdiC, is the main APC structural paradigm and shares the "5 + 5 inverted repeat" fold found in other families like the Na(+)-coupled neurotransmitter transporters. The available AdiC crystal structures capture two states of its transport cycle: the open-to-out apo and the outward-facing Arg(+)-bound occluded. However, the role of Arg(+) during the transition between these two states remains unknown. Here, we report the crystal structure at 3.0 Å resolution of an Arg(+)-bound AdiC mutant (N101A) in the open-to-out conformation, completing the picture of the major conformational states during the transport cycle of the 5 + 5 inverted repeat fold-transporters. The N101A structure is an intermediate state between the previous known AdiC conformations. The Arg(+)-guanidinium group in the current structure presents high mobility and delocalization, hampering substrate occlusion and resulting in a low translocation rate. Further analysis supports that proper coordination of this group with residues Asn101 and Trp293 is required to transit to the occluded state, providing the first clues on the molecular mechanism of substrate-induced fit in a 5 + 5 inverted repeat fold-transporter. The pseudosymmetry found between repeats in AdiC, and in all fold-related transporters, restraints the conformational changes, in particular the transmembrane helices rearrangements, which occur during the transport cycle. In AdiC these movements take place away from the dimer interface, explaining the independent functioning of each subunit.
Collapse
|
33
|
|
34
|
Abstract
This review summarizes the current view of amino acid transport by epithelial cells of vertebrates. A wide variety of transporter proteins are expressed in apical and basolateral membranes and collectively play complex interactive roles in controlling the entire organism’s overall metabolism of amino acids. Regulation of the transport systems can be manifested at many levels, including gene splicing and promoter regulation, interactions between requisite subunits of oligomers, thermodynamic electrochemical gradients contributed by ion exchangers, overlap of substrate specificity, selective tissue distribution, and specific spatial distribution of transporters leading to net vectorial flow of the amino acids. The next frontier for workers in this field is to uncover a comprehensive molecular understanding of the manner by which epithelial cells signal gene expression of transporters as triggered by substrates, hormones or other triggers, in order to further understand the trafficking and interactions among multimeric transport system proteins, to extend discoveries of novel small drug substrates for oral and ocular delivery, and to examine gene therapy or nanotherapy of diseases using small molecules delivered via amino acid transporters.
Collapse
Affiliation(s)
- George A. Gerencser
- College of Medicine, University of Florida, SW. Archer Road 1600, Gainesville, 32610-0274 U.S.A
| |
Collapse
|
35
|
Abstract
Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na(+)-dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B(0)AT1 (SLC6A19) and suggested for the L: -proline transporter SIT1 (IMINO(B), SLC6A20) and for B(0)AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin-angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B(0)AT1 and SIT1. Some mutations of B(0)AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentration.
Collapse
|
36
|
Abstract
Cystinuria is an inherited disorder characterized by the impaired reabsorption of cystine in the proximal tubule of the nephron and the gastrointestinal epithelium. The only clinically significant manifestation is recurrent nephrolithiasis secondary to the poor solubility of cystine in urine. Although cystinuria is a relatively common disorder, it accounts for no more than 1% of all urinary tract stones. Thus far, mutations in 2 genes, SLC3A1 and SLC7A9, have been identified as being responsible for most cases of cystinuria by encoding defective subunits of the cystine transporter. With the discovery of mutated genes, the classification of patients with cystinuria has been changed from one based on phenotypes (I, II, III) to one based on the affected genes (I and non-type I; or A and B). Most often this classification can be used without gene sequencing by determining whether the affected individual's parents have abnormal urinary cystine excretion. Clinically, insoluble cystine precipitates into hexagonal crystals that can coalesce into larger, recurrent calculi. Prevention of stone formation is the primary goal of management and includes hydration, dietary restriction of salt and animal protein, urinary alkalinization, and cystine-binding thiol drugs.
Collapse
Affiliation(s)
- Aditya Mattoo
- Department of Medicine, NYU School of Medicine, New York, NY, USA
| | | |
Collapse
|
37
|
Lo M, Wang YZ, Gout PW. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 2008; 215:593-602. [PMID: 18181196 DOI: 10.1002/jcp.21366] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The x(c) (-) cystine/glutamate antiporter is a major plasma membrane transporter for the cellular uptake of cystine in exchange for intracellular glutamate. Its main functions in the body are mediation of cellular cystine uptake for synthesis of glutathione essential for cellular protection from oxidative stress and maintenance of a cystine:cysteine redox balance in the extracellular compartment. In the past decade it has become evident that the x(c) (-) transporter plays an important role in various aspects of cancer, including: (i) growth and progression of cancers that have a critical growth requirement for extracellular cystine/cysteine, (ii) glutathione-based drug resistance, (iii) excitotoxicity due to excessive release of glutamate, and (iv) uptake of herpesvirus 8, a causative agent of Kaposi's sarcoma. The x(c) (-) transporter also plays a role in certain CNS and eye diseases. This review focuses on the expression and function of the x(c) (-) transporter in cells and tissues with particular emphasis on its role in disease pathogenesis. The potential use of x(c) (-) inhibitors (e.g., sulfasalazine) for arresting tumor growth and/or sensitizing cancers is discussed.
Collapse
Affiliation(s)
- Maisie Lo
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
38
|
Bartoccioni P, Rius M, Zorzano A, Palacín M, Chillarón J. Distinct classes of trafficking rBAT mutants cause the type I cystinuria phenotype. Hum Mol Genet 2008; 17:1845-54. [PMID: 18332091 DOI: 10.1093/hmg/ddn080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most mutations in the rBAT subunit of the heterodimeric cystine transporter rBAT-b(0,+)AT cause type I cystinuria. Trafficking of the transporter requires the intracellular assembly of the two subunits. Without its partner, rBAT, but not b(0,+)AT, is rapidly degraded. We analyzed the initial biogenesis of wild-type rBAT and type I cystinuria rBAT mutants. rBAT was degraded, at least in part, via the ERAD pathway. Assembly with b(0,+)AT within the endoplasmic reticulum (ER) blocked rBAT degradation and could be independent of the calnexin chaperone system. This system was, however, necessary for post-assembly maturation of the heterodimer. Without b(0,+)AT, wild-type and rBAT mutants were degraded with similar kinetics. In its presence, rBAT mutants showed strongly reduced (L89P) or no transport activity, failed to acquire complex N-glycosylation and to oligomerize, suggesting assembly and/or folding defects. Most of the transmembrane domain mutant L89P did not heterodimerize with b(0,+)AT and was degraded. However, the few [L89P]rBAT-b(0,+)AT heterodimers were stable, consistent with assembly, but not folding, defects. Mutants of the rBAT extracellular domain (T216M, R365W, M467K and M467T) efficiently assembled with b(0,+)AT but were subsequently degraded. Together with earlier results, the data suggest a two-step biogenesis model, with the early assembly of the subunits followed by folding of the rBAT extracellular domain. Defects on either of these steps lead to the type I cystinuria phenotype.
Collapse
Affiliation(s)
- Paola Bartoccioni
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
39
|
Detro-Dassen S, Schänzler M, Lauks H, Martin I, zu Berstenhorst SM, Nothmann D, Torres-Salazar D, Hidalgo P, Schmalzing G, Fahlke C. Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J Biol Chem 2007; 283:4177-88. [PMID: 18073211 DOI: 10.1074/jbc.m704924200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SLC26 gene family encodes multifunctional transport proteins in numerous tissues and organs. Some paralogs function as anion exchangers, others as anion channels, and one, prestin (SLC26A5), represents a membrane-bound motor protein in outer hair cells of the inner ear. At present, little is known about the molecular basis of this functional diversity. We studied the subunit stoichiometry of one bacterial, one teleost, and two mammalian SLC26 isoforms expressed in Xenopus laevis oocytes or in mammalian cells using blue native PAGE and chemical cross-linking. All tested SLC26s are assembled as dimers composed of two identical subunits. Co-expression of two mutant prestins with distinct voltage-dependent capacitances results in motor proteins with novel electrical properties, indicating that the two subunits do not function independently. Our results indicate that an evolutionarily conserved dimeric quaternary structure represents the native and functional state of SLC26 transporters.
Collapse
Affiliation(s)
- Silvia Detro-Dassen
- Abteilung Molekulare Pharmakologie, Rheinisch-Westfälische Technische Hochschule Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Featherstone DE, Shippy SA. Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 2007; 14:171-81. [PMID: 17947494 DOI: 10.1177/1073858407308518] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are approximately 0.5 to approximately 5 microM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 microM of glutamate is high enough to cause constitutive desensitization of most glutamate receptors. Therefore, most glutamate receptors in vivo may be constitutively desensitized, and ambient extracellular glutamate and receptor desensitization may be potent but generally unrecognized regulators of synaptic transmission. Unfortunately, the mechanisms regulating ambient extracellular glutamate and glutamate receptor desensitization remain poorly understood and understudied.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA.
| | | |
Collapse
|
41
|
Sperandeo MP, Andria G, Sebastio G. Lysinuric protein intolerance: update and extended mutation analysis of theSLC7A7 gene. Hum Mutat 2007; 29:14-21. [PMID: 17764084 DOI: 10.1002/humu.20589] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lysinuric protein intolerance (LPI) is an inherited aminoaciduria caused by defective cationic amino acid (CAA) transport at the basolateral membrane of epithelial cells in the intestine and kidney. LPI is caused by mutations in the SLC7A7 gene, which encodes the y(+)LAT-1 protein, the catalytic light chain subunit of a complex belonging to the heterodimeric amino acid transporter family. Coexpression of 4F2hc (the heavy chain subunit) and y(+)LAT-1 induces y(+)L activity (CAA transport). So far a total of 43 different mutations of the SLC7A7 gene, nine of which newly reported here, have been identified in a group of 130 patients belonging to at least 98 independent families. The mutations are distributed along the entire gene and include all different types of mutations. Five polymorphisms within the SLC7A7 coding region and two variants found in the 5'UTR have been identified. A genuine founder effect mutation has been demonstrated only in Finland, where LPI patients share the same homozygous mutation, c.895-2A>T. LPI patients show extreme variability in clinical presentation, and no genotype-phenotype correlations have been defined. This phenotypic variability and the lack of a specific clinical presentation have caused various misdiagnoses. At the biochemical level, the elucidation of SLC7A7 function will be necessary to understand precise disease mechanisms and develop more specific and effective therapies. In this review, we summarize the current knowledge of SLC7A7 mutations and their role in LPI pathogenesis.
Collapse
|