1
|
Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals. Microorganisms 2023; 11:microorganisms11010125. [PMID: 36677416 PMCID: PMC9864768 DOI: 10.3390/microorganisms11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the long history of microorganism use, yeasts have been developed as hosts for producing biologically active compounds or for conventional fermentation. Since the introduction of genetic engineering, recombinant proteins have been designed and produced using yeast or bacterial cells. Yeasts have the unique property of expressing genes derived from both prokaryotes and eukaryotes. Saccharomyces cerevisiae is one of the well-studied yeasts in genetic engineering. Recently, molecular display technology, which involves a protein-producing system on the yeast cell surface, has been established. Using this technology, designed proteins can be displayed on the cell surface, and novel abilities are endowed to the host yeast strain. This review summarizes various molecular yeast display technologies and their principles and applications. Moreover, S. cerevisiae laboratory strains generated using molecular display technology for sustainable development are described. Each application of a molecular displayed yeast cell is also associated with the corresponding Sustainable Development Goals of the United Nations.
Collapse
|
2
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Morrissette VA, Rolfes RJ. The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae. Curr Genet 2020; 66:901-910. [PMID: 32322930 DOI: 10.1007/s00294-020-01078-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
Saccharomyces cerevisiae adapts to oxidative, osmotic stress and nutrient deprivation through transcriptional changes, decreased proliferation, and entry into other developmental pathways such as pseudohyphal formation and sporulation. Inositol pyrophosphates are necessary for these cellular responses. Inositol pyrophosphates are molecules composed of the phosphorylated myo-inositol ring that carries one or more diphosphates. Mutations in the enzymes that metabolize these molecules lead to altered patterns of stress resistance, altered morphology, and defective sporulation. Mechanisms to alter the synthesis of inositol pyrophosphates have been recently described, including inhibition of enzyme activity by oxidation and by phosphorylation. Cells with increased levels of 5-diphosphoinositol pentakisphosphate have increased nuclear localization of Msn2 and Gln3. The altered localization of these factors is consistent with the partially induced environmental stress response and increased expression of genes under the control of Msn2/4 and Gln3. Other transcription factors may also exhibit increased nuclear localization based on increased expression of their target genes. These transcription factors are each regulated by TORC1, suggesting that TORC1 may be inhibited by inositol pyrophosphates. Inositol pyrophosphates affect stress responses in other fungi (Aspergillus nidulans, Ustilago maydis, Schizosaccharomyces pombe, and Cryptococcus neoformans), in human and mouse, and in plants, suggesting common mechanisms and possible novel drug development targets.
Collapse
Affiliation(s)
- Victoria A Morrissette
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA.
| |
Collapse
|
4
|
Tate JJ, Tolley EA, Cooper TG. Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated. Genetics 2019; 212:1205-1225. [PMID: 31213504 PMCID: PMC6707456 DOI: 10.1534/genetics.119.302371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae lives in boom and bust nutritional environments. Sophisticated regulatory systems have evolved to rapidly cope with these changes while preserving intracellular homeostasis. Target of Rapamycin Complex 1 (TorC1), is a serine/threonine kinase complex and a principle nitrogen-responsive regulator. TorC1 is activated by excess nitrogen and downregulated by limiting nitrogen. Two of TorC1's many downstream targets are Gln3 and Gat1-GATA-family transcription activators-whose localization and function are Nitrogen Catabolite Repression- (NCR-) sensitive. In nitrogen replete environments, TorC1 is activated, thereby inhibiting the PTap42-Sit4 and PTap42-PP2A (Pph21/Pph22-Tpd3, Pph21,22-Rts1/Cdc55) phosphatase complexes. Gln3 is phosphorylated, sequestered in the cytoplasm and NCR-sensitive transcription repressed. In nitrogen-limiting conditions, TorC1 is downregulated and PTap42-Sit4 and PTap42-PP2A are active. They dephosphorylate Gln3, which dissociates from Ure2, relocates to the nucleus, and activates transcription. A paradoxical observation, however, led us to suspect that Gln3 control was more complex than appreciated, i.e., Sit4 dephosphorylates Gln3 more in excess than in limiting nitrogen conditions. This paradox motivated us to reinvestigate the roles of these phosphatases in Gln3 regulation. We discovered that: (i) Sit4 and PP2A actively function both in conditions where TorC1 is activated as well as down-regulated; (ii) nuclear Gln3 is more highly phosphorylated than when it is sequestered in the cytoplasm; (iii) in nitrogen-replete conditions, Gln3 relocates from the nucleus to the cytoplasm, where it is dephosphorylated by Sit4 and PP2A; and (iv) in nitrogen excess and limiting conditions, Sit4, PP2A, and Ure2 are all required to maintain cytoplasmic Gln3 in its dephosphorylated form.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163 Tennessee
| | - Elizabeth A Tolley
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, 38163 Tennessee
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163 Tennessee
| |
Collapse
|
5
|
Li J, Yan G, Liu S, Jiang T, Zhong M, Yuan W, Chen S, Zheng Y, Jiang Y, Jiang Y. Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae. Mol Microbiol 2017; 106:938-948. [PMID: 28976047 DOI: 10.1111/mmi.13858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
In yeast target of rapamycin complex 1 (TORC1) and Tap42-associated phosphatases regulate expression of genes involved in nitrogen limitation response and the nitrogen discrimination pathway. However, it remains unclear whether TORC1 and the phosphatases are required for sensing nitrogen conditions. Utilizing temperature sensitive mutants of tor2 and tap42, we examined the role of TORC1 and Tap42 in nuclear entry of Gln3, a key transcription factor in yeast nitrogen metabolism, in response to changes in nitrogen conditions. Our data show that TORC1 is essential for Gln3 nuclear entry upon nitrogen limitation and downshift in nitrogen quality. However, Tap42-associated phosphatases are required only under nitrogen limitation condition. In cells grown in poor nitrogen medium, the nitrogen permease reactivator kinase (Npr1) inhibits TORC1 activity and alters its association with Tap42, rendering Tap42-associated phosphatases unresponsive to nitrogen limitation. These findings demonstrate a direct role for TORC1 and Tap42-associated phosphatases in sensing nitrogen conditions and unveil an Npr1-dependent mechanism that controls TORC1 and the phosphatases in response to changes in nitrogen quality.
Collapse
Affiliation(s)
- Jinmei Li
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Gonghong Yan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sichi Liu
- Department of Cell Biology, Southern Medical University, Guangzhou, China
| | - Tong Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mingming Zhong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wenjie Yuan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Shaoxian Chen
- Medical Research Department, Guangdong General Hospital, Guangzhou, 510080, China
| | - Yin Zheng
- Medical and Healthcare Center, Hainan Provincial People's Hospital, Haikou, 570311, China
| | - Yong Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:21603. [PMID: 26899143 PMCID: PMC4761935 DOI: 10.1038/srep21603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, when preferred nitrogen sources are present, the metabolism of non-preferred nitrogen is repressed. Previous work showed that this metabolic regulation is primarily controlled by nitrogen catabolite repression (NCR) related regulators. Among these regulators, two positive regulators (Gln3p and Gat1p) could be phosphorylated and sequestered in the cytoplasm leading to the transcription of non-preferred nitrogen metabolic genes being repressed. The nuclear localization signals (NLSs) and nuclear localization regulatory signals (NLRSs) in Gln3p and Gat1p play essential roles in the regulation of their localization in cells. However, compared with Gln3p, the information of NLS and NLRS for Gat1p remains unknown. In this study, residues 348-375 and 366-510 were identified as the NLS and NLRS of Gat1p firstly. In addition, the modifications of Gat1p (mutations on the NLS and truncation on the NLRS) were attempted to enhance the transcription of non-preferred nitrogen metabolic genes. Quantitative real-time PCR showed that the transcriptional levels of 15 non-preferred nitrogen metabolic genes increased. Furthermore, during the shaking-flask culture tests, the utilization of urea, proline and allantoine was significantly increased. Based on these results, the genetic engineering on Gat1p has a great potential in enhancing non-preferred nitrogen metabolism in S. cerevisiae.
Collapse
|
7
|
Laxman S, Sutter BM, Shi L, Tu BP. Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci Signal 2014; 7:ra120. [PMID: 25515537 DOI: 10.1126/scisignal.2005948] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells must be capable of switching between growth and autophagy in unpredictable nutrient environments. The conserved Npr2 protein complex (comprising Iml1, Npr2, and Npr3; also called SEACIT) inhibits target of rapamycin complex 1 (TORC1) kinase signaling, which inhibits autophagy in nutrient-rich conditions. In yeast cultured in media with nutrient limitations that promote autophagy and inhibit growth, loss of Npr2 enables cells to bypass autophagy and proliferate. We determined that Npr2-deficient yeast had a metabolic state distinct from that of wild-type yeast when grown in minimal media containing ammonium as a nitrogen source and a nonfermentable carbon source (lactate). Unlike wild-type yeast, which accumulated glutamine, Npr2-deficient yeast metabolized glutamine into nitrogen-containing metabolites and maintained a high concentration of S-adenosyl methionine (SAM). Moreover, in wild-type yeast grown in these nutrient-limited conditions, supplementation with methionine stimulated glutamine consumption for synthesis of nitrogenous metabolites, demonstrating integration of a sulfur-containing amino acid cue and nitrogen utilization. These data revealed the metabolic basis by which the Npr2 complex regulates cellular homeostasis and demonstrated a key function for TORC1 in regulating the synthesis and utilization of glutamine as a nitrogen source.
Collapse
Affiliation(s)
- Sunil Laxman
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Lei Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
8
|
Dunkel N, Biswas K, Hiller E, Fellenberg K, Satheesh SV, Rupp S, Morschhäuser J. Control of morphogenesis, protease secretion and gene expression in Candida albicans by the preferred nitrogen source ammonium. MICROBIOLOGY-SGM 2014; 160:1599-1608. [PMID: 24841705 DOI: 10.1099/mic.0.078238-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Micro-organisms sense the availability of nutrients in their environment to control cellular behaviour and the expression of transporters and enzymes that are required for the utilization of these nutrients. In the pathogenic yeast Candida albicans, the preferred nitrogen source ammonium suppresses the switch from yeast to filamentous growth in response to certain stimuli, and it also represses the secretion of proteases, which are required for the utilization of proteins as an alternative nitrogen source. To investigate whether C. albicans senses the availability of ammonium in the extracellular environment or if ammonium uptake into the cell is required to regulate morphogenesis and gene expression, we compared the behaviour of wild-type cells and ammonium uptake-deficient mutants in the presence and absence of extracellular ammonium. Arginine-induced filamentous growth was suppressed by ammonium in the wild-type, but not in mutants lacking the ammonium permeases Mep1 and Mep2. Similarly, ammonium suppressed protease secretion and extracellular protein degradation in the wild-type, but not in mutants lacking the ammonium transporters. By comparing the gene expression profiles of C. albicans grown in the presence of low or high ammonium concentrations, we identified a set of genes whose expression is controlled by nitrogen availability. The repression of genes involved in the utilization of alternative nitrogen sources, which occurred under ammonium-replete conditions in the wild-type, was abrogated in mep1Δ mep2Δ mutants. These results demonstrate that C. albicans does not respond to the presence of sufficient amounts of the preferred nitrogen source ammonium by sensing its availability in the environment. Instead, ammonium has to be taken up into the cell to control morphogenesis, protease secretion and gene expression.
Collapse
Affiliation(s)
- Nico Dunkel
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | - Kajal Biswas
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | - Ekkehard Hiller
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, Nobelstrasse 12, D-70569 Stuttgart, Germany
| | - Kurt Fellenberg
- Forschungszentrum Borstel, Parkallee 30, D-23845 Borstel, Germany
| | - Somisetty V Satheesh
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | - Steffen Rupp
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, Nobelstrasse 12, D-70569 Stuttgart, Germany
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| |
Collapse
|
9
|
Rai R, Tate JJ, Georis I, Dubois E, Cooper TG. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms. J Biol Chem 2013; 289:2918-33. [PMID: 24324255 DOI: 10.1074/jbc.m113.516740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrogen catabolite repression (NCR)-sensitive transcription is activated by Gln3 and Gat1. In nitrogen excess, Gln3 and Gat1 are cytoplasmic, and transcription is minimal. In poor nitrogen, Gln3 and Gat1 become nuclear and activate transcription. A long standing paradox has surrounded Gat1 production. Gat1 was first reported as an NCR-regulated activity mediating NCR-sensitive transcription in gln3 deletion strains. Upon cloning, GAT1 transcription was, as predicted, NCR-sensitive and Gln3- and Gat1-activated. In contrast, Western blots of Gat1-Myc(13) exhibited two constitutively produced species. Investigating this paradox, we demonstrate that wild type Gat1 isoforms (IsoA and IsoB) are initiated at Gat1 methionines 40, 95, and/or 102, but not at methionine 1. Their low level production is the same in rich and poor nitrogen conditions. When the Myc(13) tag is placed after Gat1 Ser-233, four N-terminal Gat1 isoforms (IsoC-F) are also initiated at methionines 40, 95, and/or 102. However, their production is highly NCR-sensitive, being greater in proline than glutamine medium. Surprisingly, all Gat1 isoforms produced in sufficient quantities to be confidently analyzed (IsoA, IsoC, and IsoD) require Gln3 and UASGATA promoter elements, both requirements typical of NCR-sensitive transcription. These data demonstrate that regulated Gat1 production is more complex than previously recognized, with wild type versus truncated Gat1 proteins failing to be regulated in parallel. This is the first reported instance of Gln3 UASGATA-dependent protein production failing to derepress in nitrogen poor conditions. A Gat1-lacZ ORF swap experiment indicated sequence(s) responsible for the nonparallel production are downstream of Gat1 leucine 61.
Collapse
Affiliation(s)
- Rajendra Rai
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | | | | | | | | |
Collapse
|
10
|
Feller A, Georis I, Tate JJ, Cooper TG, Dubois E. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation. J Biol Chem 2012. [PMID: 23184930 DOI: 10.1074/jbc.m112.385054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ure2 is a phosphoprotein and central negative regulator of nitrogen-responsive Gln3/Gat1 localization and their ability to activate transcription. This negative regulation is achieved by the formation of Ure2-Gln3 and -Gat1 complexes that are thought to sequester these GATA factors in the cytoplasm of cells cultured in excess nitrogen. Ure2 itself is a dimer the monomer of which consists of two core domains and a flexible protruding αcap. Here, we show that alterations in this αcap abolish rapamycin-elicited nuclear Gln3 and, to a more limited extent, Gat1 localization. In contrast, these alterations have little demonstrable effect on the Gln3 and Gat1 responses to nitrogen limitation. Using two-dimensional PAGE we resolved eight rather than the two previously reported Ure2 isoforms and demonstrated Ure2 dephosphorylation to be stimulus-specific, occurring after rapamycin treatment but only minimally if at all in nitrogen-limited cells. Alteration of the αcap significantly diminished the response of Ure2 dephosphorylation to the TorC1 inhibitor, rapamycin. Furthermore, in contrast to Gln3, rapamycin-elicited Ure2 dephosphorylation occurred independently of Sit4 and Pph21/22 (PP2A) as well as Siw14, Ptc1, and Ppz1. Together, our data suggest that distinct regions of Ure2 are associated with the receipt and/or implementation of signals calling for cessation of GATA factor sequestration in the cytoplasm. This in turn is more consistent with the existence of distinct pathways for TorC1- and nitrogen limitation-dependent control than it is with these stimuli representing sequential steps in a single regulatory pathway.
Collapse
Affiliation(s)
- Andre Feller
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
11
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
12
|
Cherkasova V, Maury LL, Bacikova D, Pridham K, Bähler J, Maraia RJ. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p. Mol Biol Cell 2011; 23:480-91. [PMID: 22160596 PMCID: PMC3268726 DOI: 10.1091/mbc.e11-08-0732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Vera Cherkasova
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
13
|
Georis I, Feller A, Tate JJ, Cooper TG, Dubois E. Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics 2009; 181:861-74. [PMID: 19104072 PMCID: PMC2651060 DOI: 10.1534/genetics.108.099051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022] Open
Abstract
Nitrogen catabolite repression (NCR)-sensitive genes, whose expression is highly repressed when provided with excess nitrogen and derepressed when nitrogen is limited or cells are treated with rapamycin, are routinely used as reporters in mechanistic studies of the Tor signal transduction pathway in Saccharomyces cerevisiae. Two GATA factors, Gln3 and Gat1, are responsible for NCR-sensitive transcription, but recent evidence demonstrates that Tor pathway regulation of NCR-sensitive transcription bifurcates at the level of GATA factor localization. Gln3 requires Sit4 phosphatase for nuclear localization and NCR-sensitive transcription while Gat1 does not. In this article, we demonstrate that the extent to which Sit4 plays a role in NCR-sensitive transcription depends upon whether or not (i) Gzf3, a GATA repressor homologous to Dal80, is active in the genetic background assayed; (ii) Gat1 is able to activate transcription of the assayed gene in the absence of Gln3 in that genetic background; and (iii) the gene chosen as a reporter is able to be transcribed by Gln3 or Gat1 in the absence of the other GATA factor. Together, the data indicate that in the absence of these three pieces of information, overall NCR-sensitive gene transcription data are unreliable as Tor pathway readouts.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
14
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
15
|
Tate JJ, Georis I, Feller A, Dubois E, Cooper TG. Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently. J Biol Chem 2009; 284:2522-34. [PMID: 19015262 PMCID: PMC2629088 DOI: 10.1074/jbc.m806162200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/11/2008] [Indexed: 01/12/2023] Open
Abstract
Gln3, the major activator of nitrogen catabolite repression (NCR)-sensitive transcription, is often used as an assay of Tor pathway regulation in Saccharomyces cerevisiae. Gln3 is cytoplasmic in cells cultured with repressive nitrogen sources (Gln) and nuclear with derepressive ones (Pro) or after treating Gln-grown cells with the Tor inhibitor, rapamycin (Rap). In Raptreated or Pro-grown cells, Sit4 is posited to dephosphorylate Gln3, which then dissociates from a Gln3-Ure2 complex and enters the nucleus. However, in contrast with this view, Sit4-dependent Gln3 dephosphorylation is greater in Gln than Pro. Investigating this paradox, we show that PP2A (another Tor pathway phosphatase)-dependent Gln3 dephosphorylation is regulated oppositely to that of Sit4, being greatest in Pro- and least in Gln-grown cells. It thus parallels nuclear Gln3 localization and NCR-sensitive transcription. However, because PP2A is not required for nuclear Gln3 localization in Pro, PP2A-dependent Gln3 dephosphorylation and nuclear localization are likely parallel responses to derepressive nitrogen sources. In contrast, Rap-induced nuclear Gln3 localization absolutely requires all four PP2A components (Pph21/22, Tpd3, Cdc55, and Rts1). In pph21Delta22Delta, tpd3Delta, or cdc55Delta cells, however, Gln3 is dephosphorylated to the same level as in Rap-treated wild-type cells, indicating Rap-induced Gln3 dephosphorylation is insufficient to achieve nuclear localization. Finally, PP2A-dependent Gln3 dephosphorylation parallels conditions where Gln3 is mostly nuclear, while Sit4-dependent and Rap-induced dephosphorylation parallels those where Gln3 is mostly cytoplasmic, suggesting the effects of these phosphatases on Gln3 may occur in different cellular compartments.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
16
|
Tate JJ, Cooper TG. Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 8:1223-35. [PMID: 19054131 DOI: 10.1111/j.1567-1364.2008.00441.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Indirect immunofluorescence (IF) microscopy is a frequently used method to determine intracellular protein localization. It is especially useful for low abundance proteins, for example the GATA-factors (Gln3, Gat1) which activate nitrogen catabolite repression (NCR)-sensitive transcription. Limiting nitrogen or treating cells with Tor pathway inhibitor, rapamycin, elicits nuclear GATA-factor localization and increased NCR-sensitive transcription, whereas excess nitrogen restricts these proteins to the cytoplasm and decreases transcription. The initial step of the IF procedure is formalin-fixation that quenches cellular activity and fixes protein locations via cross-linking. We find that under some conditions, formalin itself can influence GATA-factor localization. With low formalin (0.8% or 1.6%), Gat1-Myc(13) became more nuclear, and with higher concentrations (5.6%), it became more cytoplasmic. Gln3-Myc(13) localization, on the other hand, did not respond to low formalin, but became more cytoplasmic at the higher concentration. Interestingly, the high concentration of formalin had no demonstrable effect when the GATA factors were completely nuclear, i.e. after rapamycin (Gat1-Myc(13)) or Msx (Gln3-Myc(13)) treatment. These effects are most likely elicited by polyoxymethylene glycols, which significantly increase the osmolarity of the medium (0.5-2). We suggest that varying degrees of osmotic stress and transcription factor movement in response to it can occur after the beginning of fixation but before proteins become immobilized.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | | |
Collapse
|
17
|
Cardona F, Aranda A, del Olmo M. Ubiquitin ligase Rsp5p is involved in the gene expression changes during nutrient limitation in Saccharomyces cerevisiae. Yeast 2009; 26:1-15. [PMID: 19180642 DOI: 10.1002/yea.1645] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rsp5p is an essential ubiquitin ligase involved in many different cellular events, including amino acid transporters degradation, transcription initiation and mRNA export. It plays important role in both stress resistance and adaptation to the change of nutrients. We have found that ubiquitination machinery is necessary for the correct induction of the stress response SPI1 gene at the entry of the stationary phase. SPI1 is a gene whose expression is regulated by the nutritional status of the cell and whose deletion causes hypersensitivity to various stresses, such as heat shock, alkaline stress and oxidative stress. Its regulation is mastered by Rsp5p, as mutations in this gene lead to a lower SPI1 expression. In this process, Rsp5p is helped by several proteins, such as Rsp5p-interacting proteins Bul1p/2p, the ubiquitin conjugating protein Ubc1p and ubiquitin proteases Ubp4p and Ubp16p. Moreover, a mutation in the RSP5 gene has a global effect at the gene expression level when cells enter the stationary phase. Rsp5p particularly controls the levels of the ribosomal proteins mRNAs at this stage. Rsp5p is also necessary for a correct induction of p-bodies under stress conditions, indicating that this protein plays an important role in the post-transcriptional fate of mRNA under nutrient starvation.
Collapse
Affiliation(s)
- F Cardona
- Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | | | | |
Collapse
|
18
|
Georis I, Tate JJ, Cooper TG, Dubois E. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J Biol Chem 2008; 283:8919-29. [PMID: 18245087 PMCID: PMC2276367 DOI: 10.1074/jbc.m708811200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/15/2008] [Indexed: 01/11/2023] Open
Abstract
The Tor1,2 protein kinases globally influence many cellular processes including nitrogen-responsive gene expression that correlates with intracellular localization of GATA transcription activators Gln3 and Gat1/Nil1. Gln3-Myc(13) and Gat1-Myc(13) are restricted to the cytoplasm of cells provided with good nitrogen sources, e.g. glutamine. Following the addition of the Tor1,2 inhibitor, rapamycin, both transcription factors relocate to the nucleus. Gln3-Myc(13) localization is highly dependent upon Ure2 and type 2A-related phosphatase, Sit4. Ure2 is required for Gln3 to be restricted to the cytoplasm of cells provided with good nitrogen sources, and Sit4 is required for its location to the nucleus following rapamycin treatment. The paucity of analogous information concerning Gat1 regulation prompted us to investigate the effects of deleting SIT4 and URE2 on Gat1-Myc(13) localization, DNA binding, and NCR-sensitive transcription. Our data demonstrate that Tor pathway control of NCR-responsive transcription bifurcates at the regulation of Gln3 and Gat1. Gat1-Myc(13) localization is not strongly influenced by deleting URE2, nor is its nuclear targeting following rapamycin treatment strongly dependent on Sit4. ChIP experiments demonstrated that Gat1-Myc(13) can bind to the DAL5 promoter in the absence of Gln3. Gln3-Myc(13), on the other hand, cannot bind to DAL5 in the absence of Gat1. We conclude that: (i) Tor pathway regulation of Gat1 differs markedly from that of Gln3, (ii) nuclear targeting of Gln3-Myc(13) is alone insufficient for its recruitment to the DAL5 promoter, and (iii) the Tor pathway continues to play an important regulatory role in NCR-sensitive transcription even after Gln3-Myc(13) is localized to the nucleus.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | |
Collapse
|
19
|
Luzzani C, Cardillo SB, Bermúdez Moretti M, Correa García S. New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription. MICROBIOLOGY-SGM 2008; 153:3677-3684. [PMID: 17975075 DOI: 10.1099/mic.0.2007/010231-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Saccharomyces cerevisiae UGA4 gene, which encodes the gamma-aminobutyric acid (GABA) and delta-aminolaevulinic acid (ALA) permease, is well known to be regulated by the nitrogen source. Its expression levels are low in the presence of a rich nitrogen source but are higher when a poor nitrogen source is used. In addition, GABA can induce UGA4 expression when cells are grown with proline but not when they are grown with ammonium. Although vast amounts of evidence have been gathered about UGA4 regulation by nitrogen, little is known about its regulation by the carbon source. Using glucose and acetate as rich and poor carbon source respectively, this work aimed to shed light on hitherto unclear aspects of the regulation of this gene. In poor nitrogen conditions, cells grown with acetate were found to have higher UGA4 basal expression levels than those grown with glucose, and did not show UGA4 induction in response to GABA. Analysis of the expression and subcellular localization of the transcription factors that regulate UGA4 as well as partial deletions and site-directed mutations of the UGA4 promoter region suggested that there are two parallel pathways that act in regulating this gene by the carbon source. Furthermore, the results demonstrate the existence of a new factor operating in UGA4 regulation.
Collapse
Affiliation(s)
- Carlos Luzzani
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 2. C1428EGA, Buenos Aires, Argentina
| | - Sabrina Beatriz Cardillo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 2. C1428EGA, Buenos Aires, Argentina
| | - Mariana Bermúdez Moretti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 2. C1428EGA, Buenos Aires, Argentina
| | - Susana Correa García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 2. C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
20
|
Hirasaki M, Kaneko Y, Harashima S. Protein phosphatase Siw14 controls intracellular localization of Gln3 in cooperation with Npr1 kinase in Saccharomyces cerevisiae. Gene 2007; 409:34-43. [PMID: 18166280 DOI: 10.1016/j.gene.2007.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/17/2022]
Abstract
Saccharomyces cerevisiae Deltasiw14 disruptant exhibits caffeine sensitivity. To understand the function of Siw14, double disruptants for SIW14 and each of 102 viable protein kinases (PKase) genes were constructed and examined for suppression of caffeine sensitivity based on the premise that the sensitivity was caused either by accumulation of an unknown phosphorylated Siw14 substrate(s) or by depletion of an unphosphorylated substrate(s) of Siw14 in the Deltasiw14 disruptant. Among 102 pkase disruptions, only one, Deltanpr1, suppressed the caffeine sensitivity of the Deltasiw14 disruptant. Because Gln3 (a phosphorylated transcriptional activator)-dependent transcription is induced by disruption of NPR1, we further examined the effect of disruption and overexpression of GLN3 on the caffeine sensitivity of the Deltasiw14 disruptant. Disruption of GLN3 was found to partially suppress the caffeine sensitivity of the Deltasiw14 disruptant, while overexpression of GLN3 in wild-type cells caused caffeine sensitivity, providing the first evidence that Siw14 functions in the Gln3 regulatory network. We also found that, unlike in a wild-type background, Gln3 accumulates in the nucleus whether cells are exposed or not to caffeine in the Deltasiw14 disruptant, and that this nuclear localization was abolished by disruption of NPR1. Interestingly, the level of Gln3 phosphorylation in both the Deltasiw14 and Deltanpr1 disruptants decreased relative to wild type, independent of exposure to caffeine. We conclude that Siw14 controls the intracellular localization of Gln3 in combination with Npr1, and one of the causes for the caffeine sensitivity of the Deltasiw14 disruptant was an accumulation of dephosphorylated Gln3 in the nucleus.
Collapse
Affiliation(s)
- Masataka Hirasaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
21
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Tate JJ, Cooper TG. Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. J Biol Chem 2007; 282:18467-18480. [PMID: 17439949 PMCID: PMC2269007 DOI: 10.1074/jbc.m609550200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Intracellular localization of Saccharomyces cerevisiae GATA family transcription activator, Gln3, is used as a downstream readout of rapamycin-inhibited Tor1,2 control of Tap42 and Sit4 activities. Gln3 is cytoplasmic in cells provided with repressive nitrogen sources such as glutamine and is nuclear in cells growing with a derepressive nitrogen source such as proline or those treated with rapamycin or methionine sulfoximine (Msx). Although gross Gln3-Myc13 phosphorylation levels in wild type cells do not correlate with nitrogen source-determined intracellular Gln3-Myc13 localization, the phosphorylation levels are markedly influenced by several environmental perturbations. Msx treatment increases Snf1-independent Gln3-Myc13 phosphorylation, whereas carbon starvation increases both Snf1-dependent and -independent Gln3-Myc13 phosphorylation. Here we demonstrate that a broad spectrum of environmental stresses (temperature, osmotic, and oxidative) increase Gln3-Myc13 phosphorylation. In parallel, these stresses elicit rapid (<5 min for NaCl) Gln3-Myc13 relocalization from the nucleus to the cytoplasm. The response of Gln3-Myc13 localization to stressful conditions can completely overwhelm its response to nitrogen source quality or inhibitor-generated disruption of the Tor1,2 signal transduction pathway. Adding NaCl to cells cultured under conditions in which Gln3-Myc13 is normally nuclear, i.e. proline-grown, nitrogen-starved, Msx-, caffeine-, and rapamycin-treated wild type cells, or ure2Delta cells, results in its prompt relocalization to the cytoplasm. Together these data identify a major new level of regulation to which Gln3 responds, and adds a new dimension to mechanistic studies of the regulation of this transcription factor.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - Terrance G Cooper
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163.
| |
Collapse
|
23
|
Rubio-Texeira M. Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae. FEBS Lett 2007; 581:541-50. [PMID: 17254574 DOI: 10.1016/j.febslet.2007.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/28/2022]
Abstract
Urm1 is a modifier protein that is conjugated to substrate proteins through thioester formation with the E1-like enzyme, Uba4. Here is shown that the lack of urmylation causes derepression of the GAP1 gene (encoding a nitrogen-regulated broad-spectrum amino acid-scavenging permease) in the presence of rich nitrogen sources, and simultaneous inhibition of the expression of CIT2, a TCA-cycle gene involved in the production of glutamate and glutamine. This effect is dependent on the TORC1- and nutrient-regulated transcriptional factors, Nil1p and Gln3p. Evidence is provided that, in the absence of urmylation, nuclear/cytosolic shuffling of both transcriptional factors is altered, ultimately leading to inability to repress GAP1 gene in the presence of a rich nitrogen source. Altogether, the data presented here indicate an important role of the urmylation pathway in regulating the expression of genes involved in sensing and controlling amino acids levels.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- Whitehead Institute, Massachusetts Institute of Technology, 9 Cambridge Center 653, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Abstract
Components involved in vesicle trafficking processes such as secretion, endocytosis, and autophagy are gaining recognition as important regulators and effectors of target of rapamycin (TOR) signaling. A recent report by now implicates Pmr1, a secretory pathway Ca(2+)/Mn(2+) ATPase located in the Golgi apparatus, as a novel regulator of TOR and its downstream targets in yeast.
Collapse
Affiliation(s)
- Thomas P Neufeld
- Department of Genetics, Cell Biology & Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Gunsch CK, Kinney KA, Szaniszlo PJ, Whitman CP. Relative gene expression quantification in a fungal gas-phase biofilter. Biotechnol Bioeng 2007; 98:101-11. [PMID: 17318912 DOI: 10.1002/bit.21393] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monitoring of gas-phase biofilter performance generally relies on macroscale measurements that neglect the molecular level phenomena that can control the biodegradation process. The present study was undertaken to determine whether or not quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) could detect changes in relative gene expression resulting from feed variations typically encountered in the field. Specifically, homogentisate-1,2-dioxygenase, ElHDO, expression was quantified as a function of short-term chemical feed variations and shutdown period in a biofilter seeded with a pure culture of the fungus Exophiala lecanii-corni. ElHDO was previously shown to be involved in ethylbenzene degradation in E. lecanii-corni. Overall, relative gene target expression numbers (T(N)) were consistent with gas-phase biofilter performance during each short-term experiment although no direct mathematical correlation was found between T(N) and ethylbenzene removal rate. During the chemical feed experiments, no effect on T(N) was measured in the presence of o-xylene which does not affect ElHDO expression. In the presence of phenylacetate, an inducer of ElHDO, T(N) increased once a threshold substrate concentration was exceeded. When methyl propyl ketone, a repressor of ElHDO, was introduced, T(N) decreased rapidly and acted as a leading indicator of bioreactor failure. In the transient loading experiments, ElHDO expression slowly decreased over a 24-h time period when the ethylbenzene feed was discontinued, but rapidly recovered upon its re-introduction. These results indicate that qRT-PCR reflects microbial activity changes that occur in gas-phase biofilters in response to short-term changes in feed conditions and provides a useful complement to the macroscale measurements typically collected.
Collapse
Affiliation(s)
- Claudia K Gunsch
- Civil, Architectural and Environmental Engineering Department, University of Texas, Austin, Texas, USA.
| | | | | | | |
Collapse
|
26
|
Tate JJ, Feller A, Dubois E, Cooper TG. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. J Biol Chem 2006; 281:37980-92. [PMID: 17015442 PMCID: PMC2266077 DOI: 10.1074/jbc.m606973200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tor1,2 control of type 2A-related phosphatase activities in Saccharomyces cerevisiae has been reported to be responsible for the regulation of Gln3 phosphorylation and intracellular localization in response to the nature of the nitrogen source available. According to the model, excess nitrogen stimulates Tor1,2 to phosphorylate Tip41 and/or Tap42. Tap42 then complexes with and inactivates Sit4 phosphatase, thereby preventing it from dephosphorylating Gln3. Phosphorylated Gln3 complexes with Ure2 and is sequestered in the cytoplasm. When Tor1,2 kinase activities are inhibited by limiting nitrogen, or rapamycin-treatment, Tap42 can no longer complex with Sit4. Active Sit4 dephosphorylates Gln3, which can then localize to the nucleus and activate transcription. The paucity of experimental data directly correlating active Sit4 and Pph3 with Gln3 regulation prompted us to assay Gln3-Myc(13) phosphorylation and intracellular localization in isogenic wild type, sit4, pph3, and sit4pph3 deletion strains. We found that Sit4 actively brought about Gln3-Myc(13) dephosphorylation in both good (glutamine or ammonia) and poor (proline) nitrogen sources. This Sit4 activity masked nitrogen source-dependent changes in Gln3-Myc(13) phosphorylation which were clearly visible when SIT4 was deleted. The extent of Sit4 requirement for Gln3 nuclear localization was both nitrogen source- and strain-dependent. In some strains, Sit4 was not even required for Gln3 nuclear localization in untreated or rapamycin-treated, proline-grown cells or Msx-treated, ammonia-grown cells.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Molecular Sciences, University of Tennessee, Memphis Tennessee 38163 U.S.A
| | - André Feller
- Institut de Recherches Microbiologiques JM Wiame, Laboratoire de Microbiologie ULB, B1070, Brussels, Belgium
| | - Evelyne Dubois
- Institut de Recherches Microbiologiques JM Wiame, Laboratoire de Microbiologie ULB, B1070, Brussels, Belgium
| | - Terrance G. Cooper
- Department of Molecular Sciences, University of Tennessee, Memphis Tennessee 38163 U.S.A
| |
Collapse
|
27
|
Devasahayam G, Ritz D, Helliwell SB, Burke DJ, Sturgill TW. Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast. Proc Natl Acad Sci U S A 2006; 103:17840-5. [PMID: 17095607 PMCID: PMC1693834 DOI: 10.1073/pnas.0604303103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Indexed: 11/18/2022] Open
Abstract
The rapamycin.FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+ -ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.
Collapse
Affiliation(s)
| | - Danilo Ritz
- Division of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Stephen B. Helliwell
- Division of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Daniel J. Burke
- Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, 1300 Jefferson Park Avenue, Charlottesville, VA 22908; and
| | | |
Collapse
|