1
|
Kim HJ, Jeong MS, Jang SB. Identification and structure of AIMP2-DX2 for therapeutic perspectives. BMB Rep 2024; 57:318-323. [PMID: 38835119 PMCID: PMC11289502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-β and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-β. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers. [BMB Reports 2024; 57(7): 318-323].
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
2
|
Yoon I, Kim U, Choi J, Kim S. Disease association and therapeutic routes of aminoacyl-tRNA synthetases. Trends Mol Med 2024; 30:89-105. [PMID: 37949787 DOI: 10.1016/j.molmed.2023.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are enzymes that catalyze the ligation of amino acids to tRNAs for translation. Beyond their traditional role in translation, ARSs have acquired regulatory functions in various biological processes (epi-translational functions). With their dual-edged activities, aberrant expression, secretion, and mutations of ARSs are associated with human diseases, including cancer, autoimmune diseases, and neurological diseases. The increasing numbers of newly unveiled activities and disease associations of ARSs have spurred interest in novel drug development, targeting disease-related catalytic and noncatalytic activities of ARSs as well as harnessing ARSs as sources for biological therapeutics. This review speculates how the translational and epi-translational activities of ARSs can be related and describes how their activities can be linked to diseases and drug discovery.
Collapse
Affiliation(s)
- Ina Yoon
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Uijoo Kim
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Jaeyoung Choi
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Institute for Artificial Intelligence and Biomedical Research, Medicinal Bioconvergence Research Center, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea; College of Medicine, Gangnam Severance Hospital, Yonsei University, Seoul 06273, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
3
|
Wu J, Hollinger J, Bonanno E, Jiang F, Yao P. Cardiomyocyte-Specific Loss of Glutamyl-prolyl-tRNA Synthetase Leads to Disturbed Protein Homeostasis and Dilated Cardiomyopathy. Cells 2023; 13:35. [PMID: 38201239 PMCID: PMC10778562 DOI: 10.3390/cells13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Glutamyl-prolyl-tRNA synthetase (EPRS1), an aminoacyl-tRNA synthetase (ARS) ligating glutamic acid and proline to their corresponding tRNAs, plays an essential role in decoding proline codons during translation elongation. The physiological function of EPRS1 in cardiomyocytes (CMs) and the potential effects of the CM-specific loss of Eprs1 remain unknown. Here, we found that heterozygous Eprs1 knockout in CMs does not cause any significant changes in CM hypertrophy induced by pressure overload, while homozygous knockout leads to dilated cardiomyopathy, heart failure, and lethality at around 1 month after Eprs1 deletion. The transcriptomic profiling of early-stage Eprs1 knockout hearts suggests a significantly decreased expression of multiple ion channel genes and an increased gene expression in proapoptotic pathways and integrated stress response. Proteomic analysis shows decreased protein expression in multi-aminoacyl-tRNA synthetase complex components, fatty acids, and branched-chain amino acid metabolic enzymes, as well as a compensatory increase in cytosolic translation machine-related proteins. Immunoblot analysis indicates that multiple proline-rich proteins were reduced at the early stage, which might contribute to the cardiac dysfunction of Eprs1 knockout mice. Taken together, this study demonstrates the physiological and molecular outcomes of loss-of-function of Eprs1 in vivo and provides valuable insights into the potential side effects on CMs, resulting from the EPRS1-targeting therapeutic approach.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
| | - Jared Hollinger
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
| | - Emily Bonanno
- Undergraduate Program in Biology and Medicine, Department of Biological Sciences: Biochemistry, University of Rochester, Rochester, NY 14620, USA;
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; (J.W.); (J.H.)
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
5
|
Wu J, Hollinger J, Bonanno E, Jiang F, Yao P. Cardiomyocyte-specific Loss of Glutamyl-prolyl-tRNA Synthetase Leads to Disturbed Protein Homeostasis and Dilated Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558539. [PMID: 37790482 PMCID: PMC10542137 DOI: 10.1101/2023.09.19.558539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Glutamyl-prolyl-tRNA synthetase (EPRS1), an aminoacyl-tRNA synthetase (ARS) ligating glutamic acid and proline to their corresponding tRNAs, plays an essential role in decoding proline codons during translation elongation. The physiological function of EPRS1 in cardiomyocytes (CMs) and the potential effects of CM-specific loss of EPRS1 remain unknown. Here, we found that heterozygous Eprs1 knockout in CMs does not cause any significant changes in CM hypertrophy induced by pressure overload, while homozygous knockout leads to dilated cardiomyopathy, heart failure, and lethality at around 1 month after Eprs1 deletion. Transcriptomic profiling of early-stage Eprs1 knockout hearts suggests a significantly decreased expression of multiple ion channel genes and an increased gene expression in proapoptotic pathways and integrated stress response. Proteomic analysis shows decreased protein expression of multi-aminoacyl-tRNA synthetase complex components, fatty acid, and branched-chain amino acid metabolic enzymes, as well as a compensatory increase in cytosolic translation machine-related proteins. Immunoblot analysis indicated that multiple proline-rich proteins were reduced at the early stage, which might contribute to cardiac dysfunction of Eprs1 knockout mice. Taken together, this study demonstrates the physiological and molecular outcome of loss-of-function of EPRS1 in vivo and provides valuable insights into the potential side effects on CMs resulting from the EPRS1-targeting therapeutic approach.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| | - Jared Hollinger
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| | - Emily Bonanno
- Undergraduate Program in Biology and Medicine, Department of Biological Sciences: Biochemistry, University of Rochester, Rochester, New York 14620 USA
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642 USA
| |
Collapse
|
6
|
Lee B, Kim DG, Lee A, Kim YM, Cui L, Kim S, Choi I. Synthesis and discovery of the first potent proteolysis targeting chimaera (PROTAC) degrader of AIMP2-DX2 as a lung cancer drug. J Enzyme Inhib Med Chem 2023; 38:51-66. [PMID: 36305287 PMCID: PMC9621298 DOI: 10.1080/14756366.2022.2135510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ARS-interacting multifunctional proteins 2 (AIMP2) is known to be a powerful tumour suppressor. However, the target AIMP2-DX2, AIMP2-lacking exon 2, is often detected in many cancer patients and cells. The predominant approach for targeting AIMP-DX2 has been attempted via small molecule mediated inhibition, but due to the lack of satisfactory activity against AIMP2-DX2, new therapeutic strategies are needed to develop a novel drug for AIMP2-DX2. Here, we report the use of the PROTAC strategy that combines small-molecule AIMP2-DX2 inhibitors with selective E3-ligase ligands with optimised linkers. Consequently, candidate compound 45 was found to be a degrader of AIMP2-DX2. Together, these findings demonstrate that our PROTAC technology targeting AIMP2-DX2 would be a potential new strategy for future lung cancer treatment.
Collapse
Affiliation(s)
- BoRa Lee
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
| | - Aram Lee
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Young Mi Kim
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Lianji Cui
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| |
Collapse
|
7
|
Regulation of BRCA1 stability through the tandem UBX domains of isoleucyl-tRNA synthetase 1. Nat Commun 2022; 13:6732. [PMID: 36347866 PMCID: PMC9643514 DOI: 10.1038/s41467-022-34612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function.
Collapse
|
8
|
Wusiman W, Zhang Z, Ding Q, Liu M. The pathophyiological role of aminoacyl-tRNA synthetases in digestive system diseases. Front Physiol 2022; 13:935576. [PMID: 36017335 PMCID: PMC9396140 DOI: 10.3389/fphys.2022.935576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs and are indispensable enzymes for protein biosynthesis in all the cells. Previously, ARSs were considered simply as housekeeping enzymes, however, they are now known to be involved in a variety of physiological and pathological processes, such as tumorigenesis, angiogenesis, and immune response. In this review, we summarize the role of ARSs in the digestive system, including the esophagus, stomach, small intestine, colon, as well as the auxiliary organs such as the pancreas, liver, and the gallbladder. Furthermore, we specifically focus on the diagnostic and prognostic value of ARSs in cancers, aiming to provide new insights into the pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Wugelanmu Wusiman
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Mei Liu,
| |
Collapse
|
9
|
Jaramillo Ponce JR, Kapps D, Paulus C, Chicher J, Frugier M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J Biol Chem 2022; 298:101987. [PMID: 35487244 PMCID: PMC9136112 DOI: 10.1016/j.jbc.2022.101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)-like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip-ERS-QRS) and the M-complex (tRip-ERS-MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- José R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
10
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
11
|
Kim MH, Kang BS. Structure and Dynamics of the Human Multi-tRNA Synthetase Complex. Subcell Biochem 2022; 99:199-233. [PMID: 36151377 DOI: 10.1007/978-3-031-00793-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to their cognate tRNAs during protein synthesis. A growing body of scientific evidence acknowledges that ubiquitously expressed ARSs act as crossover mediators of biological processes, such as immunity and metabolism, beyond translation. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC), which consists of eight ARSs and three ARS-interacting multifunctional proteins in humans, is recognized to be a central player that controls the complexity of biological systems. Although the role of the MSC in biological processes including protein synthesis is still unclear, maintaining the structural integrity of MSC is essential for life. This chapter deals with current knowledge on the structural aspects of the human MSC and its protein components. The main focus is on the regulatory functions of MSC beyond its catalytic activity.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Beom Sik Kang
- School of Life Sciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
12
|
Ho JJD, Cunningham TA, Manara P, Coughlin CA, Arumov A, Roberts ER, Osteen A, Kumar P, Bilbao D, Krieger JR, Lee S, Schatz JH. Proteomics reveal cap-dependent translation inhibitors remodel the translation machinery and translatome. Cell Rep 2021; 37:109806. [PMID: 34644561 PMCID: PMC8558842 DOI: 10.1016/j.celrep.2021.109806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple “translational inhibition” as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical “translation inhibitors” is mediated by comprehensive translational landscape remodeling. Tactical protein synthesis inhibition is actively pursued as a cancer therapy that bypasses signaling redundancies limiting current strategies. Ho et al. show that rocaglates, first identified as inhibitors of eIF4A activity, globally reprogram cellular translation at both protein synthesis machinery and translatome levels, inducing cytotoxicity through anti-survival GEF-H1/RHOA/JNK signaling.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Tyler A Cunningham
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paola Manara
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Caroline A Coughlin
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Artavazd Arumov
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Evan R Roberts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ashanti Osteen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Preet Kumar
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Stephen Lee
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
13
|
Li G, Eriani G, Wang ED, Zhou XL. Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1645-1660. [PMID: 33515434 DOI: 10.1007/s11427-020-1838-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Mutations of the genes encoding aminoacyl-tRNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5A>G, p.D2G; c.1367C>T, p.S456L; c.1535G>A, p.R512Q and c.1846_1847del, p. Y616Lfs*6 of RARS1 gene, which encodes two forms of human cytoplasmic arginyl-tRNA synthetase (hArgRS), are linked to Pelizaeus-Merzbacher-like disease (PMLD) with unclear pathogenesis. Among these mutations, c.5A>G is the most extensively reported mutation, leading to a p.D2G mutation in the N-terminal extension of the long-form hArgRS. Here, we showed the detrimental effects of R512Q substitution and ΔC mutations on the structure and function of hArgRS, while the most frequent mutation c.5A>G, p.D2G acted in a different manner without impairing hArgRS activity. The nucleotide substitution c.5A>G reduced translation of hArgRS mRNA, and an upstream open reading frame contributed to the suppressed translation of the downstream main ORF. Taken together, our results elucidated distinct pathogenic mechanisms of various RARS1 mutations in PMLD.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084, Strasbourg, France
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Ku J, Kim R, Kim D, Kim D, Song S, Lee K, Lee N, Kim M, Yoon SS, Kwon NH, Kim S, Kim Y, Koh Y. Single-cell analysis of AIMP2 splice variants informs on drug sensitivity and prognosis in hematologic cancer. Commun Biol 2020; 3:630. [PMID: 33128014 PMCID: PMC7599330 DOI: 10.1038/s42003-020-01353-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) is a non-enzymatic component required for the multi-tRNA synthetase complex. While exon 2 skipping alternatively spliced variant of AIMP2 (AIMP2-DX2) compromises AIMP2 activity and is associated with carcinogenesis, its clinical potential awaits further validation. Here, we found that AIMP2-DX2/AIMP2 expression ratio is strongly correlated with major cancer signaling pathways and poor prognosis, particularly in acute myeloid leukemia (AML). Analysis of a clinical patient cohort revealed that AIMP2-DX2 positive AML patients show decreased overall survival and progression-free survival. We also developed targeted RNA-sequencing and single-molecule RNA-FISH tools to quantitatively analyze AIMP2-DX2/AIMP2 ratios at the single-cell level. By subclassifying hematologic cancer cells based on their AIMP2-DX2/AIMP2 ratios, we found that downregulating AIMP2-DX2 sensitizes cells to anticancer drugs only for a subgroup of cells while it has adverse effects on others. Collectively, our study establishes AIMP2-DX2 as a potential biomarker and a therapeutic target for hematologic cancer. Ku, Kim et al develop a method to analyse the ratio of the alternatively spliced variant of AIMP2 to full length AIMP via single-molecule RNA-FISH. They can subclassify hematologic cancer based on AIMP2-DX2/AIMP2 ratio and find that cells with high AIMP2-DX2 ratio can be sensitized to chemotherapy drugs by depleting AIMP2-DX2.
Collapse
Affiliation(s)
- Jayoung Ku
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ryul Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongchan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Daeyoon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seulki Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Namseok Lee
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - MinA Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Lee DD, Hochstetler A, Sah E, Xu H, Lowe CW, Santiaguel S, Thornton JL, Pajakowski A, Schwarz MA. Influence of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 on epithelial differentiation and organization during lung development. Am J Physiol Lung Cell Mol Physiol 2020; 319:L369-L379. [PMID: 32579851 DOI: 10.1152/ajplung.00518.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proper development of the respiratory bronchiole and alveolar epithelium proceeds through coordinated cross talk between the interface of epithelium and neighboring mesenchyme. Signals that facilitate and coordinate the cross talk as the bronchial forming canalicular stage transitions to construction of air-exchanging capillary-alveoli niche in the alveolar stage are poorly understood. Expressed within this decisive region, levels of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) inversely correlate with the maturation of the lung. The present study addresses the role of AIMP1 in lung development through the generation and characterization of Aimp1-/- mutant mice. Mating of Aimp1+/- produced offspring in expected Mendelian ratios throughout embryonic development. However, newborn Aimp1-/- pups exhibited neonatal lethality with mild cyanosis. Imaging both structure and ultrastructure of Aimp1-/- lungs showed disorganized bronchial epithelium, decreased type I but not type II cell differentiation, increased distal vessels, and disruption of E-cadherin deposition in cell-cell junctions. Supporting the in vivo findings of disrupted epithelial cell-cell junctions, in vitro biochemical experiments show that a portion of AIMP1 binds to phosphoinositides, the lipid anchor of proteins that have a fundamental role in both cellular membrane and actin cytoskeleton organization; a dramatic disruption in F-actin cytoskeleton was observed in Aimp1-/- mouse embryonic fibroblasts. Such observed structural defects may lead to disrupted cell-cell boundaries. Together, these results suggest a requirement of AIMP1 in epithelial cell differentiation in proper lung development.
Collapse
Affiliation(s)
- Daniel D Lee
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Alexandra Hochstetler
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Eric Sah
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana
| | - Haiming Xu
- Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| | - Chinn-Woan Lowe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Sara Santiaguel
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Janet Lea Thornton
- Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| | - Adam Pajakowski
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Margaret A Schwarz
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana.,Department of Biological Sciences, University of Notre Dame, South Bend, Indiana.,Department of Pediatrics, University of Texas-Southwestern, Dallas, Texas
| |
Collapse
|
16
|
Sivaraman A, Kim DG, Bhattarai D, Kim M, Lee HY, Lim S, Kong J, Goo JI, Shim S, Lee S, Suh YG, Choi Y, Kim S, Lee K. Synthesis and Structure-Activity Relationships of Arylsulfonamides as AIMP2-DX2 Inhibitors for the Development of a Novel Anticancer Therapy. J Med Chem 2020; 63:5139-5158. [PMID: 32315177 DOI: 10.1021/acs.jmedchem.9b01961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMP2-DX2, a splicing variant of AIMP2, is up-regulated in lung cancer, possesses oncogenic activity, and results in tumorigenesis. Specifically inhibiting the interaction between AIMP2-DX2 and HSP70 to suppress AIMP2-DX2-dependent cancers with small molecules is considered a promising avenue for cancer therapeutics. Optimization of hit BC-DXI-04 (IC50 = 40.1 μM) provided new potent sulfonamide based AIMP2-DX2 inhibitors. Among these, BC-DXI-843 showed improved inhibition against AIMP2-DX2 (IC50 = 0.92 μM) with more than 100-fold selectivity over AIMP2 in a luciferase assay. Several binding assays indicated that this compound effectively induces cancer cell apoptosis by specifically interrupting the interaction between DX2 and HSP70, which leads to the degradation of DX2 via Siah1-mediated ubiquitination. More importantly, BC-DXI-843 demonstrated in vivo efficacy in a tumor xenograft mouse model (H460 cells) at a dosage of 50 mg/kg, suggesting it as a promising lead for development of novel therapeutics targeting AIMP2-DX2 in lung cancer.
Collapse
Affiliation(s)
- Aneesh Sivaraman
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Deepak Bhattarai
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hwa Young Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Semi Lim
- Medicinal Bioconvergence Research Center, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Jiwon Kong
- Medicinal Bioconvergence Research Center, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Ja-Il Goo
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seunghwan Shim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seungbeom Lee
- College of Pharmacy, CHA University, Gyeonggi-do 11160, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Gyeonggi-do 11160, Republic of Korea.,College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
17
|
Suh YS, Yeom E, Nam JW, Min KJ, Lee J, Yu K. Methionyl-tRNA Synthetase Regulates Lifespan in Drosophila. Mol Cells 2020; 43:304-311. [PMID: 31940717 PMCID: PMC7103878 DOI: 10.14348/molcells.2019.0273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023] Open
Abstract
Methionyl-tRNA synthetase (MRS) is essential for translation. MRS mutants reduce global translation, which usually increases lifespan in various genetic models. However, we found that MRS inhibited Drosophila reduced lifespan despite of the reduced protein synthesis. Microarray analysis with MRS inhibited Drosophila revealed significant changes in inflammatory and immune response genes. Especially, the expression of anti-microbial peptides (AMPs) genes was reduced. When we measured the expression levels of AMP genes during aging, those were getting increased in the control flies but reduced in MRS inhibition flies agedependently. Interestingly, in the germ-free condition, the maximum lifespan was increased in MRS inhibition flies compared with that of the conventional condition. These findings suggest that the lifespan of MRS inhibition flies is reduced due to the down-regulated AMPs expression in Drosophila.
Collapse
Affiliation(s)
- Yoon Seok Suh
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 344, Korea
- Convergence Research Center of Dementia, Korea Institute of Science and Technology (KIST), Seoul 079, Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 344, Korea
| | - Jong-Woo Nam
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Jeongsoo Lee
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 344, Korea
- Convergence Research Center of Dementia, Korea Institute of Science and Technology (KIST), Seoul 079, Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 344, Korea
- Convergence Research Center of Dementia, Korea Institute of Science and Technology (KIST), Seoul 079, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 3113, Korea
| |
Collapse
|
18
|
Wang Y, Zhou JB, Zeng QY, Wu S, Xue MQ, Fang P, Wang ED, Zhou XL. Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA Lys. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1227-1239. [PMID: 32189241 DOI: 10.1007/s11427-019-1619-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 01/20/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitously expressed, essential enzymes, synthesizing aminoacyl-tRNAs for protein synthesis. Functional defects of aaRSs frequently cause various human disorders. Human KARS encodes both cytosolic and mitochondrial lysyl-tRNA synthetases (LysRSs). Previously, two mutations (c.1129G>A and c.517T>C) were identified that led to hearing impairment; however, the underlying biochemical mechanism is unclear. In the present study, we found that the two mutations have no impact on the incorporation of LysRS into the multiple-synthetase complex in the cytosol, but affect the cytosolic LysRS level, its tertiary structure, and cytosolic tRNA aminoacylation in vitro. As for mitochondrial translation, the two mutations have little effect on the steady-state level, mitochondrial targeting, and tRNA binding affinity of mitochondrial LysRS. However, they exhibit striking differences in charging mitochondrial tRNALys, with the c.517T>C mutant being completely deficient in vitro and in vivo. We constructed two yeast genetic models, which are powerful tools to test the in vivo aminoacylation activity of KARS mutations at both the cytosolic and mitochondrial levels. Overall, our data provided biochemical insights into the potentially molecular pathological mechanism of KARS c.1129G>A and c.517T>C mutations and provided yeast genetic bases to investigate other KARS mutations in the future.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mei-Qin Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Abstract
Human body is a finely-tuned machine that requires homeostatic balance based on systemically controlled biological processes involving DNA replication, transcription, translation, and energy metabolism. Ubiquitously expressed aminoacyl-tRNA synthetases have been investigated for many decades, and they act as cross-over mediators of important biological processes. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC) appears to be a central machinery controlling the complexity of biological systems. The structural integrity of MSC determined by the associated components is correlated with increasing biological complexity that links to system development in higher organisms. Although the role of the MSCs is still unclear, this chapter describes the current knowledge on MSC components that are associated with and regulate functions beyond their catalytic activities with focus on human MSC.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon, South Korea.
| |
Collapse
|
20
|
Hahn H, Park SH, Kim HJ, Kim S, Han BW. The DRS-AIMP2-EPRS subcomplex acts as a pivot in the multi-tRNA synthetase complex. IUCRJ 2019; 6:958-967. [PMID: 31576228 PMCID: PMC6760448 DOI: 10.1107/s2052252519010790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/01/2019] [Indexed: 05/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) play essential roles in protein biosynthesis as well as in other cellular processes, often using evolutionarily acquired domains. For possible cooperativity and synergistic effects, nine ARSs assemble into the multi-tRNA synthetase complex (MSC) with three scaffold proteins: aminoacyl-tRNA synthetase complex-interacting multifunctional proteins 1, 2 and 3 (AIMP1, AIMP2 and AIMP3). X-ray crystallographic methods were implemented in order to determine the structure of a ternary subcomplex of the MSC comprising aspartyl-tRNA synthetase (DRS) and two glutathione S-transferase (GST) domains from AIMP2 and glutamyl-prolyl-tRNA synthetase (AIMP2GST and EPRSGST, respectively). While AIMP2GST and EPRSGST interact via conventional GST heterodimerization, DRS strongly interacts with AIMP2GST via hydrogen bonds between the α7-β9 loop of DRS and the β2-α2 loop of AIMP2GST, where Ser156 of AIMP2GST is essential for the assembly. Structural analyses of DRS-AIMP2GST-EPRSGST reveal its pivotal architecture in the MSC and provide valuable insights into the overall assembly and conditionally required disassembly of the MSC.
Collapse
Affiliation(s)
- Hyunggu Hahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA synthetase complex and its role in cancer. J Biol Chem 2019; 294:5340-5351. [PMID: 30782841 PMCID: PMC6462501 DOI: 10.1074/jbc.rev118.002958] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are enzymes that ligate their cognate amino acids to tRNAs for protein synthesis. However, recent studies have shown that their functions are expanded beyond protein synthesis through the interactions with diverse cellular factors. In this review, we discuss how ARSs have evolved to expand and control their functions by forming protein assemblies. We particularly focus on a macromolecular ARS complex in eukaryotes, named multi-tRNA synthetase complex (MSC), which is proposed to provide a channel through which tRNAs reach bound ARSs to receive their cognate amino acid and transit further to the translation machinery. Approximately half of the ARSs assemble into the MSC through cis-acting noncatalytic domains attached to their catalytic domains and trans-acting factors. Evolution of the MSC included its functional expansion, during which the MSC interaction network was augmented by additional cellular pathways present in higher eukaryotes. We also discuss MSC components that could be functionally involved in the pathophysiology of tumorigenesis. For example, the activities of some trans-acting factors have tumor-suppressing effects or maintain DNA integrity and are functionally compromised in cancer. On the basis of Gene Ontology analyses, we propose that the regulatory activities of the MSC-associated ARSs mainly converge on five biological processes, including mammalian target of rapamycin (mTOR) and DNA repair pathways. Future studies are needed to investigate how the MSC-associated and free-ARSs interact with each other and other factors in the control of multiple cellular pathways, and how aberrant or disrupted interactions in the MSC can cause disease.
Collapse
Affiliation(s)
- Do Young Hyeon
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873
| | - Jong Hyun Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| | - Tae Jin Ahn
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Yeshin Cho
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Daehee Hwang
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873,
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Sunghoon Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| |
Collapse
|
22
|
Eswarappa SM, Potdar AA, Sahoo S, Sankar S, Fox PL. Metabolic origin of the fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase. J Biol Chem 2018; 293:19148-19156. [PMID: 30309984 DOI: 10.1074/jbc.ra118.004276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/03/2018] [Indexed: 11/06/2022] Open
Abstract
About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form EPRS, forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.
Collapse
Affiliation(s)
- Sandeep M Eswarappa
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India,
| | - Alka A Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, and
| | - Sarthak Sahoo
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Santhosh Sankar
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
23
|
Halawani D, Gogonea V, DiDonato JA, Pipich V, Yao P, China A, Topbas C, Vasu K, Arif A, Hazen SL, Fox PL. Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains. J Biol Chem 2018; 293:8843-8860. [PMID: 29643180 DOI: 10.1074/jbc.m117.807503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/26/2018] [Indexed: 02/02/2023] Open
Abstract
Aminoacyl-tRNA synthetases are ubiquitous, evolutionarily conserved enzymes catalyzing the conjugation of amino acids onto cognate tRNAs. During eukaryotic evolution, tRNA synthetases have been the targets of persistent structural modifications. These modifications can be additive, as in the evolutionary acquisition of noncatalytic domains, or subtractive, as in the generation of truncated variants through regulated mechanisms such as proteolytic processing, alternative splicing, or coding region polyadenylation. A unique variant is the human glutamyl-prolyl-tRNA synthetase (EPRS) consisting of two fused synthetases joined by a linker containing three copies of the WHEP domain (termed by its presence in tryptophanyl-, histidyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identify site-selective proteolysis as a mechanism that severs the linkage between the EPRS synthetases in vitro and in vivo Caspase action targeted Asp-929 in the third WHEP domain, thereby separating the two synthetases. Using a neoepitope antibody directed against the newly exposed C terminus, we demonstrate EPRS cleavage at Asp-929 in vitro and in vivo Biochemical and biophysical characterizations of the N-terminally generated EPRS proteoform containing the glutamyl-tRNA synthetase and most of the linker, including two WHEP domains, combined with structural analysis by small-angle neutron scattering, revealed a role for the WHEP domains in modulating conformations of the catalytic core and GSH-S-transferase-C-terminal-like (GST-C) domain. WHEP-driven conformational rearrangement altered GST-C domain interactions and conferred distinct oligomeric states in solution. Collectively, our results reveal long-range conformational changes imposed by the WHEP domains and illustrate how noncatalytic domains can modulate the global structure of tRNA synthetases in complex eukaryotic systems.
Collapse
Affiliation(s)
- Dalia Halawani
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Valentin Gogonea
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and .,the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Joseph A DiDonato
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Vitaliy Pipich
- the Jülich Center for Neutron Science, Outstation at Maier-Leibnitz Zentrum, Forschungszentrum Jülich, GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany, and
| | - Peng Yao
- the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Arnab China
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Celalettin Topbas
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and.,the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Kommireddy Vasu
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Abul Arif
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Stanley L Hazen
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and.,Center for Cardiovascular Diagnostics and Prevention, and Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Paul L Fox
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| |
Collapse
|
24
|
Kim SS, Hur SY, Kim YR, Yoo NJ, Lee SH. Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer. TUMORI JOURNAL 2018; 97:380-5. [DOI: 10.1177/030089161109700321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) form a protein complex with aminoacyl-tRNA synthetases. In addition to protein translation, AIMPs play a role in diverse biological processes. Earlier studies suggested that AIMPs may act as tumor suppressors. However, the expression status of the AIMP proteins in human cancer tissues is largely unknown. In this study, we analyzed the expression of AIMP members (AIMP1, AIMP2 and AIMP3) in gastric cancer (GC) and colorectal cancer (CRC) tissues. We analyzed the expression of these proteins in 100 GC and 103 CRC tissues by immunohistochemistry using a tissue microarray method. Normal gastric and colon mucosa expressed AIMP1, AIMP2 and AIMP3 in nearly all of the cases (95–100%). However, the expression of AIMP1, AIMP2 and AIMP3 was significantly decreased in the GC samples (60%, 52% and 70% of the cases, respectively) and in the CRC samples (66%, 53% and 81% of the cases, respectively) (P <0.01). Expression of AIMP1, AIMP2 or AIMP3 was not associated with clinicopathological parameters including differentiation, depth of invasion and TNM stage. The decreased expression of AIMP1, AIMP2 and AIMP3 in the GC and CRC tissues compared to the corresponding normal tissues suggested that downregulation of these proteins may be related to inactivation of the tumor suppressor functions of AIMP proteins and might play a role in the development of GC and CRC.
Collapse
Affiliation(s)
- Sung Soo Kim
- Departments of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Young Hur
- Departments of Obstetrics/Gynecology, The Catholic University of Korea, Seoul, Korea
| | - Yoo Ri Kim
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nam Jin Yoo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
25
|
Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol 2018; 111:400-414. [PMID: 29305884 DOI: 10.1016/j.ijbiomac.2017.12.157] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are the enzymes that catalyze the aminoacylation reaction by covalently linking an amino acid to its cognate tRNA in the first step of protein translation. Beyond this classical function, these enzymes are also known to have a role in several metabolic and signaling pathways that are important for cell viability. Study of these enzymes is of great interest to the researchers due to its pivotal role in the growth and survival of an organism. Further, unfolding the interesting structural and functional aspects of these enzymes in the last few years has qualified them as a potential drug target against various diseases. Here we review the classification, function, and the conserved as well the appended structural architecture of these enzymes in detail, including its association with multi-synthetase complexes. We also considered their role in human diseases in terms of mutations and autoantibodies against AARSs. Finally, we have discussed the available inhibitors against AARSs. This review offers comprehensive information on AARSs under a single canopy that would be a good inventory for researchers working in this area.
Collapse
|
26
|
Zhu XG, Chu ZJ, Ying SH, Feng MG. Lysyl-tRNA synthetase (Krs) acts a virulence factor of Beauveria bassiana by its vital role in conidial germination and dimorphic transition. Fungal Biol 2017; 121:956-965. [DOI: 10.1016/j.funbio.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/30/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023]
|
27
|
The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017; 9:nu9111176. [PMID: 29077002 PMCID: PMC5707648 DOI: 10.3390/nu9111176] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.
Collapse
|
28
|
HIV-1 Exploits a Dynamic Multi-aminoacyl-tRNA Synthetase Complex To Enhance Viral Replication. J Virol 2017; 91:JVI.01240-17. [PMID: 28814526 DOI: 10.1128/jvi.01240-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
Abstract
A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNALys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNALys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication.IMPORTANCE Human tRNALys3, the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNALys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNALys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNALys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function.
Collapse
|
29
|
Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nat Commun 2017; 8:732. [PMID: 28963468 PMCID: PMC5622079 DOI: 10.1038/s41467-017-00785-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/27/2017] [Indexed: 01/19/2023] Open
Abstract
Leucyl-tRNA synthetase (LRS) is known to function as leucine sensor in the mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the pathophysiological significance of its activity is not well understood. Here, we demonstrate that the leucine sensor function for mTORC1 activation of LRS can be decoupled from its catalytic activity. We identified compounds that inhibit the leucine-dependent mTORC1 pathway by specifically inhibiting the GTPase activating function of LRS, while not affecting the catalytic activity. For further analysis, we selected one compound, BC-LI-0186, which binds to the RagD interacting site of LRS, thereby inhibiting lysosomal localization of LRS and mTORC1 activity. It also effectively suppressed the activity of cancer-associated MTOR mutants and the growth of rapamycin-resistant cancer cells. These findings suggest new strategies for controlling tumor growth that avoid the resistance to existing mTOR inhibitors resulting from cancer-associated MTOR mutations.Leucyl-tRNA synthetase (LRS) is a leucine sensor of the mTORC1 pathway. Here, the authors identify inhibitors of the GTPase activating function of LRS, not affecting its catalytic activity, and demonstrate that the leucine sensor function of LRS can be a new target for mTORC1 inhibition.
Collapse
|
30
|
Arif A, Jia J, Halawani D, Fox PL. Experimental approaches for investigation of aminoacyl tRNA synthetase phosphorylation. Methods 2016; 113:72-82. [PMID: 27729295 DOI: 10.1016/j.ymeth.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of many aminoacyl tRNA synthetases (AARSs) has been recognized for decades, but the contribution of post-translational modification to their primary role in tRNA charging and decryption of genetic code remains unclear. In contrast, phosphorylation is essential for performance of diverse noncanonical functions of AARSs unrelated to protein synthesis. Phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) has been investigated extensively in our laboratory for more than a decade, and has served as an archetype for studies of other AARSs. EPRS is a constituent of the IFN-γ-activated inhibitor of translation (GAIT) complex that directs transcript-selective translational control in myeloid cells. Stimulus-dependent phosphorylation of EPRS is essential for its release from the parental multi-aminoacyl tRNA synthetase complex (MSC), for binding to other GAIT complex proteins, and for regulating the binding to target mRNAs. Importantly, phosphorylation is the common driving force for the context- and stimulus-dependent release, and non-canonical activity, of other AARSs residing in the MSC, for example, lysyl tRNA synthetase (KARS). Here, we describe the concepts and experimental methodologies we have used to investigate the influence of phosphorylation on the structure and function of EPRS. We suggest that application of these approaches will help to identify new functional phosphorylation event(s) in other AARSs and elucidate their possible roles in noncanonical activities.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dalia Halawani
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Young HJ, Lee JW, Kim S. Function of membranous lysyl-tRNA synthetase and its implication for tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1707-1713. [PMID: 27663887 DOI: 10.1016/j.bbapap.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that conjugate specific amino acids to their cognate tRNAs for protein synthesis. Besides their catalytic activity, recent studies have uncovered many additional functions of these enzymes through their interactions with diverse cellular factors. Among human ARSs, cytosolic lysyl-tRNA synthetase (KRS) is often highly expressed in cancer cells and tissues, and facilitates cancer cell migration and invasion through the interaction with the 67kDa laminin receptor on the plasma membrane. Specific modulation of this interaction by small molecule inhibitors has revealed a new way to control metastasis. Here, we summarize the pro-metastatic functions of KRS and their patho-physiological implications.
Collapse
Affiliation(s)
- Ho Jeon Young
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea; Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Weon Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
Yoon MS, Son K, Arauz E, Han JM, Kim S, Chen J. Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling. Cell Rep 2016; 16:1510-1517. [PMID: 27477288 DOI: 10.1016/j.celrep.2016.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022] Open
Abstract
Amino acid availability activates signaling by the mammalian target of rapamycin (mTOR) complex 1, mTORC1, a master regulator of cell growth. The class III PI-3-kinase Vps34 mediates amino acid signaling to mTORC1 by regulating lysosomal translocation and activation of the phospholipase PLD1. Here, we identify leucyl-tRNA synthetase (LRS) as a leucine sensor for the activation of Vps34-PLD1 upstream of mTORC1. LRS is necessary for amino acid-induced Vps34 activation, cellular PI(3)P level increase, PLD1 activation, and PLD1 lysosomal translocation. Leucine binding, but not tRNA charging activity of LRS, is required for this regulation. Moreover, LRS physically interacts with Vps34 in amino acid-stimulatable non-autophagic complexes. Finally, purified LRS protein activates Vps34 kinase in vitro in a leucine-dependent manner. Collectively, our findings provide compelling evidence for a direct role of LRS in amino acid activation of Vps34 via a non-canonical mechanism and fill a gap in the amino acid-sensing mTORC1 signaling network.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| | - Kook Son
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA
| | - Edwin Arauz
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA
| | - Jung Min Han
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 120-749, Republic of Korea; College of Pharmacy, Yonsei University, Incheon 406-840, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Genetic variants in multisynthetase complex genes are associated with DNA damage levels in Chinese populations. Mutat Res 2016; 786:8-13. [PMID: 26871430 DOI: 10.1016/j.mrfmmm.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/29/2015] [Accepted: 01/22/2016] [Indexed: 01/25/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) form a multisynthetase complex (MSC) and play an important role in the process of DNA damage repair. We hypothesized that genetic variants in key ARSs and AIMPs might regulate the DNA damage response. Therefore, we systematically screened 23 potentially functional polymorphisms in MSC genes and evaluated the association between the genetic variants and DNA damage levels in 307 subjects from three cities in southern, central and northern China (Zhuhai, Wuhan and Tianjin, respectively). We examined personal 24-h PM2.5 exposure levels and DNA damage levels in peripheral blood lymphocytes for each subject. We found that the variant allele of rs12199241 in AIMP3 was significantly associated with DNA damage levels (β=0.343, 95%CI: 0.133-0.554, P=0.001). Meanwhile, the results of rs5030754 in EPRS and rs3784929 in KARS indicated their suggestive roles in DNA damage processes (β=0.331, 95%CI: 0.062-0.599, P=0.016 for rs5030754; β=0.192, 95%CI: 0.016-0.368, P=0.033 for rs3784929, respectively). After multiple testing, rs12199241 was still significantly associated with DNA damage levels. Combined analysis of these three polymorphisms showed a significant allele-dosage association between the number of risk alleles and higher DNA damage levels (Ptrend<0.001). These findings indicate that genetic variants in MSC genes may account for PM2.5-modulated DNA damage levels in Chinese populations.
Collapse
|
34
|
Lee JH, You S, Hyeon DY, Kang B, Kim H, Park KM, Han B, Hwang D, Kim S. Comprehensive data resources and analytical tools for pathological association of aminoacyl tRNA synthetases with cancer. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav022. [PMID: 25824651 PMCID: PMC4377328 DOI: 10.1093/database/bav022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells have cytoplasmic and mitochondrial aminoacyl-tRNA synthetases (ARSs) that catalyze aminoacylation of tRNAs during protein synthesis. Despite their housekeeping functions in protein synthesis, recently, ARSs and ARS-interacting multifunctional proteins (AIMPs) have been shown to play important roles in disease pathogenesis through their interactions with disease-related molecules. However, there are lacks of data resources and analytical tools that can be used to examine disease associations of ARS/AIMPs. Here, we developed an Integrated Database for ARSs (IDA), a resource database including cancer genomic/proteomic and interaction data of ARS/AIMPs. IDA includes mRNA expression, somatic mutation, copy number variation and phosphorylation data of ARS/AIMPs and their interacting proteins in various cancers. IDA further includes an array of analytical tools for exploration of disease association of ARS/AIMPs, identification of disease-associated ARS/AIMP interactors and reconstruction of ARS-dependent disease-perturbed network models. Therefore, IDA provides both comprehensive data resources and analytical tools for understanding potential roles of ARS/AIMPs in cancers. Database URL:http://ida.biocon.re.kr/, http://ars.biocon.re.kr/
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungyong You
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Do Young Hyeon
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byeongsoo Kang
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyerim Kim
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyoung Mii Park
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byungwoo Han
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Daehee Hwang
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
35
|
Kumar M, Kumar SAP, Dimkovikj A, Baykal LN, Banton MJ, Outlaw MM, Polivka KE, Hellmann-Whitaker RA. Zinc is the molecular "switch" that controls the catalytic cycle of bacterial leucyl-tRNA synthetase. J Inorg Biochem 2014; 142:59-67. [PMID: 25450019 DOI: 10.1016/j.jinorgbio.2014.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The Escherichia coli (E. coli) leucyl-tRNA synthetase (LeuRS) enzyme is part of the aminoacyl-tRNA synthetase (aaRS) family. LeuRS is an essential enzyme that relies on specialized domains to facilitate the aminoacylation reaction. Herein, we have biochemically characterized a specialized zinc-binding domain 1 (ZN-1). We demonstrate that the ZN-1 domain plays a central role in the catalytic cycle of E. coli LeuRS. The ZN-1 domain, when associated with Zn(2+), assumes a rigid architecture that is stabilized by thiol groups from the residues C159, C176 and C179. When LeuRS is in the aminoacylation complex, these cysteine residues form an equilateral planar triangular configuration with Zn(2+), but when LeuRS transitions to the editing conformation, this geometric configuration breaks down. By generating a homology model of LeuRS while in the editing conformation, we conclude that structural changes within the ZN-1 domain play a central role in LeuRS's catalytic cycle. Additionally, we have biochemically shown that C159, C176 and C179 coordinate Zn(2+) and that this interaction is essential for leucylation to occur, but is not essential for deacylation. Furthermore, calculated Kd values indicate that the wild-type enzyme binds Zn(2+) to a greater extent than any of the mutant LeuRSs. Lastly, we have shown through secondary structural analysis of our LeuRS enzymes that Zn(2+) is an architectural cornerstone of the ZN-1 domain and that without its geometric coordination the domain collapses. We believe that future research on the ZN-1 domain may reveal a possible Zn(2+) dependent translocation mechanism for charged tRNA(Leu).
Collapse
Affiliation(s)
- Manonmani Kumar
- Department of Computer Science and Information Systems, Coastal Carolina University, 301 Allied Drive, Conway, SC 29526, USA
| | - Sathish A P Kumar
- Department of Computer Science and Information Systems, Coastal Carolina University, 301 Allied Drive, Conway, SC 29526, USA
| | - Aleksandar Dimkovikj
- Department of Chemistry and Physics, Coastal Carolina University, Smith Science Center, Room 216, 109 Chanticleer Dr. East, Conway, SC 29526, USA
| | - Layla N Baykal
- Department of Chemistry and Physics, Coastal Carolina University, Smith Science Center, Room 216, 109 Chanticleer Dr. East, Conway, SC 29526, USA
| | - Mallory J Banton
- Department of Chemistry and Physics, Coastal Carolina University, Smith Science Center, Room 216, 109 Chanticleer Dr. East, Conway, SC 29526, USA
| | - Maya M Outlaw
- Department of Chemistry and Physics, Coastal Carolina University, Smith Science Center, Room 216, 109 Chanticleer Dr. East, Conway, SC 29526, USA
| | - Kristen E Polivka
- Department of Chemistry and Physics, Coastal Carolina University, Smith Science Center, Room 216, 109 Chanticleer Dr. East, Conway, SC 29526, USA
| | - Rachel A Hellmann-Whitaker
- Department of Chemistry and Physics, Coastal Carolina University, Smith Science Center, Room 216, 109 Chanticleer Dr. East, Conway, SC 29526, USA.
| |
Collapse
|
36
|
Interaction of NS2 with AIMP2 facilitates the switch from ubiquitination to SUMOylation of M1 in influenza A virus-infected cells. J Virol 2014; 89:300-11. [PMID: 25320310 DOI: 10.1128/jvi.02170-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A viruses (IAVs) rely on host factors to support their life cycle, as viral proteins hijack or interact with cellular proteins to execute their functions. Identification and understanding of these factors would increase our knowledge of the molecular mechanisms manipulated by the viruses. In this study, we searched for novel binding partners of the influenza A virus NS2 protein, the nuclear export protein responsible for overcoming host range restriction, by a yeast two-hybrid screening assay and glutathione S-transferase-pulldown and coimmunoprecipitation assays and identified AIMP2, a potent tumor suppressor that usually functions to regulate protein stability, as one of the major NS2-binding candidates. We found that the presence of NS2 protected AIMP2 from ubiquitin-mediated degradation in NS2-transfected cells and AIMP2 functioned as a positive regulator of IAV replication. Interestingly, AIMP2 had no significant effect on NS2 but enhanced the stability of the matrix protein M1. Further, we provide evidence that AIMP2 recruitment switches the modification of M1 from ubiquitination to SUMOylation, which occurs on the same attachment site (K242) on M1 and thereby promotes M1-mediated viral ribonucleoprotein complex nuclear export to increase viral replication. Collectively, our results reveal a new mechanism of AIMP2 mediation of influenza virus replication. IMPORTANCE Although the ubiquitination of M1 during IAV infection has been observed, the precise modification site and the molecular consequences of this modification remain obscure. Here, we demonstrate for the first time that ubiquitin and SUMO compete for the same lysine (K242) on M1 and the interaction of NS2 with AIMP2 facilitates the switch of the M1 modification from ubiquitination to SUMOylation, thus increasing viral replication.
Collapse
|
37
|
Gurung PMS, Veerakumarasivam A, Williamson M, Counsell N, Douglas J, Tan WS, Feber A, Crabb SJ, Short SC, Freeman A, Powles T, Hoskin PJ, West CM, Kelly JD. Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer. Int J Cancer 2014; 136:709-20. [PMID: 24917520 DOI: 10.1002/ijc.29022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Abstract
The aim of this study was to test the utility of AIMP3, an upstream regulator of DNA damage response following genotoxic stress, as a clinical biomarker in muscle-invasive bladder cancer (MIBC). AIMP3 was identified from a meta-analysis of a global gene-expression dataset. AIMP3 protein expression was determined by immunohistochemistry on a customised bladder cancer tissue-microarray (TMA). The mechanism of gene silencing was probed using methylation-specific PCR. The association between AIMP3 expression, Tp53 transactivity and genomic stability was analysed. In vitro AIMP3 translocation to the nucleus in response to ionising radiation was demonstrated using immunofluorescence. Radiosensitisation effects of siRNA-mediated AIMP3-knockdown were measured using colony forming assays. TMAs derived from patients enrolled in BCON, a Phase III multicentre radiotherapy trial in bladder cancer (ISRCTN45938399) were used to evaluate the association between AIMP3 expression and survival. The prognostic value of AIMP3 expression was determined in a TMA derived from patients treated by radical cystectomy. Loss of AIMP3 expression was frequent in MIBC and associated with impaired Tp53 transactivity and genomic instability. AIMP3-knockdown was associated with an increase in radioresistance. Loss of AIMP3 expression was associated with survival in MIBC patients following radiotherapy (HR = 0.53; 95% CI: 0.36 to 0.78, p = 0.002) but was not prognostic in the cystectomy set. In conclusion, AIMP3 expression is lost in a subset of bladder cancers and is significantly predictive of survival following radiotherapy in MIBC patients.
Collapse
Affiliation(s)
- Pratik M S Gurung
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim JH, Lee JH, Park MC, Yoon I, Kim K, Lee M, Choi HS, Kim S, Han JM. AIMP1/p43 negatively regulates adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma. J Cell Sci 2014; 127:4483-93. [DOI: 10.1242/jcs.154930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipogenesis is known to be controlled by the concerted actions of transcription factors and co-regulators. However, little is known about the regulation mechanism of transcription factors that control adipogenesis. In addition, the adipogenic roles of translational factors remain unclear. Here, we show that aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), an auxiliary factor that is associated with a macromolecular tRNA synthetase complex, negatively regulates adipogenesis via a direct interaction with the DNA-binding domain of peroxisome proliferator-activated receptor γ (PPARγ). AIMP1 expression increased during adipocyte differentiation. Adipogenesis was augmented in AIMP1-deficient cells, as compared with control cells. AIMP1 exhibited high affinity for active PPARγ and interacted with the DNA-binding domain of PPARγ, thereby inhibiting its transcriptional activity. Thus, AIMP1 appears to function as a novel inhibitor of PPARγ that regulates adipocyte differentiation by preventing the transcriptional activation of PPARγ.
Collapse
|
39
|
Abstract
When compared to other conserved housekeeping protein families, such as ribosomal proteins, during the evolution of higher eukaryotes, aminoacyl-tRNA synthetases (aaRSs) show an apparent high propensity to add new sequences, and especially new domains. The stepwise emergence of those new domains is consistent with their involvement in a broad range of biological functions beyond protein synthesis, and correlates with the increasing biological complexity of higher organisms. These new domains have been extensively characterized based on their evolutionary origins and their sequence, structural, and functional features. While some of the domains are uniquely found in aaRSs and may have originated from nucleic acid binding motifs, others are common domain modules mediating protein-protein interactions that play a critical role in the assembly of the multi-synthetase complex (MSC). Interestingly, the MSC has emerged from a miniature complex in yeast to a large stable complex in humans. The human MSC consists of nine aaRSs (LysRS, ArgRS, GlnRS, AspRS, MetRS, IleRS, LeuRS, GluProRS, and bifunctional aaRs) and three scaffold proteins (AIMP1/p43, AIMP2/p38, and AIMP3/p18), and has a molecular weight of 1.5 million Dalton. The MSC has been proposed to have a functional dualism: facilitating protein synthesis and serving as a reservoir of non-canonical functions associated with its synthetase and non-synthetase components. Importantly, domain additions and functional expansions are not limited to the components of the MSC and are found in almost all aaRS proteins. From a structural perspective, multi-functionalities are represented by multiple conformational states. In fact, alternative conformations of aaRSs have been generated by various mechanisms from proteolysis to alternative splicing and posttranslational modifications, as well as by disease-causing mutations. Therefore, the metamorphosis between different conformational states is connected to the activation and regulation of the novel functions of aaRSs in higher eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33410, USA,
| | - Xiang-Lei Yang
- Department of Cancer Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA,
| |
Collapse
|
40
|
Guo M, Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 2013; 9:145-53. [PMID: 23416400 DOI: 10.1038/nchembio.1158] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 12/25/2022]
Abstract
Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. Although these new functions were thought to be 'moonlighting activities', many are as critical for cellular homeostasis as their activity in translation. New roles have been associated with their cytoplasmic forms as well as with nuclear and secreted extracellular forms that affect pathways for cardiovascular development and the immune response and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. New architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. Although a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid-binding site for another purpose.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
41
|
Lee SW, Kim G, Kim S. Aminoacyl-tRNA synthetase-interacting multi-functional protein 1/p43: an emerging therapeutic protein working at systems level. Expert Opin Drug Discov 2013; 3:945-57. [PMID: 23484969 DOI: 10.1517/17460441.3.8.945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Drug discovery programs are based on the presumption of one drug-one action-one disease, which is frustrated by the complexity of biological systems. Because the aberration of a single gene often leads to multiple pathological symptoms, we should understand the functional network of the disease-related proteins to develop effective therapy. OBJECTIVES To describe how activities of proteins are reflected in phenotypes and their pathological implications using aminoacyl-tRNA synthetase-interacting multi-functional protein 1 (AIMP1). METHODS The physiological activities of AIMP1 are unveiled through in vitro approaches and in vivo phenotyptic investigation. Bioinformatics tool was used to combine all AIMP1-target proteins. CONCLUSION Although a cytosolic protein, AIMP1 can be secreted as a cytokine to control immune response, angiogenesis and wound healing, and as a glucagon-like hormone for glucose homeostasis. It is involved in the regulation of autoimmune control and TGF-β signaling within the cells. AIMP1-deficient mice developed multiple phenotypes in immune systems, metabolism and body growth. The therapeutic potential of this multi-functional protein with associated biological activities are discussed.
Collapse
Affiliation(s)
- Sang Won Lee
- Seoul National University of Education, Department of Science and Technology Education for Life, 1650, Seocho-dong, Seocho-gu, Seoul 137-742, Korea
| | | | | |
Collapse
|
42
|
Citric acid cycle and the origin of MARS. Trends Biochem Sci 2013; 38:222-8. [PMID: 23415030 DOI: 10.1016/j.tibs.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/01/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The vertebrate multiaminoacyl tRNA synthetase complex (MARS) is an assemblage of nine aminoacyl tRNA synthetases (ARSs) and three non-synthetase scaffold proteins, aminoacyl tRNA synthetase complex-interacting multifunctional protein (AIMP)1, AIMP2, and AIMP3. The evolutionary origin of the MARS is unclear, as is the significance of the inclusion of only nine of 20 tRNA synthetases. Eight of the nine amino acids corresponding to ARSs of the MARS are derived from two citric acid cycle intermediates, α-ketoglutatrate and oxaloacetate. We propose that the metabolic link with the citric acid cycle, the appearance of scaffolding proteins AIMP2 and AIMP3, and the subsequent disappearance of the glyoxylate cycle, together facilitated the origin of the MARS in a common ancestor of metazoans and choanoflagellates.
Collapse
|
43
|
Ku MJ, Lee SY. Contributions of aminoacyl-tRNA synthetase-interacting multifunctional protein-3 to mammalian translation initiation. Amino Acids 2013; 44:1241-5. [PMID: 23306449 DOI: 10.1007/s00726-012-1447-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) stabilizes and protects mammalian methionyl-tRNA synthetase (MRS) and eukaryotic initiation factor 2 subunit gamma (eIF2γ), factors involved in the formation and the delivery of Met-tRNA(i)Met respectively, through the binding interactions. Due to the protections that MRS and eIF2γ are provided from the interactions with AIMP3, cellular levels of MRS and eIF2γ may be able to be maintained high enough for their canonical and/or non-canonical functions.
Collapse
Affiliation(s)
- Min Jeong Ku
- Department of Life Science, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, 461-701, Kyeonggi-Do, Korea
| | | |
Collapse
|
44
|
Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:119-44. [PMID: 24072587 DOI: 10.1007/128_2013_479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction occurs transiently or stably when two or more proteins bind together to mediate a wide range of cellular processes such as protein modification, signal transduction, protein trafficking, and structural folding. The macromolecules involved in protein biosynthesis such as aminoacyl-tRNA synthetase (ARS) have a number of protein-protein interactions. The mammalian multi-tRNA synthetase complex (MSC) consists of eight different enzymes: EPRS, IRS, LRS, QRS, MRS, KRS, RRS, and DRS, and three auxiliary proteins: AIMP1/p43, AIMP2/p38, and AIMP/p18. The distinct ARS proteins are also connected to diverse protein networks to carry out biological functions. In this chapter we first show the protein networks of the entire MSC and explain how MSC components interact with or can regulate other proteins. Finally, it is pointed out that the understanding of protein-protein interaction mechanism will provide insight to potential therapeutic application for diseases related to the MSC network.
Collapse
|
45
|
Abstract
Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.
Collapse
|
46
|
Schwenzer H, Zoll J, Florentz C, Sissler M. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:247-92. [PMID: 23824528 DOI: 10.1007/128_2013_457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are considered as the powerhouse of eukaryotic cells. They host several central metabolic processes fueling the oxidative phosphorylation pathway (OXPHOS) that produces ATP from its precursors ADP and inorganic phosphate Pi (PPi). The respiratory chain complexes responsible for the OXPHOS pathway are formed from complementary sets of protein subunits encoded by the nuclear genome and the mitochondrial genome, respectively. The expression of the mitochondrial genome requires a specific and fully active translation machinery from which aminoacyl-tRNA synthetases (aaRSs) are key actors. Whilst the macromolecules involved in mammalian mitochondrial translation have been under investigation for many years, there has been an explosion of interest in human mitochondrial aaRSs (mt-aaRSs) since the discovery of a large (and growing) number of mutations in these genes that are linked to a variety of neurodegenerative disorders. Herein we will review the present knowledge on mt-aaRSs in terms of their biogenesis, their connection to mitochondrial respiration, i.e., the respiratory chain (RC) complexes, and to the mitochondrial translation machinery. The pathology-related mutations detected so far are described, with special attention given to their impact on mt-aaRSs biogenesis, functioning, and/or subsequent activities. The collected data to date shed light on the diverse routes that are linking primary molecular possible impact of a mutation to its phenotypic expression. It is envisioned that a variety of mechanisms, inside and outside the translation machinery, would play a role on the heterogeneous manifestations of mitochondrial disorders.
Collapse
Affiliation(s)
- Hagen Schwenzer
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC, 15 rue René Descartes, 67084, Strasbourg Cedex, France,
| | | | | | | |
Collapse
|
47
|
Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M. Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 2012; 49:30-42. [PMID: 23159739 DOI: 10.1016/j.molcel.2012.10.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/13/2012] [Accepted: 10/09/2012] [Indexed: 12/25/2022]
Abstract
Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207 phosphorylation provokes a new conformer of LysRS that inactivates its translational function but activates its transcriptional function. The crystal structure of an MSC subcomplex established that LysRS is held in the MSC by binding to the N terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap(4)A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription.
Collapse
Affiliation(s)
- Yifat Ofir-Birin
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kang T, Kwon NH, Lee JY, Park MC, Kang E, Kim HH, Kang TJ, Kim S. AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol 2012; 423:475-81. [PMID: 22867704 DOI: 10.1016/j.jmb.2012.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) are nonenzymatic scaffolding proteins that comprise multisynthetase complex (MSC) with nine aminoacyl-tRNA synthetases in higher eukaryotes. Among the three AIMPs, AIMP3/p18 is strongly anchored to methionyl-tRNA synthetase (MRS) in the MSC. MRS attaches methionine (Met) to initiator tRNA (tRNA(i)(Met)) and plays an important role in translation initiation. It is known that AIMP3 is dispatched to nucleus or nuclear membrane to induce DNA damage response or senescence; however, the role of AIMP3 in translation as a component of MSC and the meaning of its interaction with MRS are still unclear. Herein, we observed that AIMP3 specifically interacted with Met-tRNA(i)(Met)in vitro, while it showed little or reduced interaction with unacylated or lysine-charged tRNA(i)(Met). In addition, AIMP3 discriminates Met-tRNA(i)(Met) from Met-charged elongator tRNA based on filter-binding assay. Pull-down assay revealed that AIMP3 and MRS had noncompetitive interaction with eukaryotic initiation factor 2 (eIF2) γ subunit (eIF2γ), which is in charge of binding with Met-tRNA(i)(Met) for the delivery of Met-tRNA(i)(Met) to ribosome. AIMP3 recruited active eIF2γ to the MRS-AIMP3 complex, and the level of Met-tRNA(i)(Met) bound to eIF2 complex was reduced by AIMP3 knockdown resulting in reduced protein synthesis. All these results suggested the novel function of AIMP3 as a critical mediator of Met-tRNA(i)(Met) transfer from MRS to eIF2 complex for the accurate and efficient translation initiation.
Collapse
Affiliation(s)
- Taehee Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim DG, Choi JW, Lee JY, Kim H, Oh YS, Lee JW, Tak YK, Song JM, Razin E, Yun S, Kim S. Interaction of two translational components, lysyl‐tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin‐dependent cell migration. FASEB J 2012; 26:4142-59. [DOI: 10.1096/fj.12-207639] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Dae Gyu Kim
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
| | - Jin Woo Choi
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jin Young Lee
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
| | - Hyerim Kim
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
| | - Young Sun Oh
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
| | - Jung Weon Lee
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| | - Yu Kyung Tak
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| | - Joon Myong Song
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| | - Ehud Razin
- Department of Biochemistry and Molecular BiologyThe Hebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Seok‐Hyun Yun
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sunghoon Kim
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| |
Collapse
|
50
|
Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci U S A 2011; 108:19635-40. [PMID: 22106287 DOI: 10.1073/pnas.1103922108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian methionyl-tRNA synthetase (MRS) plays an essential role in initiating translation by transferring Met to initiator tRNA (tRNA(i)(Met)). MRS also provides a cytosolic anchoring site for aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3)/p18, a potent tumor suppressor that is translocated to the nucleus for DNA repair upon DNA damage. However, the mechanism by which this enzyme mediates these two seemingly unrelated functions is unknown. Here we demonstrate that AIMP3 is released from MRS by UV irradiation-induced stress. Dissociation was induced by phosphorylation of MRS at Ser662 by general control nonrepressed-2 (GCN2) following UV irradiation. Substitution of Ser662 to Asp (S662D) induced a conformational change in MRS and significantly reduced its interaction with AIMP3. This mutant possessed significantly reduced MRS catalytic activity because of loss of tRNA(Met) binding, resulting in down-regulation of global translation. According to the Met incorporation assay using stable HeLa cells expressing MRS S662A or eukaryotic initiation factor-2 subunit-α (eIF2α) S51A, inactivation of GCN2-induced phosphorylation at eIF2α or MRS augmented the role of the other, suggesting a cross-talk between MRS and eIF2α for efficient translational inhibition. This work reveals a unique mode of regulation of global translation as mediated by aminoacyl-tRNA synthetase, specifically MRS, which we herein identified as a previously unidentified GCN2 substrate. In addition, our research suggests a dual role for MRS: (i) as a coregulator with eIF2α for GCN2-mediated translational inhibition; and (ii) as a coupler of translational inhibition and DNA repair following DNA damage by releasing bound tumor suppressor AIMP3 for its nuclear translocation.
Collapse
|