1
|
Abassi W, Ouerghi N, Muscella A, Marsigliante S, Feki M, Bouassida A. Systematic Review: Does Exercise Training Influence Ghrelin Levels? Int J Mol Sci 2025; 26:4753. [PMID: 40429895 DOI: 10.3390/ijms26104753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Ghrelin, a gastric-derived peptide, regulates appetite, food intake, and energy homeostasis. Body weight plays a crucial role in modulating circulating ghrelin levels. Since exercise training is one of the most valuable tools for controlling body weight, it is relevant to consider whether exercise can influence total ghrelin secretion. This study aims to perform a systematic review of the effect of acute/chronic exercise on plasma ghrelin levels. An extensive literature search was carried out on various databases, including PubMed, ScienceDirect, and Google Scholar. The search was conducted using English keywords such as acute-exercise, transient-exercise, exercise, chronic-exercise, training, physical-activity, physical-training, exercise training, and total-ghrelin, ghrelin, appetite-related-peptides, gastrointestinal-peptides, gastrointestinal-hormones, and appetite-regulating-hormone. Initially, 2104 studies were identified. After evaluating study quality, data from 61 relevant studies were extracted for inclusion in this review. Most studies indicated that short-term acute aerobic exercise did not affect total ghrelin levels regardless of exercise intensity, characteristics, or growth hormone (GH) secretion. However, long and very-long aerobic/chronic exercise increased total ghrelin levels, mainly in overweight/obese individuals. Acute/chronic exercise may differentially influence total ghrelin secretion. Short-term acute aerobic exercise induces stable plasma ghrelin concentrations, independent of GH secretion. Long-term aerobic training increased its levels mainly in overweight/obese individuals through body composition and oxidative stress reduction. Additionally, total ghrelin secretion is more sensitive to exercise/training duration than exercise/training intensity.
Collapse
Affiliation(s)
- Wissal Abassi
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01), High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia
| | - Nejmeddine Ouerghi
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01), High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Rabta Hospital, LR99ES11, Tunis 1007, Tunisia
- High Institute of Sport and Physical Education of Gafsa, University of Gafsa, Gafsa 2100, Tunisia
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Moncef Feki
- Faculty of Medicine of Tunis, University of Tunis El Manar, Rabta Hospital, LR99ES11, Tunis 1007, Tunisia
| | - Anissa Bouassida
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01), High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef 7100, Tunisia
| |
Collapse
|
2
|
Shiimura Y, Kojima M, Sato T. How the ghrelin receptor recognizes the acyl-modified orexigenic hormone. Front Mol Neurosci 2025; 18:1549366. [PMID: 40260011 PMCID: PMC12009760 DOI: 10.3389/fnmol.2025.1549366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Ghrelin, discovered in 1999 as an endogenous ligand of the growth hormone secretagogue receptor (now known as the ghrelin receptor), is a peptide hormone with diverse physiological activities, such as stimulation of growth hormone release, increased appetite, fat accumulation, thermoregulation, and cardioprotection. As a distinctive feature, ghrelin needs to undergo octanoylation, a specific acyl modification, to exert its biological activities. Although the ghrelin receptor specifically recognizes this modification, the underlying molecular mechanism had remained unclear for decades. Recent advancements in structural biology have facilitated the elucidation of this recognition mechanism 25 years after ghrelin's discovery. This review highlights the structural basis of ghrelin octanoylation, particularly emphasizing the mechanism by which the ghrelin receptor recognizes this acyl-modified hormone.
Collapse
Affiliation(s)
- Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| |
Collapse
|
3
|
Ma Y, Yan Q, Wang P, Guo W, Yu L. Therapeutic potential of ghrelin/GOAT/GHSR system in gastrointestinal disorders. Front Nutr 2024; 11:1422431. [PMID: 39246401 PMCID: PMC11380557 DOI: 10.3389/fnut.2024.1422431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
5
|
Kaneko K, Taniguchi E, Funatsu Y, Nakamura Y, Iwakura H, Ohinata K. Human milk-specific fat components enhance the secretion of ghrelin by MGN3-1 cells. Biosci Biotechnol Biochem 2024; 88:671-678. [PMID: 38453432 DOI: 10.1093/bbb/zbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Triacylglycerols (TAGs) are a major fat component in human milk. Since gastric lipase produces 1,2-diacylglycerol from TAGs, we focused on the bioactivity of human milk-derived diacylglycerols in stomach cells. Ghrelin is produced in the stomach and acts as an important regulator of growth hormone secretion and energy homeostasis. In this study, we showed that 1-oleoyl-2-palmitoylglycerol (OP) increased ghrelin secretion, whereas 1,3-dioleoyl-2-palmitoylglycerol (OPO), a major component of human milk TAGs, did not increase ghrelin secretion in the ghrelin-secreting cell line, MGN3-1. Therefore, diacylglycerol OP may directly contribute to the regulation of ghrelin secretion. We also found that 2-palmitoylglycerol and 1- and 2-oleoylglycerol increased ghrelin secretion. Finally, we demonstrated that intracellular cAMP levels and preproghrelin and ghrelin O-acyl transferase expression levels were enhanced by OP treatment in MGN3-1 cells. This may represent an example of a novel mother-infant interaction mediated by fat components derived from human breast milk.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Eriko Taniguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yui Funatsu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Yoshitaka Nakamura
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
7
|
Kras K, Ropka-Molik K, Muszyński S, Arciszewski MB. Expression of Genes Encoding Selected Orexigenic and Anorexigenic Peptides and Their Receptors in the Organs of the Gastrointestinal Tract of Calves and Adult Domestic Cattle ( Bos taurus taurus). Int J Mol Sci 2023; 25:533. [PMID: 38203717 PMCID: PMC10779135 DOI: 10.3390/ijms25010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The regulation of food intake occurs at multiple levels, and two of the components of this process are orexigenic and anorexigenic peptides, which stimulate or inhibit appetite, respectively. The study of the function of these compounds in domestic cattle is essential for production efficiency, animal welfare, and health, as well as for economic benefits, environmental protection, and the contribution to a better understanding of physiological aspects that can be applied to other species. In this study, the real-time PCR method was utilized to determine the expression levels of GHRL, GHSR, SMIM20, GPR173, LEP, LEPR, and NUCB2 (which encode ghrelin, its receptor, phoenixin-14, its receptor, leptin, its receptor, and nesfatin-1, respectively) in the gastrointestinal tract (GIT) of Polish Holstein-Friesian breed cattle. In all analyzed GIT segments, mRNA for all the genes was present in both age groups, confirming their significance in these tissues. Gene expression levels varied distinctly across different GIT segments and between young and mature subjects. The differences between calves and adults were particularly pronounced in areas such as the forestomachs, ileum, and jejunum, indicating potential changes in peptides regulating food intake based on the developmental phase. In mature individuals, the forestomachs predominantly displayed an increase in GHRL expression, while the intestines had elevated levels of GHSR, GPR173, LEP, and NUCB2. In contrast, the forestomachs in calves showed upregulated expressions of LEP, LEPR, and NUCB2, highlighting the potential importance of peptides from these genes in bovine forestomach development.
Collapse
Affiliation(s)
- Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 St., 20-950 Lublin, Poland;
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St., 32-083 Balice, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 St., 20-950 Lublin, Poland;
| |
Collapse
|
8
|
Iwakura H, Ensho T, Ueda Y. Desacyl-ghrelin, not just an inactive form of ghrelin?-A review of current knowledge on the biological actions of desacyl-ghrelin. Peptides 2023:171050. [PMID: 37392995 DOI: 10.1016/j.peptides.2023.171050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Desacyl-ghrelin is a form of ghrelin which lacks acyl-modification of the third serine residue of ghrelin. Originally, desacyl-ghrelin was considered to be just an inactive form of ghrelin. More recently, however, it has been suggested to have various biological activities, including control of food intake, growth hormone, glucose metabolism, and gastric movement, and is involved in cell survival. In this review, we summarize the current knowledge of the biological actions of desacyl-ghrelin and the proposed mechanisms by which it exerts the effects.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan.
| | - Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| |
Collapse
|
9
|
Perelló M, Dickson SL, Zigman JM, Leggio L, The Ghrelin Nomenclature Consensus Group. Toward a consensus nomenclature for ghrelin, its non-acylated form, liver expressed antimicrobial peptide 2 and growth hormone secretagogue receptor. J Neuroendocrinol 2023; 35:e13224. [PMID: 36580314 PMCID: PMC10078427 DOI: 10.1111/jne.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The stomach-derived octanoylated peptide ghrelin was discovered in 1999 and recognized as an endogenous agonist of the growth hormone secretagogue receptor (GHSR). Subsequently, ghrelin has been shown to play key roles in controlling not only growth hormone secretion, but also a variety of other physiological functions including, but not limited to, food intake, reward-related behaviors, glucose homeostasis and gastrointestinal tract motility. Importantly, a non-acylated form of ghrelin, desacyl-ghrelin, can also be detected in biological samples. Desacyl-ghrelin, however, does not bind to GHSR at physiological levels, and its physiological role has remained less well-characterized than that of ghrelin. Ghrelin and desacyl-ghrelin are currently referred to in the literature using many different terms, highlighting the need for a consistent nomenclature. The variability of terms used to designate ghrelin can lead not only to confusion, but also to miscommunication, especially for those who are less familiar with the ghrelin literature. Thus, we conducted a survey among experts who have contributed to the ghrelin literature aiming to identify whether a consensus may be reached. Based on the results of this consensus, we propose using the terms "ghrelin" and "desacyl-ghrelin" to refer to the hormone itself and its non-acylated form, respectively. Based on the results of this consensus, we further propose using the terms "GHSR" for the receptor, and "LEAP2" for liver-expressed antimicrobial peptide 2, a recently recognized endogenous GHSR antagonist/inverse agonist.
Collapse
Affiliation(s)
- Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC‐PBA)La PlataArgentina
| | - Suzanne L. Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal MedicineUT Southwestern Medical CenterDallasTXUSA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological ResearchNational Institutes of HealthBaltimoreMDUSA
| | | |
Collapse
|
10
|
Ma Y, Zhang H, Guo W, Yu L. Potential role of ghrelin in the regulation of inflammation. FASEB J 2022; 36:e22508. [PMID: 35983825 DOI: 10.1096/fj.202200634r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Several diseases are caused or progress due to inflammation. In the past few years, accumulating evidence suggests that ghrelin, a gastric hormone of 28-amino acid residue length, exerts protective effects against inflammation by modulating the related pathways. This review focuses on ghrelin's anti-inflammatory and potential therapeutic effects in neurological, cardiovascular, respiratory, hepatic, gastrointestinal, and kidney disorders. Ghrelin significantly alleviates excessive inflammation and reduces damage to different target organs mainly by reducing the secretion of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and inhibiting the nuclear factor kappa-B (NF-κB) and NLRP3 inflammasome signaling pathways. Ghrelin also regulates inflammation and apoptosis through the p38 MAPK/c-Jun N-terminal kinase (JNK) signaling pathway; restores cerebral microvascular integrity, and attenuates vascular leakage. Ghrelin activates the phosphoInositide-3 kinase (PI3K)/protein kinase B (Akt) pathway and inhibits inflammatory responses in cardiovascular diseases and acute kidney injury. Some studies show that ghrelin exacerbates colonic and intestinal manifestations of colitis. Interestingly, some inflammatory states, such as non-alcoholic steatohepatitis, inflammatory bowel diseases, and chronic kidney disease, are often associated with high ghrelin levels. Thus, ghrelin may be a potential new therapeutic target for inflammation-related diseases.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haifeng Zhang
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
11
|
Parikh S, Parikh R, Michael K, Bikovski L, Barnabas G, Mardamshina M, Hemi R, Manich P, Goldstein N, Malcov-Brog H, Ben-Dov T, Glaich O, Liber D, Bornstein Y, Goltseker K, Ben-Bezalel R, Pavlovsky M, Golan T, Spitzer L, Matz H, Gonen P, Percik R, Leibou L, Perluk T, Ast G, Frand J, Brenner R, Ziv T, Khaled M, Ben-Eliyahu S, Barak S, Karnieli-Miller O, Levin E, Gepner Y, Weiss R, Pfluger P, Weller A, Levy C. Food-seeking behavior is triggered by skin ultraviolet exposure in males. Nat Metab 2022; 4:883-900. [PMID: 35817855 PMCID: PMC9314261 DOI: 10.1038/s42255-022-00587-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/16/2022] [Indexed: 01/03/2023]
Abstract
Sexual dimorphisms are responsible for profound metabolic differences in health and behavior. Whether males and females react differently to environmental cues, such as solar ultraviolet (UV) exposure, is unknown. Here we show that solar exposure induces food-seeking behavior, food intake, and food-seeking behavior and food intake in men, but not in women, through epidemiological evidence of approximately 3,000 individuals throughout the year. In mice, UVB exposure leads to increased food-seeking behavior, food intake and weight gain, with a sexual dimorphism towards males. In both mice and human males, increased appetite is correlated with elevated levels of circulating ghrelin. Specifically, UVB irradiation leads to p53 transcriptional activation of ghrelin in skin adipocytes, while a conditional p53-knockout in mice abolishes UVB-induced ghrelin expression and food-seeking behavior. In females, estrogen interferes with the p53-chromatin interaction on the ghrelin promoter, thus blocking ghrelin and food-seeking behavior in response to UVB exposure. These results identify the skin as a major mediator of energy homeostasis and may lead to therapeutic opportunities for sex-based treatments of endocrine-related diseases.
Collapse
Affiliation(s)
- Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Michael
- Department of Human Services, The Max Stern Yezreel Valley Academic College, Yezreel Valley, Israel
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Tel Aviv University, Tel Aviv, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - Georgina Barnabas
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mariya Mardamshina
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rina Hemi
- Endocrine Service Unit, Sheba Medical Center Hospital, Tel Hashomer, Ramat Gan, Israel
| | - Paulee Manich
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Goldstein
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tom Ben-Dov
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology, Head and Neck surgery, Meir Medical Center, Kfar Saba, Israel
| | - Ohad Glaich
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Liber
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Bornstein
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Koral Goltseker
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Roy Ben-Bezalel
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Mor Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel
| | - Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liron Spitzer
- Division of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel
| | - Hagit Matz
- Division of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel
- Phototherapy Unit, Assuta Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pinchas Gonen
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Percik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Lior Leibou
- Department of Plastic and Reconstructive Surgery, E. Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, E. Wolfson Medical Center, Holon, Israel
| | - Gil Ast
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, E. Wolfson Medical Center, Holon, Israel
| | - Ronen Brenner
- Institute of Oncology, E. Wolfson Medical Center, Holon, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion, Haifa, Israel
| | - Mehdi Khaled
- INSERM 1279, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Shamgar Ben-Eliyahu
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orit Karnieli-Miller
- Department of Medical Education, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Yftach Gepner
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Ram Weiss
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Medical Center and Technion School of Medicine, Haifa, Israel
| | - Paul Pfluger
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Aron Weller
- Department of Psychology and the Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Thomas AS, Sassi M, Angelini R, Morgan AH, Davies JS. Acylation, a Conductor of Ghrelin Function in Brain Health and Disease. Front Physiol 2022; 13:831641. [PMID: 35845996 PMCID: PMC9280358 DOI: 10.3389/fphys.2022.831641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Acyl-ghrelin (AG) is an orexigenic hormone that has a unique octanoyl modification on its third serine residue. It is often referred to as the “hunger hormone” due to its involvement in stimulating food intake and regulating energy homeostasis. The discovery of the enzyme ghrelin-O-acyltransferase (GOAT), which catalyses ghrelin acylation, provided further insights into the relevance of this lipidation process for the activation of the growth hormone secretagogue receptor (GHS-R) by acyl-ghrelin. Although acyl-ghrelin is predominantly linked with octanoic acid, a range of saturated fatty acids can also bind to ghrelin possibly leading to specific functions. Sources of ghrelin acylation include beta-oxidation of longer chain fatty acids, with contributions from fatty acid synthesis, the diet, and the microbiome. In addition, both acyl-ghrelin and unacyl-ghrelin (UAG) have feedback effects on lipid metabolism which in turn modulate their levels. Recently we showed that whilst acyl-ghrelin promotes adult hippocampal neurogenesis and enhances memory function, UAG inhibits these processes. As a result, we postulated that the circulating acyl-ghrelin:unacyl-ghrelin (AG:UAG) ratio might be an important regulator of neurogenesis and cognition. In this review, we discuss emerging evidence behind the relevance of ghrelin acylation in the context of brain physiology and pathology, as well as the current challenges of identifying the provenance of the acyl moiety.
Collapse
|
13
|
Chen Y, Han X, Wang L, Wen Q, Li L, Sun L, Chen Q. Multiple roles of ghrelin in breast cancer. Int J Biol Markers 2022; 37:241-248. [PMID: 35763463 DOI: 10.1177/03936155221110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast cancer is one of the most threatening malignant tumors in women worldwide; hence, investigators are continually performing novel research in this field. However, an accurate prediction of its prognosis and postoperative recovery remains difficult. The severity of breast cancer is patient-specific and affected by several health factors; thus, unknown mechanisms may affect its progression. This article analyzes existing literature on breast cancer, ranging from the discovery of ghrelin to its present use, and aims to provide a reference for future research into breast cancer mechanisms and treatment-plan improvement. Various parts of ghrelin have been associated with breast cancer by direct or indirect evidence. The ghrelin system may encompass the direction of expanding breast cancer treatment methods and prognostic indicators. Therefore, we compiled almost all studies on the relationship between the ghrelin system and breast cancer, including unacylated ghrelin, its GHRL gene, ghrelin O-acyltransferase, the receptor growth hormone secretagogue receptor, and several splice variants of ghrelin to lay the foundation for future research.
Collapse
Affiliation(s)
- Yiding Chen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Wang
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liufu Li
- Pengshan District People's Hospital of Meishan City, Meishan, China
| | - Lisha Sun
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Sassi M, Morgan AH, Davies JS. Ghrelin Acylation-A Post-Translational Tuning Mechanism Regulating Adult Hippocampal Neurogenesis. Cells 2022; 11:cells11050765. [PMID: 35269387 PMCID: PMC8909677 DOI: 10.3390/cells11050765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Adult hippocampal neurogenesis—the generation of new functional neurones in the adult brain—is impaired in aging and many neurodegenerative disorders. We recently showed that the acylated version of the gut hormone ghrelin (acyl-ghrelin) stimulates adult hippocampal neurogenesis while the unacylated form of ghrelin inhibits it, thus demonstrating a previously unknown function of unacyl-ghrelin in modulating hippocampal plasticity. Analysis of plasma samples from Parkinson’s disease patients with dementia demonstrated a reduced acyl-ghrelin:unacyl-ghrelin ratio compared to both healthy controls and cognitively intact Parkinson’s disease patients. These data, from mouse and human studies, suggest that restoring acyl-ghrelin signalling may promote the activation of pathways to support memory function. In this short review, we discuss the evidence for ghrelin’s role in regulating adult hippocampal neurogenesis and the enzymes involved in ghrelin acylation and de-acylation as targets to treat mood-related disorders and dementia.
Collapse
|
15
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Deschaine SL, Farokhnia M, Gregory-Flores A, Zallar LJ, You ZB, Sun H, Harvey DM, Marchette RCN, Tunstall BJ, Mani BK, Moose JE, Lee MR, Gardner E, Akhlaghi F, Roberto M, Hougland JL, Zigman JM, Koob GF, Vendruscolo LF, Leggio L. A closer look at alcohol-induced changes in the ghrelin system: novel insights from preclinical and clinical data. Addict Biol 2022; 27:e13033. [PMID: 33908131 PMCID: PMC8548413 DOI: 10.1111/adb.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/16/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy-drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post-mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non-alcoholic sucrose solution. Acyl- and total-ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post-mortem tissue. In rats, alcohol decreased acyl-ghrelin, but not des-acyl-ghrelin, in both Ghsr knockout and wild-type rats. No dose-dependent effects of alcohol were observed on acyl-ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.
Collapse
Affiliation(s)
- Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Lia J. Zallar
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Hui Sun
- Clinical Core Laboratory, Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Deon M. Harvey
- Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Renata C. N. Marchette
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Brendan J. Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Bharath K. Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jacob E. Moose
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA,Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Mary R. Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Eliot Gardner
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - James L. Hougland
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA,Department of Chemistry, Syracuse University, Syracuse, New York, USA,BioInspired Syracuse, Syracuse University, Syracuse, New York, USA
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA,Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA,Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Targeting the Ghrelin Receptor as a Novel Therapeutic Option for Epilepsy. Biomedicines 2021; 10:biomedicines10010053. [PMID: 35052733 PMCID: PMC8773216 DOI: 10.3390/biomedicines10010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R.
Collapse
|
18
|
Davis TR, Pierce MR, Novak SX, Hougland JL. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol 2021; 11:210080. [PMID: 34315274 PMCID: PMC8316800 DOI: 10.1098/rsob.210080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Collapse
Affiliation(s)
- Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Mariah R Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Sadie X Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA.,BioInspired Syracuse, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|
19
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Nunez‐Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf) 2021; 231:e13588. [PMID: 33249751 DOI: 10.1111/apha.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.
Collapse
Affiliation(s)
- Maria Nunez‐Salces
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Hui Li
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Christine Feinle‐Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
- Intestinal Nutrient Sensing Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Amanda J. Page
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| |
Collapse
|
21
|
Zhang Y, Zhu MZ, Qin XH, Zeng YN, Zhu XH. The Ghrelin/Growth Hormone Secretagogue Receptor System Is Involved in the Rapid and Sustained Antidepressant-Like Effect of Paeoniflorin. Front Neurosci 2021; 15:631424. [PMID: 33664648 PMCID: PMC7920966 DOI: 10.3389/fnins.2021.631424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental illness affecting people worldwide. Although significant progress has been made in the development of therapeutic agents to treat this condition, fewer than half of all patients respond to currently available antidepressants, highlighting the urgent need for the development of new classes of antidepressant drugs. Here, we found that paeoniflorin (PF) produced rapid and sustained antidepressant-like effects in multiple mouse models of depression, including the forced swimming test and exposure to chronic mild stress (CMS). Moreover, PF decreased the bodyweight of mice without affecting food intake and glucose homeostasis, and also reduced the plasma levels of total ghrelin and the expression of ghrelin O-acyltransferase in the stomach; however, the plasma levels of ghrelin and the ghrelin/total ghrelin ratio were unaffected. Furthermore, PF significantly increased the expression of growth hormone secretagogue receptor 1 alpha (GHSR1α, encoded by the Ghsr gene) in the intestine, whereas the levels of GHSR1α in the brain were only marginally downregulated following subchronic PF treatment. Finally, the genetic deletion of Ghsr attenuated the antidepressant-like effects of PF in mice exposed to CMS. These results suggested that increased GHSR1α expression in the intestine mediates the antidepressant-like effects of PF. Understanding peripheral ghrelin/GHSR signaling may provide new insights for the screening of antidepressant drugs that produce fast-acting and sustained effects.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Min-Zhen Zhu
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Xi-He Qin
- Eusyn Medical Technology Company, Guangzhou, China
| | - Yuan-Ning Zeng
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Xin-Hong Zhu
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Nunez-Salces M, Li H, Feinle-Bisset C, Young RL, Page AJ. Nutrient-sensing components of the mouse stomach and the gastric ghrelin cell. Neurogastroenterol Motil 2020; 32:e13944. [PMID: 32666613 DOI: 10.1111/nmo.13944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The ability of the gut to detect nutrients is critical to the regulation of gut hormone secretion, food intake, and postprandial blood glucose control. Ingested nutrients are detected by specific gut chemosensors. However, knowledge of these chemosensors has primarily been derived from the intestine, while available information on gastric chemosensors is limited. This study aimed to investigate the nutrient-sensing repertoire of the mouse stomach with particular emphasis on ghrelin cells. METHODS Quantitative RT-PCR was used to determine mRNA levels of nutrient chemosensors (protein: G protein-coupled receptor 93 [GPR93], calcium-sensing receptor [CaSR], metabotropic glutamate receptor type 4 [mGluR4]; fatty acids: CD36, FFAR2&4; sweet/umami taste: T1R3), taste transduction components (TRPM5, GNAT2&3), and ghrelin and ghrelin-processing enzymes (PC1/3, ghrelin O-acyltransferase [GOAT]) in the gastric corpus and antrum of adult male C57BL/6 mice. Immunohistochemistry was performed to assess protein expression of chemosensors (GPR93, T1R3, CD36, and FFAR4) and their co-localization with ghrelin. KEY RESULTS Most nutrient chemosensors had higher mRNA levels in the antrum compared to the corpus, except for CD36, GNAT2, ghrelin, and GOAT. Similar regional distribution was observed at the protein level. At least 60% of ghrelin-positive cells expressed T1R3 and FFAR4, and over 80% expressed GPR93 and CD36. CONCLUSIONS AND INFERENCES The cellular mechanisms for the detection of nutrients are expressed in a region-specific manner in the mouse stomach and gastric ghrelin cells. These gastric nutrient chemosensors may play a role modulating gastrointestinal responses, such as the inhibition of ghrelin secretion following food intake.
Collapse
Affiliation(s)
- Maria Nunez-Salces
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard L Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
23
|
Childs MD, Luyt LG. A Decade's Progress in the Development of Molecular Imaging Agents Targeting the Growth Hormone Secretagogue Receptor. Mol Imaging 2020; 19:1536012120952623. [PMID: 33104445 PMCID: PMC8865914 DOI: 10.1177/1536012120952623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The growth hormone secretagogue receptor 1a (GHSR), also called the ghrelin receptor, is a G protein-coupled receptor known to play an important metabolic role in the regulation of various physiological processes, including energy expenditure, growth hormone secretion, and cell proliferation. This receptor has been implicated in numerous health issues including obesity, gastrointestinal disorders, type II diabetes, and regulation of body weight in patients with Prader-Willi syndrome, and there has been growing interest in studying its mechanism of behavior to unlock further applications of GHSR-targeted therapeutics. In addition, the GHSR is expressed in various types of cancer including prostate, breast, and testicular cancers, while aberrant expression has been reported in cardiac disease. Targeted molecular imaging of the GHSR could provide insights into its role in biological processes related to these disease states. Over the past decade, imaging probes targeting this receptor have been discovered for the imaging modalities PET, SPECT, and optical imaging. High-affinity analogues of ghrelin, the endogenous ligand for the GHSR, as well as small molecule inhibitors have been developed and evaluated both in vitro and in pre-clinical models. This review provides a comprehensive overview of the molecular imaging agents targeting the GHSR reported to the end of 2019.
Collapse
Affiliation(s)
- Marina D Childs
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada.,Department of Medical Imaging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Gupta S, Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Fail Rev 2020; 26:417-435. [PMID: 33025414 DOI: 10.1007/s10741-020-10032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin, a small peptide hormone (28 aa), secreted mainly by X/A-like cells of gastric mucosa, is also locally produced in cardiomyocytes. Being an orexigenic factor (appetite stimulant), it promotes release of growth hormone (GH) and exerts diverse physiological functions, viz. regulation of energy balance, glucose, and/or fat metabolism for body weight maintenance. Interestingly, administration of exogenous ghrelin significantly improves cardiac functions in CVD patients as well as experimental animal models of heart failure. Ghrelin ameliorates pathophysiological condition of the heart in myocardial infarction, cardiac hypertrophy, fibrosis, cachexia, and ischemia reperfusion injury. This peptide also exerts significant impact at the level of vasculature leading to lowering high blood pressure and reversal of endothelial dysfunction and atherosclerosis. However, the molecular mechanism of actions elucidating the healing effects of ghrelin on the cardiovascular system is still a matter of conjecture. Some experimental data indicate its beneficial effects via complex cellular cross talks between autonomic nervous system and cardiovascular cells, some other suggest more direct receptor-mediated molecular actions via autophagy or ionotropic regulation and interfering with apoptotic and inflammatory pathways of cardiomyocytes and vascular endothelial cells. Here, in this review, we summarise available recent data to encourage more research to find the missing links of unknown ghrelin receptor-mediated pathways as we see ghrelin as a future novel therapy in cardiovascular protection.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, 713347, India
| | - Arkadeep Mitra
- Department of Zoology, City College , 102/1, Raja Rammohan Sarani, Kolkata, 700009, India.
| |
Collapse
|
25
|
The Effect of High-Fat Diet-Induced Obesity on the Expression of Nutrient Chemosensors in the Mouse Stomach and the Gastric Ghrelin Cell. Nutrients 2020; 12:nu12092493. [PMID: 32824949 PMCID: PMC7551456 DOI: 10.3390/nu12092493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022] Open
Abstract
The stomach is the primary source of the orexigenic and adiposity-promoting hormone, ghrelin. There is emerging evidence on the nutrient-mediated modulation of gastric ghrelin secretion. However, limited information is available on gastric nutrient-sensing mechanisms in high-fat diet (HFD)-induced obesity. This study investigated the impact of HFD-induced obesity on the expression of nutrient chemosensors in mouse stomach, particularly ghrelin cells. Male C57BL/6 mice were fed either a standard laboratory diet (SLD) or HFD for 12 weeks. The expression of ghrelin, enzymes involved in ghrelin production (PC1/3, GOAT) and nutrient chemosensors (CD36, FFAR2&4, GPR93, CaSR, mGluR4 and T1R3) was determined by quantitative RT-PCR in the mouse corpus and antrum. Immunohistochemistry assessed the protein expression of CaSR and ghrelin in the corpus and antrum. Antral mRNA levels of CaSR and PC1/3 were increased in HFD compared to SLD mice, while mRNA levels of all other nutrient chemosensors examined remained unchanged. CaSR immunolabelling was observed in the gastric antrum only. Nearly 80% of antral ghrelin cells expressed CaSR, with a similar cell density and co-expression in SLD and HFD mice. In conclusion, HFD-induced obesity increased CaSR mRNA expression in mouse antrum. However, the high antral co-expression of CaSR and ghrelin was unaltered in HFD compared to SLD mice.
Collapse
|
26
|
Moose JE, Leets KA, Mate NA, Chisholm JD, Hougland JL. An overview of ghrelin O-acyltransferase inhibitors: a literature and patent review for 2010-2019. Expert Opin Ther Pat 2020; 30:581-593. [PMID: 32564644 DOI: 10.1080/13543776.2020.1776263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The peptide hormone ghrelin regulates physiological processes associated with energy homeostasis such as appetite, insulin signaling, glucose metabolism, and adiposity. Ghrelin has also been implicated in a growing number of neurological pathways involved in stress response and addiction behavior. For ghrelin to bind the growth hormone secretagogue receptor 1a (GHS-R1a) and activate signaling, the hormone must first be octanoylated on a specific serine side chain. This key transformation is performed by the enzyme ghrelin O-acyltransferase (GOAT), and therefore GOAT inhibitors may be useful in treating disorders related to ghrelin signaling such as diabetes, obesity, and related metabolic syndromes. AREAS COVERED This report covers ghrelin and GOAT as potential therapeutic targets and summarizes work on GOAT inhibitors through the end of 2019, highlighting recent successes with both peptidomimetics and small molecule GOAT inhibitors as potent modulators of GOAT-catalyzed ghrelin octanoylation. EXPERT OPINION A growing body of biochemical and structural knowledge regarding the ghrelin/GOAT system now enables multiple avenues for identifying and optimizing GOAT inhibitors. We are at the beginning of a new era with increased opportunities for leveraging ghrelin and GOAT in the understanding and treatment of multiple health conditions including diabetes, obesity, and addiction.
Collapse
Affiliation(s)
- Jacob E Moose
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Katelyn A Leets
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Nilamber A Mate
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - John D Chisholm
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - James L Hougland
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
27
|
Zhang H, Li Q, Teng Y, Lin Y, Li S, Qin T, Chen L, Huang J, Zhai H, Yu Q, Xu G. Interleukin-27 decreases ghrelin production through signal transducer and activator of transcription 3-mechanistic target of rapamycin signaling. Acta Pharm Sin B 2020; 10:837-849. [PMID: 32528831 PMCID: PMC7280146 DOI: 10.1016/j.apsb.2019.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023] Open
Abstract
Interleukin-27 (IL-27), a heterodimeric cytokine, plays a protective role in diabetes. Ghrelin, a gastric hormone, provides a hunger signal to the central nervous system to stimulate food intake. The relationship between IL-27 and ghrelin is still unexplored. Here we investigated that signal transducer and activator of transcription 3 (STAT3)—mechanistic target of rapamycin (mTOR) signaling mediates the suppression of ghrelin induced by IL-27. Co-localization of interleukin 27 receptor subunit alpha (WSX-1) and ghrelin was observed in mouse and human gastric mucosa. Intracerebroventricular injection of IL-27 markedly suppressed ghrelin synthesis and secretion while stimulating STAT3–mTOR signaling in both C57BL/6J mice and high-fat diet-induced-obese mice. IL-27 inhibited the production of ghrelin in mHypoE-N42 cells. Inhibition of mTOR activity induced by mTOR siRNA or rapamycin blocked the suppression of ghrelin production induced by IL-27 in mHypoE-N42 cells. Stat 3 siRNA also abolished the inhibitory effect of IL-27 on ghrelin. IL-27 increased the interaction between STAT3 and mTOR in mHypoE-N42 cells. In conclusion, IL-27 suppresses ghrelin production through the STAT3-mTOR dependent mechanism.
Collapse
|
28
|
Vanderheyden LW, McKie GL, Howe GJ, Hazell TJ. Greater lactate accumulation following an acute bout of high-intensity exercise in males suppresses acylated ghrelin and appetite postexercise. J Appl Physiol (1985) 2020; 128:1321-1328. [PMID: 32240018 DOI: 10.1152/japplphysiol.00081.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-intensity exercise inhibits appetite, in part, via alterations in the peripheral concentrations of the appetite-regulating hormones acylated ghrelin, active glucagon-like peptide-1 (GLP-1), and active peptide tyrosine-tyrosine (PYY). Given lactate may mediate these effects, we used sodium bicarbonate (NaHCO3) supplementation in a double-blind, placebo-controlled, crossover design to investigate lactate's purported role in exercise-induced appetite suppression. Eleven males completed two identical high-intensity interval training sessions (10 × 1 min cycling bouts at ~90% heart rate maximum interspersed with 1-min recovery), where they ingested either NaHCO3 (BICARB) or sodium chloride (NaCl) as a placebo (PLACEBO) preexercise. Blood lactate, acylated ghrelin, GLP-1, and PYY concentrations, as well as overall appetite were assessed preexercise and 0, 30, 60, and 90 min postexercise. Blood lactate was greater immediately (P < 0.001) and 30 min postexercise (P = 0.049) in the BICARB session with an increased (P = 0.009) area under the curve (AUC). The BICARB session had lower acylated ghrelin at 60 (P = 0.014) and 90 min postexercise (P = 0.016), with a decreased AUC (P = 0.039). The BICARB session had increased PYY (P = 0.034) with an increased AUC (P = 0.031). The BICARB session also tended (P = 0.060) to have increased GLP-1 at 30 (P = 0.003) and 60 min postexercise (P < 0.001), with an increased AUC (P = 0.030). The BICARB session tended (P = 0.059) to reduce overall appetite, although there was no difference in AUC (P = 0.149). These findings support a potential role for lactate in the high-intensity exercise-induced appetite-suppression.NEW & NOTEWORTHY We used sodium bicarbonate to increase lactate accumulation or sodium chloride as a placebo. Our findings further implicate lactate as a mediator of exercise-induced appetite suppression, given exercise-induced increases in lactate during the sodium bicarbonate session altered peripheral concentrations of appetite-regulating hormones, culminating in a reduction of appetite. This supports a lactate-dependent mechanism of appetite suppression following high-intensity exercise and highlights the potential of using lactate as a means of inducing a caloric deficit.
Collapse
Affiliation(s)
- Luke W Vanderheyden
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Greg L McKie
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Greg J Howe
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
29
|
Muhsin NIA, Bentley L, Bai Y, Goldsworthy M, Cox RD. A novel mutation in the mouse Pcsk1 gene showing obesity and diabetes. Mamm Genome 2020; 31:17-29. [PMID: 31974728 PMCID: PMC7060156 DOI: 10.1007/s00335-020-09826-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
The proprotein convertase subtilisin/Kexin type 1 (PCSK1/PC1) protein processes inactive pro-hormone precursors into biologically active hormones in a number of neuroendocrine and endocrine cell types. Patients with recessive mutations in PCSK1 exhibit a complex spectrum of traits including obesity, diarrhoea and endocrine disorders. We describe here a new mouse model with a point mutation in the Pcsk1 gene that exhibits obesity, hyperphagia, transient diarrhoea and hyperproinsulinaemia, phenotypes consistent with human patient traits. The mutation results in a pV96L amino acid substitution and changes the first nucleotide of mouse exon 3 leading to skipping of that exon and in homozygotes very little full-length transcript. Overexpression of the exon 3 deleted protein or the 96L protein results in ER retention in Neuro2a cells. This is the second Pcsk1 mouse model to display obesity phenotypes, contrasting knockout mouse alleles. This model will be useful in investigating the basis of endocrine disease resulting from prohormone processing defects.
Collapse
Affiliation(s)
- Nor I A Muhsin
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Liz Bentley
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Ying Bai
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Michelle Goldsworthy
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Roger D Cox
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
30
|
Tauber M, Coupaye M, Diene G, Molinas C, Valette M, Beauloye V. Prader-Willi syndrome: A model for understanding the ghrelin system. J Neuroendocrinol 2019; 31:e12728. [PMID: 31046160 DOI: 10.1111/jne.12728] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Subsequent to the discovery of ghrelin as the endogenous ligand of growth hormone secretagogue receptor 1a, this unique gut peptide has been found to exert numerous physiological effects, such as appetite stimulation and lipid accumulation via the central regulating mechanisms in the hypothalamus, stimulation of gastric motility, regulation of glucose metabolism and brown fat thermogenesis, and modulation of stress, anxiety, taste sensation, reward-seeking behaviour and the sleep/wake cycle. Prader-Willi syndrome (PWS) has been described as a unique pathological state characterised by severe obesity and high circulating levels of ghrelin. It was hypothesised that hyperghrelinaemia would explain at least a part of the feeding behaviour and body composition of PWS patients, who are characterised by hyperphagia, an obsession with food and food-seeking, and increased adiposity. Initially, the link between hyperghrelinaemia and growth hormone deficiency, which is observed in 90% of the children with PWS, was not fully understood. Over the years, however, the increasing knowledge on ghrelin, PWS features and the natural history of the disease has led to a more comprehensive description of the abnormal ghrelin system and its role in the pathophysiology of this rare and complex neurodevelopmental genetic disease. In the present study, we (a) present the current view of PWS; (b) explain its natural history, including recent data on the ghrelin system in PWS patients; and (c) discuss the therapeutic approach of modulating the ghrelin system in these patients and the first promising results.
Collapse
Affiliation(s)
- Maithé Tauber
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Axe Pédiatrique du CIC 9302/INSERM. Hôpital des Enfants, Toulouse, France
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Toulouse, France
| | - Muriel Coupaye
- Service de Nutrition, Centre de Référence du Syndrome de Prader-Willi Assistance-Publique Hôpitaux de Paris (AP-HP), CHU Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Gwenaelle Diene
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- INSERM, UMR 1027- Université Toulouse III Hôpital Paule de Viguier, Toulouse, France
| | - Catherine Molinas
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Axe Pédiatrique du CIC 9302/INSERM. Hôpital des Enfants, Toulouse, France
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Toulouse, France
| | - Marion Valette
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Axe Pédiatrique du CIC 9302/INSERM. Hôpital des Enfants, Toulouse, France
| | - Veronique Beauloye
- Unité d'Endocrinologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
31
|
Wu B, Liu Y, Liu F, Deng Q, Wang J, Han R, Zhang D, Chen J, Wei J. The antinociceptive effects and molecular mechanisms of ghrelin(1–7)-NH2 at the supraspinal level in acute pain in mice. Brain Res Bull 2019; 146:112-123. [DOI: 10.1016/j.brainresbull.2018.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023]
|
32
|
Germain N, Cuenco J, Ling Y, Minnion JS, Bageacu S, Grouselle D, Estour B, Galusca B. Ghrelin acylation by ghrelin- O-acyltransferase can occur in healthy part of oncological liver in humans. Am J Physiol Gastrointest Liver Physiol 2019; 316:G366-G371. [PMID: 30576216 DOI: 10.1152/ajpgi.00143.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of ghrelin is controlled by the enzyme ghrelin- O-acyl transferase (GOAT). In humans, localization of this acylation is poorly understood. The aim of this study is to explore GOAT localization and activation in the human liver by evaluating both bioactive and non-bioactive ghrelin in the bloodstream entering and leaving the liver and to simultaneously evaluate GOAT mRNA expression in the liver. A healthy part of oncologic hepatic tissue collected from nine patients undergoing hepatectomy was used to evaluate GOAT mRNA expression by quantitative real-time polymerase chain reaction (RT-qPCR). Simultaneously, blood from the portal vein, the suprahepatic vein, the subclavicular vein, and the radial artery was also sampled to assay total and acylated ghrelin. Acylated ghrelin level was significantly increased in the suprahepatic vein compared with the portal vein level (385 ± 42 ng/ml vs. 268 ± 24 ng/ml, P = 0.04). Suprahepatic-to-portal vein ratio for acylated ghrelin (acylation ratio) is 1.4 ± 0.1. Mean expression of GOAT mRNA in the liver, expressed as 2-∆Ct·µg total RNA-1·1 µl of liver tissue-1 was at 0.042 ± 0.021 arbitrary units. GOAT mRNA expression in the liver was correlated with acylated-to-total ghrelin ratio in the suprahepatic vein ( P = 0.016, R = 0.75) and with the acylation liver ratio ( P = 0.05, R = 0.61). Blood concentration of acylated ghrelin was found significantly increased after its passage through the liver, suggesting that acylation can occur in the liver. RT-qPCR data confirmed the presence of GOAT in the liver, with a positive correlation between GOAT expression and acylated ghrelin liver ratio. This study strongly suggests that the liver is a site of ghrelin acylation in humans. NEW & NOTEWORTHY Although the activation of ghrelin by the enzyme ghrelin- O-acyl transferase (GOAT) is yet well demonstrated, its localization, especially in humans, remains poorly understood. We explored GOAT localization and activation in the human liver by simultaneously evaluating both bioactive and non-bioactive ghrelin in the bloodstream entering and leaving the liver and also GOAT mRNA expression in the liver. We therefore showed for the first time, to our knowledge, that GOAT localized in the liver is active and takes part in ghrelin activation.
Collapse
Affiliation(s)
- Natacha Germain
- Division of Endocrinology, CHU Saint-Etienne, Saint-Etienne , France.,EA 7423, Eating Disorders, Addictions & Extreme Bodyweight Research Group , Saint-Etienne , France
| | - Joyceline Cuenco
- Division of Diabetes, Endocrinology, and Metabolism, Imperial College , London , United Kingdom
| | - Yiin Ling
- EA 7423, Eating Disorders, Addictions & Extreme Bodyweight Research Group , Saint-Etienne , France
| | - James S Minnion
- Division of Diabetes, Endocrinology, and Metabolism, Imperial College , London , United Kingdom
| | - Serban Bageacu
- Division of Gut Surgery, CHU Saint-Etienne, Saint-Etienne , France
| | - Dominique Grouselle
- UMR 894 INSERM Psychiatry and Neurosciences Center, Paris Descartes University , Paris , France
| | - Bruno Estour
- Division of Endocrinology, CHU Saint-Etienne, Saint-Etienne , France.,EA 7423, Eating Disorders, Addictions & Extreme Bodyweight Research Group , Saint-Etienne , France
| | - Bogdan Galusca
- Division of Endocrinology, CHU Saint-Etienne, Saint-Etienne , France.,EA 7423, Eating Disorders, Addictions & Extreme Bodyweight Research Group , Saint-Etienne , France
| |
Collapse
|
33
|
Ghrelin octanoylation by ghrelin O-acyltransferase: Unique protein biochemistry underlying metabolic signaling. Biochem Soc Trans 2019; 47:169-178. [PMID: 30626708 DOI: 10.1042/bst20180436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Ghrelin signaling is implicated in a variety of neurological and physiological processes, but is most well known for its roles in controlling hunger and metabolic regulation. Ghrelin octanoylation is catalyzed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. From the status of ghrelin as the only substrate for GOAT in the human genome to the source and requirement for the octanoyl acyl donor, the ghrelin-GOAT system is defined by multiple unique aspects within both protein biochemistry and endocrinology. In this review, we examine recent advances in our understanding of the interactions and mechanisms leading to ghrelin modification by GOAT, discuss the potential sources for the octanoyl acyl donor required for ghrelin's activation, and summarize the current landscape of molecules targeting ghrelin octanoylation through GOAT inhibition.
Collapse
|
34
|
Nakajima K, Maeda N, Oiso S, Kariyazono H. Decreased Plasma Octanoylated Ghrelin Levels in Mice by Oleanolic Acid. J Oleo Sci 2018; 68:103-109. [PMID: 30542007 DOI: 10.5650/jos.ess18148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone with an appetite-stimulating effect. Octanoylation on the serine-3 residue of ghrelin by ghrelin O-acyl transferase (GOAT) is essential for its orexigenic effect. Mature octanoylated ghrelin is generated by the C-terminal cleavage of octanoylated proghrelin via prohormone convertases (furin, PC1/3, or PC2). We previously established an AGS-GHRL8 cell line that produces octanoylated ghrelin in the presence of octanoic acid, and found that oleanolic acid suppresses octanoylated ghrelin production in AGS-GHRL8 cells. Here, we investigated the effects of oleanolic acid in C57BL/6J mice fed a standard, high-fat, or high-glucose diet. Oral administration of oleanolic acid for seven days (20 or 40 mg/kg) reduced plasma octanoylated ghrelin levels and body weight gain in the standard diet-fed mice but not in other two diet-fed mice. There were no significant differences in ghrelin, GOAT, furin, PC1/3, and PC2 gene expression levels between the vehicle- and oleanolic acid-treated mice fed a standard diet. Octanoyl-CoA is a substrate for ghrelin octanoylation by GOAT. We found that oleanolic acid did not affect octanoyl-CoA production in vitro. Hence, the inhibitory effect of oleanolic acid on octanoylated ghrelin production may not be related to the decrease in octanoyl-CoA. The results of this study may provide valuable knowledge for the development of anti-obesity agents with an inhibitory effect on octanoylated ghrelin production.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Narumi Maeda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | - Hiroko Kariyazono
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
35
|
Nakajima K, Oiso S, Kariyazono H. Inhibitory Effect of (-)-Epigallocatechin-3-O-gallate on Octanoylated Ghrelin Levels in Vitro and in Vivo. Biol Pharm Bull 2018; 41:524-529. [PMID: 29607924 DOI: 10.1248/bpb.b17-00805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin is an orexigenic peptide hormone produced in the stomach. The major active form is octanoylated ghrelin, which is modified with an n-octanoic acid at the serine-3 residue. Inhibition of octanoylated ghrelin production is useful for the prevention and improvement of obesity. We previously developed a cell-based assay system employing a ghrelin-expressing cell line, AGS-GHRL8, and found various compounds that decreased octanoylated ghrelin levels using this system. (-)-Epigallocatechin-3-O-gallate (EGCG) is a bioactive catechin in green tea and reportedly has an anti-obesity effect; however, it remains unclear whether EGCG inhibits octanoylated ghrelin production. Therefore, in this study, we investigated the effect of EGCG on octanoylated ghrelin levels in AGS-GHRL8 cells and C57BL/6J mice. EGCG significantly reduced the octanoylated ghrelin level in AGS-GHRL8 cells. In mice, three days of treatment with TEAVIGO®, which contains 97.69% EGCG, lowered the plasma octanoylated ghrelin level by 40% from that in control mice. In addition, TEAVIGO® reduced the mRNA expression of ghrelin and prohormone convertase 1/3, an enzyme responsible for the processing of proghrelin to mature ghrelin, in the mouse stomach, suggesting that the reduced expression of these genes may contribute to the inhibition of octanoylated ghrelin production. These results suggest a decrease in the octanoylated ghrelin level to be involved in the anti-obesity effect of EGCG, which thus has potential for the development of anti-obesity agents with ghrelin-lowering effect.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | - Hiroko Kariyazono
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
36
|
Ramos-Molina B, Molina-Vega M, Fernández-García JC, Creemers JW. Hyperphagia and Obesity in Prader⁻Willi Syndrome: PCSK1 Deficiency and Beyond? Genes (Basel) 2018; 9:genes9060288. [PMID: 29880780 PMCID: PMC6027271 DOI: 10.3390/genes9060288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/31/2023] Open
Abstract
Prader–Willi syndrome (PWS) is a complex genetic disorder that, besides cognitive impairments, is characterized by hyperphagia, obesity, hypogonadism, and growth impairment. Proprotein convertase subtilisin/kexin type 1 (PCSK1) deficiency, a rare recessive congenital disorder, partially overlaps phenotypically with PWS, but both genetic disorders show clear dissimilarities as well. The recent observation that PCSK1 is downregulated in a model of human PWS suggests that overlapping pathways are affected. In this review we will not only discuss the mechanisms by which PWS and PCSK1 deficiency could lead to hyperphagia but also the therapeutic interventions to treat obesity in both genetic disorders.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - María Molina-Vega
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - José C Fernández-García
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - John W Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
37
|
Cleverdon ER, Davis TR, Hougland JL. Functional group and stereochemical requirements for substrate binding by ghrelin O-acyltransferase revealed by unnatural amino acid incorporation. Bioorg Chem 2018; 79:98-106. [PMID: 29738973 DOI: 10.1016/j.bioorg.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/02/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT's tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling.
Collapse
Affiliation(s)
| | - Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
38
|
Abstract
Ghrelin, a gastric-derived acylated peptide, regulates energy homeostasis by transmitting information about peripheral nutritional status to the brain, and is essential for protecting organisms against famine. Ghrelin operates brain circuits to regulate homeostatic and hedonic feeding. Recent research advances have shed new light on ghrelin's multifaceted roles in cellular homeostasis, which could maintain the internal environment and overcome metaflammation in metabolic organs. Here, we highlight our current understanding of the regulatory mechanisms of the ghrelin system in energy metabolism and cellular homeostasis and its clinical trials. Future studies of ghrelin will further elucidate how the stomach regulates systemic homeostasis.
Collapse
Affiliation(s)
- Shigehisa Yanagi
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Masamitsu Nakazato
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
39
|
Mani BK, Zigman JM. Ghrelin as a Survival Hormone. Trends Endocrinol Metab 2017; 28:843-854. [PMID: 29097101 PMCID: PMC5777178 DOI: 10.1016/j.tem.2017.10.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
Ghrelin administration induces food intake and body weight gain. Based on these actions, the ghrelin system was initially proposed as an antiobesity target. Subsequent studies using genetic mouse models have raised doubts about the role of the endogenous ghrelin system in mediating body weight homeostasis or obesity. However, this is not to say that the endogenous ghrelin system is not important metabolically or otherwise. Here we review an emerging concept in which the endogenous ghrelin system serves an essential function during extreme nutritional and psychological challenges to defend blood glucose, protect body weight, avoid exaggerated depression, and ultimately allow survival.
Collapse
Affiliation(s)
- Bharath K Mani
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine, and Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9077, USA
| | - Jeffrey M Zigman
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine, and Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9077, USA.
| |
Collapse
|
40
|
Cleverdon ER, McGovern-Gooch KR, Hougland JL. The octanoylated energy regulating hormone ghrelin: An expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling. Mol Membr Biol 2017; 33:111-124. [PMID: 29143554 DOI: 10.1080/09687688.2017.1388930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Initially demonstrated to stimulate hunger and appetite, ghrelin-dependent signaling is implicated in a variety of neurological and physiological processes influencing diseases such as diabetes, obesity, and Prader-Willi syndrome. In addition to its cognate receptor, recent studies have revealed ghrelin interacts with a range of binding partners within the bloodstream. Defining the scope of ghrelin's interactions within the body, understanding how these interactions work in concert to modulate ghrelin signaling, and developing molecular tools for controlling ghrelin signaling are essential for exploiting ghrelin for therapeutic effect. In this review, we discuss recent findings regarding the biological effects of ghrelin signaling, outline binding partners that control ghrelin trafficking and stability in circulation, and summarize the current landscape of inhibitors targeting ghrelin octanoylation.
Collapse
Affiliation(s)
| | | | - James L Hougland
- a Department of Chemistry , Syracuse University , Syracuse , NY , USA
| |
Collapse
|
41
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
42
|
Tsuchiya T, Iwakura H, Minamino N, Kangawa K, Sasaki K. Endogenous peptide profile for elucidating biosynthetic processing of the ghrelin precursor. Biochem Biophys Res Commun 2017; 490:1142-1146. [DOI: 10.1016/j.bbrc.2017.06.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
|
43
|
Yoneyama-Hirozane M, Deguchi K, Hirakawa T, Ishii T, Odani T, Matsui J, Nakano Y, Imahashi K, Takakura N, Chisaki I, Takekawa S, Sakamoto J. Identification and Characterization of a New Series of Ghrelin O-Acyl Transferase Inhibitors. SLAS DISCOVERY 2017; 23:154-163. [PMID: 28846466 DOI: 10.1177/2472555217727097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ghrelin O-acyl transferase (GOAT; MBOAT4) catalyzes O-acylation at serine-3 of des-acyl ghrelin. Acyl ghrelin is secreted by stomach X/A-like cells and plays a role in appetite and metabolism. Therefore, GOAT has been expected to be a novel antiobesity target because it is responsible for acyl ghrelin production. Here, we report homogeneous time-resolved fluorescence (HTRF) and enzyme-linked immunosorbent assay (ELISA) methods utilizing human GOAT-expressing microsomes as a novel high-throughput assay system for the discovery of hit compounds and optimization of lead compounds. Hit compounds exemplified by compound A (2-[(2,4-dichlorobenzyl)sulfanyl]-1,3-benzoxazole-5-carboxylic acid) were identified by high-throughput screening using the HTRF assay and confirmed to have GOAT inhibitory activity using the ELISA. Based on the hit compound information, the novel lead compound (compound B, (4-chloro-6-{[2-methyl-6-(trifluoromethyl)pyridin-3-yl]methoxy}-1-benzothiophen-3-yl)acetic acid) was synthesized and exhibited potent GOAT inhibition with oral bioavailability. Both the hit compound and lead compound showed octanoyl-CoA competitive inhibitory activity. Moreover, these two compounds decreased acyl ghrelin production in the stomach of mice after their oral administration. These novel findings demonstrate that GOAT is a druggable target, and its inhibitors are promising antiobesity drugs.
Collapse
Affiliation(s)
| | - Kohei Deguchi
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Takeshi Hirakawa
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tsuyoshi Ishii
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomoyuki Odani
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Junji Matsui
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yoshihide Nakano
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kenichi Imahashi
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | | | - Ikumi Chisaki
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shiro Takekawa
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Junichi Sakamoto
- 1 Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
44
|
Is Ghrelin Synthesized in the Central Nervous System? Int J Mol Sci 2017; 18:ijms18030638. [PMID: 28294994 PMCID: PMC5372651 DOI: 10.3390/ijms18030638] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.
Collapse
|
45
|
Alamri BN, Shin K, Chappe V, Anini Y. The role of ghrelin in the regulation of glucose homeostasis. Horm Mol Biol Clin Investig 2017; 26:3-11. [PMID: 27235674 DOI: 10.1515/hmbci-2016-0018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
Abstract
Ghrelin is a 28-amino acid (aa) stomach-derived peptide discovered in 1999 as the endogenous ligand for growth hormone secretagogue-receptor (GHS-R). Ghrelin-producing cells constitute a distinct group of endocrine cells dispersed throughout the gastric mucosa and to a lesser extent in the small intestine and the endocrine pancreas. Ghrelin plasma levels rise during fasting and chronic caloric restriction to stimulate food intake and fat storage and to prevent life-threatening falls in blood glucose. Plasma ghrelin levels decrease after a meal is consumed and in conditions of energy surplus (such as obesity). Ghrelin has emerged as a key player in the regulation of appetite and energy homeostasis. Ghrelin achieves these functions through binding the ghrelin receptor GHS-R in appetite-regulating neurons and in peripheral metabolic organs including the endocrine pancreas. Ghrelin levels are negatively correlated with body mass index (BMI) and insulin resistance. In addition, ghrelin secretion is impaired in obesity and insulin resistance. Several studies highlight an important role for ghrelin in glucose homeostasis. Genetic, immunological, and pharmacological blockade of ghrelin signaling resulted in improved glucose tolerance and insulin sensitivity. Furthermore, exogenous ghrelin administration was shown to decrease glucose-induced insulin release and increase glucose level in both humans and rodents. GHS-R was shown to be expressed in pancreatic β-cells and ghrelin suppressed insulin release via a Ca2+-mediated pathway. In this review, we provide a detailed summary of recent advances in the field that focuses on the role of insulin and insulin resistance in the regulation of ghrelin secretion and on the role of ghrelin in glucose-stimulated insulin secretion (GSIS).
Collapse
|
46
|
Stievenard A, Méquinion M, Andrews ZB, Destée A, Chartier-Harlin MC, Viltart O, Vanbesien-Mailliot CC. Is there a role for ghrelin in central dopaminergic systems? Focus on nigrostriatal and mesocorticolimbic pathways. Neurosci Biobehav Rev 2017; 73:255-275. [DOI: 10.1016/j.neubiorev.2016.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
|
47
|
Au CC, Furness JB, Brown KA. Ghrelin and Breast Cancer: Emerging Roles in Obesity, Estrogen Regulation, and Cancer. Front Oncol 2017; 6:265. [PMID: 28119851 PMCID: PMC5220482 DOI: 10.3389/fonc.2016.00265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/26/2023] Open
Abstract
Local and systemic factors have been shown to drive the growth of breast cancer cells in postmenopausal obese women, who have increased risk of estrogen receptor-positive breast cancer. Estrogens, produced locally in the breast fat by the enzyme aromatase, have an important role in promoting cancer cell proliferation. Ghrelin, a 28-amino acid peptide hormone, may also influence cancer growth. This peptide is produced in the stomach and acts centrally to regulate appetite and growth hormone release. Circulating levels of ghrelin, and its unacylated form, des-acyl ghrelin, are almost always inversely correlated with obesity, and these peptide hormones have recently been shown to inhibit adipose tissue aromatase expression. Ghrelin and des-acyl ghrelin have also been shown to be produced by some tumor cells and influence tumor growth. The ghrelin/des-acyl ghrelin–cancer axis is complex, one reason being that tumor cells have been shown to express splice variants of ghrelin, and ghrelin and des-acyl ghrelin might act at receptors other than the cognate ghrelin receptor, growth hormone secretagogue receptor 1a, in tumors. Effects of ghrelin and des-acyl ghrelin on energy homeostasis may also affect tumor development and growth. This review will summarize our current understanding of the role of ghrelin and des-acyl ghrelin in hormone-dependent cancers, breast cancer in particular.
Collapse
Affiliation(s)
- CheukMan Cherie Au
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne and Florey Institute of Neuroscience and Mental Health , Parkville, VIC , Australia
| | - Kristy A Brown
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
48
|
Burnett LC, LeDuc CA, Sulsona CR, Paull D, Rausch R, Eddiry S, Carli JFM, Morabito MV, Skowronski AA, Hubner G, Zimmer M, Wang L, Day R, Levy B, Fennoy I, Dubern B, Poitou C, Clement K, Butler MG, Rosenbaum M, Salles JP, Tauber M, Driscoll DJ, Egli D, Leibel RL. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest 2017; 127:293-305. [PMID: 27941249 PMCID: PMC5199710 DOI: 10.1172/jci88648] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell-derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p-/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p-/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p-/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH-releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.
Collapse
Affiliation(s)
- Lisa C. Burnett
- Institute of Human Nutrition
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Charles A. LeDuc
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- New York Obesity Research Center, New York, New York, USA
| | - Carlos R. Sulsona
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine Gainesville, Florida, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Richard Rausch
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Sanaa Eddiry
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
| | - Jayne F. Martin Carli
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Michael V. Morabito
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Alicja A. Skowronski
- Institute of Human Nutrition
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | | | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Liheng Wang
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Robert Day
- Institut de pharmacologie de Sherbrooke, Department of Surgery, Division of Urology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Ilene Fennoy
- Department of Pediatrics, Division of Pediatric Diabetes, Endocrinology and Metabolism, Columbia University, New York, New York, USA
| | - Beatrice Dubern
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Christine Poitou
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Karine Clement
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Merlin G. Butler
- Department of Psychiatry and Behavioral Sciences, Division of Research and Genetics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Michael Rosenbaum
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Jean Pierre Salles
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
- Unité d’Endocrinologie, Hôpital des Enfants, and
| | - Maithe Tauber
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
- Unité d’Endocrinologie, Hôpital des Enfants, and
- Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France
| | - Daniel J. Driscoll
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine Gainesville, Florida, USA
- Center for Epigenetics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Dieter Egli
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Rudolph L. Leibel
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- New York Obesity Research Center, New York, New York, USA
| |
Collapse
|
49
|
Takemi S, Sakata I, Apu AS, Tsukahara S, Yahashi S, Katsuura G, Iwashige F, Akune A, Inui A, Sakai T. Molecular Cloning of Ghrelin and Characteristics of Ghrelin-Producing Cells in the Gastrointestinal Tract of the Common Marmoset (Callithrix jacchus). Zoolog Sci 2016; 33:497-504. [DOI: 10.2108/zs160020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Kojima M, Hamamoto A, Sato T. Ghrelin O-acyltransferase (GOAT), a specific enzyme that modifies ghrelin with a medium-chain fatty acid. J Biochem 2016; 160:189-194. [PMID: 27489223 DOI: 10.1093/jb/mvw046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 11/14/2022] Open
Abstract
In the gastric peptide hormone ghrelin, serine 3 (threonine 3 in frogs) is modified, primarily by n-octanoic acid; this modification is essential for ghrelin's activity. The enzyme that transfers n-octanoic acid to Ser3 of ghrelin is ghrelin O-acyltransferase (GOAT). GOAT, the only enzyme known to catalyze acyl modification of ghrelin, specifically modifies serine (or threonine) at the third position and does not modify other serine residues in ghrelin peptides. GOAT prefers n-hexanoyl-CoA over n-octanoyl-CoA as the acyl donor, although in the stomach the n-octanoyl form is the predominant form of acyl-modified ghrelin. GOAT is a promising target for drug development to treat metabolic diseases and eating disorders.
Collapse
Affiliation(s)
- Masayasu Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Akie Hamamoto
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| |
Collapse
|