1
|
Reyes JGA, Ni D, Santner-Nanan B, Pinget GV, Kraftova L, Ashhurst TM, Marsh-Wakefield F, Wishart CL, Tan J, Hsu P, King NJC, Macia L, Nanan R. A unique human cord blood CD8 +CD45RA +CD27 +CD161 + T-cell subset identified by flow cytometric data analysis using Seurat. Immunology 2024; 173:106-124. [PMID: 38798051 DOI: 10.1111/imm.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.
Collapse
Affiliation(s)
- Julen Gabirel Araneta Reyes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Brigitte Santner-Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriela Veronica Pinget
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucie Kraftova
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Thomas Myles Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Leana Wishart
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Jonathan Cole King
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Nagel S, Pommerenke C, Quentmeier H, Meyer C, Kaufmann M, MacLeod RAF. Genomic Aberrations Generate Fusion Gene FOXK2::TP63 and Activate NFKB1 in Cutaneous T-Cell Lymphoma. Biomedicines 2022; 10:biomedicines10082038. [PMID: 36009586 PMCID: PMC9406051 DOI: 10.3390/biomedicines10082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a severe lymphoid malignancy with a worse prognosis lacking curative treatment regimens. Several gene mutations and deregulated pathways, including NFkB signaling, have been implicated in its pathogenesis. Accordingly, CTCL cell line HUT-78 reportedly contains mutated NFKB2, which is constitutively activated via partial gene deletion, also demonstrating that genomic rearrangements cause driving mutations in this malignancy. Here, along with HUT-78, we analyzed CTCL cell line HH to identify additional aberrations underlying gene deregulation. Karyotyping and genomic profiling of HH showed several rearrangements worthy of detailed investigation. Corresponding to the established karyotype, RNA-seq data and PCR analysis confirmed the presence of t(3;17)(q28;q25), generating a novel fusion gene, FOXK2::TP63. Furthermore, chromosomal rearrangement t(1;4)(p32;q25) was connected to amplification at 4q24–26, affecting aberrant NFKB1 overexpression thereat. Transcription factor binding-site analysis and knockdown experiments demonstrated that IRF4 contributed to NFKB1 expression. Within the same amplicon, we identified amplification and overexpression of NFkB signaling activator CAMK2D (4q26) and p53-inhibitor UBE2D3 (4q24). Genomic profiling data for HUT-78 detailed a deletion at 10q25 underlying reported NFKB2 activation. Moreover, amplifications of ID1 (20q11) and IKZF2 (2q34) in this cell line drove overexpression of these NK cell differentiation factors and possibly thus formed corresponding lineage characteristics. Target gene analysis for NFKB1 via siRNA-mediated knockdown in HH revealed activation of TP63, MIR155, and NOTCH pathway component RBPJ. Finally, treatment of HH with NFkB inhibitor demonstrated a role for NFkB in supporting proliferation, while usage of inhibitor DAPT showed significant survival effects via the NOTCH pathway. Collectively, our data suggest that NFkB and/or NOTCH inhibitors may represent reasonable treatment options for subsets of CTCL patients.
Collapse
|
3
|
Pankow A, Sun XH. The divergence between T cell and innate lymphoid cell fates controlled by E and Id proteins. Front Immunol 2022; 13:960444. [PMID: 36032069 PMCID: PMC9399370 DOI: 10.3389/fimmu.2022.960444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
T cells develop in the thymus from lymphoid primed multipotent progenitors or common lymphoid progenitors into αβ and γδ subsets. The basic helix-loop-helix transcription factors, E proteins, play pivotal roles at multiple stages from T cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also regulate T cell development while promoting ILC differentiation. Recent findings suggest that the thymus can also produce innate lymphoid cells (ILCs). In this review, we present current findings that suggest the balance between E and Id proteins is likely to be critical for controlling the bifurcation of T cell and ILC fates at early stages of T cell development.
Collapse
Affiliation(s)
- Aneta Pankow
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
4
|
Li W, Du D, Li Y. Id-1 Promotes Reendothelialization In The Early Phase After Vascular Injury Through Activation Of NFkB/survivin Signaling Pathway. Drug Des Devel Ther 2019; 13:3799-3811. [PMID: 31802852 PMCID: PMC6827526 DOI: 10.2147/dddt.s208707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Percutaneous coronary intervention (PCI) treatment can benefit patients, but also cause irreversible mechanical damage to the vascular endothelium, ultimately leading to restenosis of the target vessel. Thus, achieving rapid re-endothelialization and restoring the integrity of the vascular endothelium and function plays an important role in inhibiting neointimal hyperplasia and preventing restenosis. Id1 (inhibitor of DNA binding/differentiation factor 1) plays an important role in promoting cell proliferation and angiogenesis. STUDY OBJECTIVE This study aims to investigate the relationship between Id1 and NFκB/survivin signaling pathways and their role in injured vascular repair by establishing a rat carotid balloon injury model. METHODS The carotid artery model of rat balloon injury was established. The injured common carotid artery was obtained at different time points after vascular injury. RNA and protein were extracted and the mRNA and protein expression levels of Id1, NFκB and survivin were detected in vascular injury. The NFκB blocker BAY 11-7082 and survivin blocker YM155 were used and the effects of Id1, NFκB, survivin mRNA and protein expression, revascularization of blood vessels and neointimal responsiveness after vascular injury were observed in the vascular tissues of Ad-Id1 transfected balloon injury. RESULTS Id1, NFκB and survivin were expressed in injured rat carotid arteries. Overexpression of Id1 promoted re-endothelialization of injured vessels through NFκB/survivin signaling pathway, inhibited early vascular endometrial reactive hyperplasia; blocked NFκB the/survivin signaling pathway attenuates the re-endothelialization of Ad-Id1 and the early endothelium of Ad-Id1. Blocking the NFκB/survivin signaling pathway attenuates the re-endothelialization and early reactive hyperplasia of vascular intima of Ad-Id1. CONCLUSION NF-kappa B/survivin signaling pathway may play an important role in Id1 promoting vascular re-endothelialization, inhibiting neointimal hyperplasia and preventing vascular restenosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Beijing100017, People’s Republic of China
| | - Dayong Du
- Department of Cardiology, Beijing100017, People’s Republic of China
| | - Yuntian Li
- Department of Cardiology, Beijing100017, People’s Republic of China
| |
Collapse
|
5
|
Gao P, Han X, Zhang Q, Yang Z, Fuss IJ, Myers TG, Gardina PJ, Zhang F, Strober W. Dynamic changes in E-protein activity regulate T reg cell development. ACTA ACUST UNITED AC 2014; 211:2651-68. [PMID: 25488982 PMCID: PMC4267236 DOI: 10.1084/jem.20132681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gao et al. show that E-box proteins dampen the generation and function of Foxp3+ regulatory T cells in part by inhibiting IL-2Rα expression and IL-2 responsiveness. E-proteins are TCR-sensitive transcription factors essential for intrathymic T cell transitions. Here, we show that deletion of E-proteins leads to both enhanced peripheral TGF-β–induced regulatory T (iT reg) cell and thymic naturally arising T reg cell (nT reg cell) differentiation. In contrast, deletion of Id proteins results in reduced nT reg cell differentiation. Mechanistic analysis indicated that decreased E-protein activity leads to de-repression of signaling pathways that are essential to Foxp3 expression. Decreased E-protein binding to an IL-2Rα enhancer locus facilitated TCR-induced IL-2Rα expression. Similarly, decreased E-protein activity facilitated TCR-induced NF-κB activation and generation of c-Rel. Consistent with this, microarray analysis indicated that cells with E-protein depletion that are not yet expressing Foxp3 exhibit activation of the IL-2 and NF-κB signaling pathways as well as enhanced expression of many of the genes associated with Foxp3 induction. Finally, studies using Nur77-GFP mice to monitor TCR signaling showed that TCR signaling strength sufficient to induce Foxp3 differentiation is accompanied by down-regulation of E-protein levels. Collectively, these data suggest that TCR stimulation acts in part through down-regulation of E-protein activity to induce T reg cell lineage development.
Collapse
Affiliation(s)
- Ping Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaojuan Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qi Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zhiqiong Yang
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Timothy G Myers
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul J Gardina
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Warren Strober
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Zhao Y, Ling F, Griffin TM, He T, Towner R, Ruan H, Sun XH. Up-regulation of the Sirtuin 1 (Sirt1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) genes in white adipose tissue of Id1 protein-deficient mice: implications in the protection against diet and age-induced glucose intolerance. J Biol Chem 2014; 289:29112-22. [PMID: 25190816 DOI: 10.1074/jbc.m114.571679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Id1, a helix-loop-helix (HLH) protein that inhibits the function of basic HLH E protein transcription factors in lymphoid cells, has been implicated in diet- and age-induced obesity by unknown mechanisms. Here we show that Id1-deficient mice are resistant to a high fat diet- and age-induced obesity, as revealed by reduced weight gain and body fat, increased lipid oxidation, attenuated hepatosteatosis, lower levels of lipid droplets in brown adipose tissue, and smaller white adipocytes after a high fat diet feeding or in aged animals. Id1 deficiency improves glucose tolerance, lowers serum insulin levels, and reduces TNFα gene expression in white adipose tissue. Id1 deficiency also increased expression of Sirtuin 1 and peroxisome proliferator-activated receptor γ coactivator 1α, regulators of mitochondrial biogenesis and energy expenditure, in the white adipose tissue. This effect was accompanied by the elevation of several genes encoding proteins involved in oxidative phosphorylation and fatty acid oxidation, such as cytochrome c, medium-chain acyl-CoA dehydrogenase, and adipocyte protein 2. Moreover, the phenotype for Id1 deficiency was similar to that of mice expressing an E protein dominant-positive construct, ET2, suggesting that the balance between Id and E proteins plays a role in regulating lipid metabolism and insulin sensitivity.
Collapse
Affiliation(s)
- Ying Zhao
- From the Program in Immunobiology and Cancer Research
| | - Flora Ling
- From the Program in Immunobiology and Cancer Research, Department of Cell Biology and
| | - Timothy M Griffin
- Program in Free Radical Biology and Aging, and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | - Ting He
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Hong Ruan
- Department of Physiology and Biophysics, Rutgers University, Piscataway, New Jersey 08854
| | - Xiao-Hong Sun
- From the Program in Immunobiology and Cancer Research, Department of Cell Biology and
| |
Collapse
|
7
|
Liu C, Wang HC, Yu S, Jin R, Tang H, Liu YF, Ge Q, Sun XH, Zhang Y. Id1 expression promotes T regulatory cell differentiation by facilitating TCR costimulation. THE JOURNAL OF IMMUNOLOGY 2014; 193:663-672. [PMID: 24920844 DOI: 10.4049/jimmunol.1302554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T regulatory (Treg) cells play crucial roles in the regulation of cellular immunity. The development of Treg cells depends on signals from TCRs and IL-2Rs and is influenced by a variety of transcription factors. The basic helix-loop-helix proteins are known to influence TCR signaling thresholds. Whether this property impacts Treg differentiation is not understood. In this study, we interrogated the role of basic helix-loop-helix proteins in the production of Treg cells using the CD4 promoter-driven Id1 transgene. We found that Treg cells continued to accumulate as Id1 transgenic mice aged, resulting in a significant increase in Treg cell counts in the thymus as well as in the periphery compared with wild-type controls. Data from mixed bone marrow assays suggest that Id1 acts intrinsically on developing Treg cells. We made a connection between Id1 expression and CD28 costimulatory signaling because Id1 transgene expression facilitated the formation of Treg precursors in CD28(-/-) mice and the in vitro differentiation of Treg cells on thymic dendritic cells despite the blockade of costimulation by anti-CD80/CD86. Id1 expression also allowed in vitro Treg differentiation without anti-CD28 costimulation, which was at least in part due to enhanced production of IL-2. Notably, with full strength of costimulatory signals, however, Id1 expression caused modest but significant suppression of Treg induction. Finally, we demonstrate that Id1 transgenic mice were less susceptible to the induction of experimental autoimmune encephalomyelitis, thus illustrating the impact of Id1-mediated augmentation of Treg cell levels on cellular immunity.
Collapse
Affiliation(s)
- Chen Liu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | - Sen Yu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Rong Jin
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Hui Tang
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yuan-Feng Liu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiao-Hong Sun
- Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Yu Zhang
- Department of Immunology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
8
|
Lai J, Cai Q, Biel MA, Wang C, Hu X, Wang S, Lin J. Id1 and NF-κB promote the generation of CD133+ and BMI-1+ keratinocytes and the growth of xenograft tumors in mice. Int J Oncol 2014; 44:1481-9. [PMID: 24572994 PMCID: PMC4027876 DOI: 10.3892/ijo.2014.2309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/21/2014] [Indexed: 01/29/2023] Open
Abstract
Id1 and NF-κB are highly expressed in oral squamous cell carcinoma (OSCC). Whether they have a synergistic role in the carcinogenesis of OSCC is unclear. The current study was designed to demonstrate the synergy of both Id1 and NF-κB in the underlying disease mechanisms of OSCC using in vitro and in vivo animal models. Id1 and NF-κB strengthened the expression of both CD133 and BMI-1 in OSCC cell cultures. CD133(+) and BMI-1(+) keratinocytes from OSCC tissues and cell cultures initiated the growth of xenograft tumors in SCID/Beige mice. Id1 and NF-κB regulate the expression of CD133 and BMI-1 in an additive or synergistic manner in OSCC, which is associated with the generation of naïve and self-renewable keratinocytes and initiate the growth of xenograft tumors in vivo.
Collapse
Affiliation(s)
- Jinhuo Lai
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Qian Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, P.R. China
| | - Merrill A Biel
- Ear, Nose and Throat Specialty Care of Minnesota, Minneapolis, MN, USA
| | - Chuan Wang
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Xiaohua Hu
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Shaoyuan Wang
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Jizhen Lin
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
9
|
Abstract
The family of inhibitor of differentiation (Id) proteins is a group of evolutionarily conserved molecules, which play important regulatory roles in organisms ranging from Drosophila to humans. Id proteins are small polypeptides harboring a helix-loop-helix (HLH) motif, which are best known to mediate dimerization with other basic HLH proteins, primarily E proteins. Because Id proteins do not possess the basic amino acids adjacent to the HLH motif necessary for DNA binding, Id proteins inhibit the function of E protein homodimers, as well as heterodimers between E proteins and tissue-specific bHLH proteins. However, Id proteins have also been shown to have E protein-independent functions. The Id genes are broadly but differentially expressed in a variety of cell types. Transcription of the Id genes is controlled by transcription factors such as C/EBPβ and Egr as well as by signaling pathways triggered by different stimuli, which include bone morphogenic proteins, cytokines, and ligands of T cell receptors. In general, Id proteins are capable of inhibiting the differentiation of progenitors of different cell types, promoting cell-cycle progression, delaying cellular senescence, and facilitating cell migration. These properties of Id proteins enable them to play significant roles in stem cell maintenance, vasculogenesis, tumorigenesis and metastasis, the development of the immune system, and energy metabolism. In this review, we intend to highlight the current understanding of the function of Id proteins and discuss gaps in our knowledge about the mechanisms whereby Id proteins exert their diverse effects in multiple cellular processes.
Collapse
Affiliation(s)
- Flora Ling
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bin Kang
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiao-Hong Sun
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
10
|
Liu C, Jin R, Wang HC, Tang H, Liu YF, Qian XP, Sun XY, Ge Q, Sun XH, Zhang Y. Id1 expression promotes peripheral CD4+ T cell proliferation and survival upon TCR activation without co-stimulation. Biochem Biophys Res Commun 2013; 436:47-52. [PMID: 23707719 DOI: 10.1016/j.bbrc.2013.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/05/2013] [Indexed: 01/10/2023]
Abstract
Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4+ cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.
Collapse
Affiliation(s)
- Chen Liu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Peng X, Wang Y, Kolli S, Deng J, Li L, Wang Z, Raj JU, Gou D. Physical and functional interaction between the ID1 and p65 for activation of NF-κB. Am J Physiol Cell Physiol 2012; 303:C267-77. [PMID: 22592405 PMCID: PMC3423031 DOI: 10.1152/ajpcell.00365.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 05/14/2012] [Indexed: 01/27/2023]
Abstract
Inhibitor of differentiation or DNA binding-1 (ID1) is an important helix-loop-helix (HLH) transcription factor involved in diverse biological functions including cell differentiation, proliferation, apoptosis, and senescence. Recently, it was reported that ID1 can activate the NF-κB signaling pathway in a variety of cancer cells and a T cell line, but the mechanisms involved in ID1-mediated transactivation of NF-κB are not clear. In this study, we demonstrate by both in vitro pull-down assays and a cell-based in vivo two-hybrid system that ID1-mediated NF-κB activation is due to its physical interaction with p65. We have identified that the transcriptional activation domain (TAD) in p65 and the HLH domain in ID1 are vital for their interaction. Interestingly, a single site mutation (Leu76) in the HLH domain of ID1 protein drastically decreased its ability to bind with p65. Using a dual-luciferase assay, we demonstrated that the interaction between ID1 and p65 modulates activation of the NF-κB signaling pathway in vivo. In addition, we demonstrated that, by affecting the nuclear translocation of p65, ID1 is essential in regulating TNF-α-induced p65 recruitment to its downstream target, the cellular inhibitor of apoptosis protein 2 (cIAP2) promoter.
Collapse
Affiliation(s)
- Xiao Peng
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Y, Wen X, Liu Y. Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis. Kidney Int 2012; 81:880-891. [PMID: 22278018 PMCID: PMC3326205 DOI: 10.1038/ki.2011.469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During renal fibrogenesis, tubular epithelial-mesenchymal transition is closely associated with peritubular inflammation; however, it is not clear whether these two processes are connected. We previously identified the inhibitor of differentiation-1 (Id1), a dominant negative antagonist of basic helix-loop-helix transcription factors, as a major trigger of tubular cell dedifferentiation after injury. Id1 was induced selectively in degenerated proximal tubule and collecting duct epithelia after injury and was present in both the cytoplasm and nucleus, suggesting shuttling between these two compartments. Interestingly, the upregulation of Id1 was associated with peritubular inflammation in mouse and human nephropathies. In vitro, Id1 potentiated NF-κB signaling and augmented RANTES expression in kidney epithelial cells, which led to an enhanced recruitment of inflammatory cells. Id1 also induced Snail1 expression and triggered tubular epithelial dedifferentiation. In vivo, genetic ablation of Id1 in mice reduced peritubular inflammation and decreased tubular expression of RANTES following ureteral obstruction. Mice lacking Id1 were also protected against myofibroblast activation and matrix expression, leading to a reduced total collagen deposition in obstructive nephropathy. Thus, these results indicate that Id1 shuttles between nucleus and cytoplasm, and promotes peritubular inflammation and tubular epithelial dedifferentiation, suggesting that these two events are intrinsically coupled during renal fibrogenesis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Case-Control Studies
- Cell Dedifferentiation
- Cell Line
- Cell Nucleus/metabolism
- Chemokine CCL5/metabolism
- Collagen/metabolism
- Cytoplasm/metabolism
- Epithelial-Mesenchymal Transition
- Fibrosis
- Humans
- Inflammation Mediators/metabolism
- Inhibitor of Differentiation Protein 1/deficiency
- Inhibitor of Differentiation Protein 1/genetics
- Inhibitor of Differentiation Protein 1/metabolism
- Kidney Tubules, Proximal/immunology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Myofibroblasts/metabolism
- NF-kappa B/metabolism
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/immunology
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Nephritis, Interstitial/prevention & control
- Signal Transduction
- Snail Family Transcription Factors
- Time Factors
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
13
|
Wang HC, Peng V, Zhao Y, Sun XH. Enhanced Notch activation is advantageous but not essential for T cell lymphomagenesis in Id1 transgenic mice. PLoS One 2012; 7:e32944. [PMID: 22393458 PMCID: PMC3290631 DOI: 10.1371/journal.pone.0032944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/02/2012] [Indexed: 01/06/2023] Open
Abstract
T cell lymphoblastic leukemia (T-ALL) is known to be associated with chromosomal abnormalities that lead to aberrant expression of a number of transcription factors such as TAL1, which dimerizes with basic helix-loop-helix (bHLH) E proteins and inhibits their function. Activated Notch receptors also efficiently induce T cell leukemogenesis in mouse models. Interestingly, gain-of-function mutations or cryptic transcription initiation of the Notch1 gene have been frequently found in both human and mouse T-ALL. However, the correlations between these alterations and overall Notch activities or leukemogenesis have not been thoroughly evaluated. Therefore, we made use of our collection of T cell lymphomas developed in transgenic mice expressing Id1, which like TAL1, inhibits E protein function. By comparing expression levels of Notch target genes in Id1-expressing tumors to those in tumors induced by a constitutively active form of Notch1, N1C, we were able to assess the overall activities of Notch pathways and conclude that the majority of Id1-expressing tumors had elevated Notch function to a varying degree. However, 26% of the Id1-expressing tumors had no evidence of enhanced Notch activation, but that did not delay the onset of tumorigenesis. Furthermore, we examined the genetic or epigenetic alterations thought to contribute to ligand-independent activation or protein stabilization of Notch1 and found that some of the Id1-expressing tumors acquired these changes, but they are not uniformly associated with elevated Notch activities in Id1 tumor samples. In contrast, N1C-expressing tumors do not harbor any PEST domain mutations nor exhibit intragenic transcription initiation. Taken together, it appears that Notch activation provides Id1-expressing tumor cells with selective advantages in growth and survival. However, this may not be absolutely essential for lymphomagenesis in Id1 transgenic mice and additional factors could also cooperate with Id1 to induce T cell lymphoma. Therefore, a broad approach is necessary in designing T-ALL therapy.
Collapse
Affiliation(s)
- Hong-Cheng Wang
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Vincent Peng
- Oklahoma School of Science and Mathematics, Oklahoma City, Oklahoma, United States of America
| | - Ying Zhao
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Xiao-Hong Sun
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all progressive chronic kidney diseases. Renal fibrosis is also a reliable predictor of prognosis and a major determinant of renal insufficiency. Irrespective of the initial causes, renal fibrogenesis is a dynamic and converging process that consists of four overlapping phases: priming, activation, execution and progression. Nonresolving inflammation after a sustained injury sets up the fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing cells from multiple sources through diverse mechanisms, including activation of interstitial fibroblasts and pericytes, phenotypic conversion of tubular epithelial and endothelial cells and recruitment of circulating fibrocytes. Upon activation, matrix-producing cells assemble a multicomponent, integrin-associated protein complex that integrates input from various fibrogenic signals and orchestrates the production of matrix components and their extracellular assembly. Multiple cellular and molecular events, such as tubular atrophy, microvascular rarefaction and tissue hypoxia, promote scar formation and ensure a vicious progression to end-stage kidney failure. This Review outlines our current understanding of the cellular and molecular mechanisms of renal fibrosis, which could offer novel insights into the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Youhua Liu
- Department of Pathology, University of Pittsburgh, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
15
|
Ronpirin C, Achariyakul M, Tencomnao T, Wongpiyabovorn J, Chaicumpa W. Up-regulation of Id1 in peripheral blood of psoriatic patients. GENETICS AND MOLECULAR RESEARCH 2010; 9:2239-47. [PMID: 21086260 DOI: 10.4238/vol9-4gmr963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although the precise causes of psoriasis are unclear, it is widely accepted that psoriasis is a disorder in which factors in the immune system, enzymes, and other biochemical substances that regulate skin cell division are impaired, leading to rapid proliferation of keratinocytes and incomplete keratinization. Expression of the helix-loop-helix transcription factor Id1 (inhibitor of differentiation/DNA binding), functioning as an inhibitor of differentiation, is known to increase in psoriatic skin. However, the molecular involvement of this particular biomarker in the psoriatic immune system remains to be elucidated. We measured Id1 mRNA expression in peripheral blood mononuclear cells (PBMCs) of psoriatic patients and healthy controls using semi-quantitative reverse transcriptase-PCR. The normalized level of Id1 transcripts in psoriatic patients was about 2-fold higher than that in controls (P < 0.05). When we examined the proliferation rate of PBMCs, the stimulation index obtained from the phytohemagglutinin stimulation assay was not significantly different in psoriatic patients. In patients with psoriasis, there was no correlation between the stimulation index and the psoriasis area severity index. We suggest that Id1 has a role in causing psoriatic immune cell symptoms.
Collapse
Affiliation(s)
- C Ronpirin
- Department of Preclinical Science, Thammasat University, Pathumthani, Thailand.
| | | | | | | | | |
Collapse
|
16
|
Id1, Id2 and Id3 are induced in rat melanotrophs of the pituitary gland by dopamine suppression under continuous stress. Neuroscience 2010; 169:1527-34. [PMID: 20600660 DOI: 10.1016/j.neuroscience.2010.06.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/10/2010] [Accepted: 06/15/2010] [Indexed: 12/24/2022]
Abstract
In rats under continuous stress (CS) there is decreased hypothalamic dopaminergic innervation to the intermediate lobe (IL) of the pituitary gland, which causes hyperactivation and subsequent degeneration of melanotrophs in the IL. In this study, we investigated the molecular basis for the changes that occur in melanotrophs during CS. Using microarray analysis, we identified several genes differentially expressed in the IL under CS conditions. Among the genes up-regulated under CS conditions, we focused on the inhibitor of DNA binding/differentiation (Id) family of dominant negative basic helix-loop-helix (bHLH) transcription factors. RT-PCR, Western blotting and in situ hybridization confirmed the significant inductions of Id1, Id2 and Id3 in the IL of CS rats. Administration of the dopamine D2 receptor agonist bromocriptine prevented the inductions of Id1-3 in the IL of CS rats, whereas application of the dopamine D2 antagonist sulpiride induced significant expressions of Id1-3 in the IL of normal rats. Moreover, an in vitro study using primary cultured melanotrophs demonstrated a direct effect on Id1-3 inductions by dopamine suppression. These results suggest that the decreased dopamine levels in the IL during CS induce Id1-3 expressions in melanotrophs. Because Id family members inhibit various bHLH transcription factors, it is conceivable that the induced Id1-3 would cooperatively modulate gene expressions in melanotrophs under CS conditions to induce hormone secretion.
Collapse
|
17
|
Id1 attenuates Notch signaling and impairs T-cell commitment by elevating Deltex1 expression. Mol Cell Biol 2009; 29:4640-52. [PMID: 19564409 DOI: 10.1128/mcb.00119-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete inhibition of E protein transcription factors by Id1 blocks the developmental transition of CD4/CD8 double-negative 1 (DN1; CD44(+) CD25(-)) thymocytes to the DN2 (CD44(+) CD25(+)) stage. To understand the underlying mechanisms, we observed that mRNA levels of Deltex1, as well as Deltex4, were dramatically elevated in Id1-expressing thymocytes, which could result in developmental arrest by attenuating Notch function. In support of this hypothesis, we found that Deltex1 ablation enabled Id1-expressing progenitors to differentiate to the DN3 (CD44(-) CD25(+)) stage, which was accompanied by enhanced Notch1 expression in T-cell progenitors. Consistently, constitutive activation of Notch1 drove the differentiation of Id1-expressing progenitors to the DN3 stage. Furthermore, we showed that Gfi1b levels decreased, whereas GATA3 levels increased in Id1 transgenic thymocytes. When overexpressed, GATA3 was able to upregulate Deltex1 transcription. Thus, T-cell commitment may be controlled by the interplay among E proteins, Gfi1b, and GATA3 transcription regulators, which influence Notch function through the expression of Deltex1.
Collapse
|
18
|
Elmouelhi N, Aich U, Paruchuri VDP, Meledeo MA, Campbell CT, Wang JJ, Srinivas R, Khanna HS, Yarema KJ. Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery. J Med Chem 2009; 52:2515-30. [PMID: 19326913 DOI: 10.1021/jm801661m] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigates the breadth of cellular responses engendered by short chain fatty acid (SCFA)-hexosamine hybrid molecules, a class of compounds long used in "metabolic glycoengineering" that are now emerging as drug candidates. First, a "mix and match" strategy showed that different SCFA (n-butyrate and acetate) appended to the same core sugar altered biological activity, complementing previous results [Campbell et al. J. Med. Chem. 2008, 51, 8135-8147] where a single type of SCFA elicited distinct responses. Microarray profiling then compared transcriptional responses engendered by regioisomerically modified ManNAc, GlcNAc, and GalNAc analogues in MDA-MB-231 cells. These data, which were validated by qRT-PCR or Western analysis for ID1, TP53, HPSE, NQO1, EGR1, and VEGFA, showed a two-pronged response where a core set of genes was coordinately regulated by all analogues while each analogue simultaneously uniquely regulated a larger number of genes. Finally, AutoDock modeling supported a mechanism where the analogues directly interact with elements of the NF-kappaB pathway. Together, these results establish the SCFA-hexosamine template as a versatile platform for modulating biological activity and developing new therapeutics.
Collapse
Affiliation(s)
- Noha Elmouelhi
- The Department of Biomedical Engineering, 106A Clark Hall, 3400 North Charles Street, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The nuclear factor kappa B (NF-kappaB) transcription factors are activated by a range of stimuli including pro-inflammatory cytokines. Active NF-kappaB regulates the expression of genes involved in inflammation and cell survival and aberrant NF-kappaB activity plays pathological roles in certain types of cancer and diseases characterized by chronic inflammation. NF-kappaB signaling is an attractive target for the development of novel anti-inflammatory or anti-cancer drugs and we discuss here how the method of peptide transduction has been used to specifically target NF-kappaB. Peptide transduction relies on the ability of certain small cell-penetrating peptides (CPPs) to enter cells, and a panel of CPP-linked inhibitors (CPP-Is) has been developed to directly inhibit NF-kappaB signaling. Remarkably, several of these NF-kappaB-targeting CPP-Is are effective in vivo and therefore offer exciting potential in the clinical setting.
Collapse
Affiliation(s)
- J. S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children’s Hospital of Philadelphia 3615 Civic Center Blvd., ARC 1016H, Philadelphia, PA 19104 USA
| | - M. J. May
- Department of Animal Biology and The Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street (OVH 200E), Philadelphia, PA 19104 USA
| |
Collapse
|
20
|
Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. Exp Hematol 2008; 36:1297-308. [DOI: 10.1016/j.exphem.2008.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/05/2008] [Accepted: 05/09/2008] [Indexed: 11/18/2022]
|
21
|
NF-kappaB activation by the viral oncoprotein StpC enhances IFN-gamma production in T cells. Immunol Cell Biol 2008; 86:622-30. [PMID: 18560378 DOI: 10.1038/icb.2008.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferon-gamma (IFN-gamma) is an essential regulator of innate and adaptive immune responses and a hallmark of the Th1 T-cell subset. It is produced at high levels by human T lymphocytes upon transformation with Herpesvirus saimiri, which depends on the expression of the viral oncoproteins saimiri transformation-associated protein of subgroup C (StpC) and tyrosine kinase-interacting protein (Tip). Here, we show that IFN-gamma production was induced by Tip in Jurkat T cells. StpC by itself did not affect IFN-gamma expression, but enhanced the effect of Tip. Our results substantiated the findings that StpC induces NF-kappaB activation and demonstrated that other transcription factors, including NFAT, AP-1 and serum response element regulators, were not activated by StpC in unstimulated T cells. Studies using StpC mutants deficient in NF-kappaB activation, dominant negative IkappaBalpha and constitutively active IKK2, established the importance of NF-kappaB in StpC-mediated upregulation of IFN-gamma production. These observations suggest that NF-kappaB induction by StpC contributes to the Th1-like phenotype of virus-transformed human T cells.
Collapse
|
22
|
Yang Y, Wang HC, Sun XH. Id1 induces apoptosis through inhibition of RORgammat expression. BMC Immunol 2008; 9:20. [PMID: 18489764 PMCID: PMC2408562 DOI: 10.1186/1471-2172-9-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 05/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Basic helix-loop-helix E proteins are transcription factors that play crucial roles in T cell development by controlling thymocyte proliferation, differentiation and survival. E protein functions can be repressed by their naturally occurring inhibitors, Id proteins (Id1-4). Transgenic expression of Id1 blocks T cell development and causes massive apoptosis of developing thymocytes. However, the underlying mechanisms are not entirely understood due to relatively little knowledge of the target genes regulated by E proteins. RESULTS We designed a unique strategy to search for genes directly controlled by E proteins and found RORgammat to be a top candidate. Using microarray analyses and reverse-transcriptase PCR assays, we showed that Id1 expression diminished RORgammat mRNA levels in T cell lines and primary thymocytes while induction of E protein activity restored RORgammat expression. E proteins were found to specifically bind to the promoter region of RORgammat, suggesting their role in activating transcription of the gene. Functional significance of E protein-controlled RORgammat expression was established based on the finding that RORgammat rescued apoptosis caused by Id1 overexpression. Furthermore, expression of RORgammat prevented Id1-induced p38 MAP kinase hyper-activation. CONCLUSION These results suggest that E protein-dependent RORgammat gene expression aids the survival of developing thymocytes, which provides a possible explanation for the massive apoptosis found in Id1 transgenic mice.
Collapse
Affiliation(s)
- Yuanzheng Yang
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
23
|
Park J, Kim M, Na G, Jeon I, Kwon YK, Kim JH, Youn H, Koo Y. Glucocorticoids modulate NF-kappaB-dependent gene expression by up-regulating FKBP51 expression in Newcastle disease virus-infected chickens. Mol Cell Endocrinol 2007; 278:7-17. [PMID: 17870233 DOI: 10.1016/j.mce.2007.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 07/21/2007] [Accepted: 08/06/2007] [Indexed: 01/06/2023]
Abstract
FK506-binding protein 51(FKBP51, coded by FKBP5) is a co-chaperone molecule that interacts with the chaperone HSP90 and the glucocorticoid receptor (GR) in an inactive GR complex. It is a negative regulator of glucocorticoid action and is replaced by the positive regulator, FK506-binding protein 52 (FKBP52, coded by FKBP4) when hormone binds to GR, which renders the GR complex active. In this study, we found that the expression of FKBP51 mRNA in 12 organs of Newcastle disease virus (NDV)-infected chickens was robustly induced. The level of corticosterone in NDV-infected chickens was also elevated, approximately 2- to 6.5-fold in the organs compared to non-infected control chickens. The induction of FKBP51 mRNA expression was reproduced by dexamethasone treatment, indicating a role for glucocorticoids in the systemic induction of FKBP51 mRNA expression. In chicken UMNSAH/DF-1 cells, nuclear factor kappaB (NF-kappaB) was activated in an FKBP51-dependent manner. Regulation of the three NF-kappaB-dependent, anti-apoptotic genes, bcl-2, bcl-x and bfl-1/A1 was investigated in UMNSAH/DF-1 cells. Dexamethasone treatment of UMNSAH/DF-1 cells resulted in up-regulation of bcl-2, and down-regulation of bcl-x and bfl-1/A1. Expression of FKBP51 also resulted in down-regulation of bfl-1/A1, but had no effect on bcl-2 and bcl-x, suggesting the involvement of glucocorticoid-FKBP51-NF-kappaB signaling in the regulation of expression of bfl-1/A1 in UMNSAH/DF-1 cells. We observed organ-specific up- or down-regulation of expression of, bcl-2, bcl-x and bfl-1/A1 in NDV-infected and dexamethasone-treated chickens. Differential regulation of bfl-1/A1, bcl-2 and bcl-x upon NDV-infection and dexamethasone treatment suggests that additional factors are involved in the regulation of these genes. These results suggest that systemic elevation of FKBP51 in NDV-infected chickens activates NF-kappaB, which cooperates with other factors to regulate the expression of NF-kappaB-dependent genes.
Collapse
Affiliation(s)
- Jiyoung Park
- School of Biotechnology and Biomedical Science, Inje University, Gimhae 621-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|