1
|
Van Genechten W, Vergauwen R, Van Dijck P. The intricate link between iron, mitochondria and azoles in Candida species. FEBS J 2024; 291:3568-3580. [PMID: 37846606 DOI: 10.1111/febs.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Invasive fungal infections are rapidly increasing, and the opportunistic pathogenic Candida species are the fourth most common cause of nosocomial systemic infections. The current antifungal classes, of which azoles are the most widely used, all have shortcomings. Azoles are generally considered fungistatic rather than fungicidal, they do not actively kill fungal cells and therefore resistance against azoles can be rapidly acquired. Combination therapies with azoles provide an interesting therapeutic outlook and agents limiting iron are excellent candidates. We summarize how iron is acquired by the host and transported towards both storage and iron-utilizing organelles. We indicate whether these pathways alter azole susceptibility and/or tolerance, to finally link these transport mechanisms to mitochondrial iron availability. In this review, we highlight putative novel intracellular iron shuffling mechanisms and indicate that mitochondrial iron dynamics in relation to azole treatment and iron limitation is a significant knowledge gap.
Collapse
Affiliation(s)
- Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
| |
Collapse
|
2
|
Guo L, Zheng L, Dong Y, Wang C, Deng H, Wang Z, Xu Y. Miconazole induces aneuploidy-mediated tolerance in Candida albicans that is dependent on Hsp90 and calcineurin. Front Cell Infect Microbiol 2024; 14:1392564. [PMID: 38983116 PMCID: PMC11231705 DOI: 10.3389/fcimb.2024.1392564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations.
Collapse
Affiliation(s)
- Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubo Dong
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Huijie Deng
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Zongjie Wang
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| | - Yi Xu
- Department of Pharmacy, The 960th Hospital of PLA, Jinan, China
| |
Collapse
|
3
|
Schuster M, Kilaru S, Steinberg G. Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi. Nat Commun 2024; 15:4357. [PMID: 38821954 PMCID: PMC11143370 DOI: 10.1038/s41467-024-48157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Triazoles are widely used to control pathogenic fungi. They inhibit the ergosterol biosynthetic pathway, but the precise mechanisms leading to fungicidal activities in many fungal pathogens are poorly understood. Here, we elucidate the mode of action of epoxiconazole and metconazole in the wheat pathogen Zymoseptoria tritici and the rice blast fungus Magnaporthe oryzae. We show that both azoles have fungicidal activity and reduce fluidity, but not integrity, of the plasma membrane. This impairs localisation of Cdc15-like F-BAR proteins, resulting in defective actin ring assembly and incomplete septation. However, mutant studies and pharmacological experiments in vitro and in planta show that azole lethality is due to a combination of reactive oxygen species-induced apoptosis and macroautophagy. Simultaneous inhibition of both programmed cell death pathways abolishes azole-induced cell death. Other classes of ergosterol biosynthesis inhibitors also induce apoptosis and macroautophagy, suggesting that activation of these two cell death pathways is a hallmark of ergosterol synthesis-targeting fungicides. This knowledge will inform future crop protection strategies.
Collapse
|
4
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
5
|
Savin N, Erofeev A, Timoshenko R, Vaneev A, Garanina A, Salikhov S, Grammatikova N, Levshin I, Korchev Y, Gorelkin P. Investigation of the Antifungal and Anticancer Effects of the Novel Synthesized Thiazolidinedione by Ion-Conductance Microscopy. Cells 2023; 12:1666. [PMID: 37371136 DOI: 10.3390/cells12121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In connection with the emergence of new pathogenic strains of Candida, the search for more effective antifungal drugs becomes a challenge. Part of the preclinical trials of such drugs can be carried out using the innovative ion-conductance microscopy (ICM) method, whose unique characteristics make it possible to study the biophysical characteristics of biological objects with high accuracy and low invasiveness. We conducted a study of a novel synthesized thiazolidinedione's antimicrobial (for Candida spp.) and anticancer properties (on samples of the human prostate cell line PC3), and its drug toxicity (on a sample of the human kidney cell line HEK293). We used a scanning ion-conductance microscope (SICM) to obtain the topography and mechanical properties of cells and an amperometric method using Pt-nanoelectrodes to register reactive oxygen species (ROS) expression. All data and results are obtained and presented for the first time.
Collapse
Affiliation(s)
- Nikita Savin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Roman Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Alexander Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Anastasiia Garanina
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Sergey Salikhov
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | | | - Igor Levshin
- G. F. Gauze Research Institute for New Antibiotics, Moscow 119021, Russia
| | - Yuri Korchev
- Faculty of Medicine, Imperial College London, London SW7 2DD, UK
| | - Petr Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| |
Collapse
|
6
|
Zhang D, Yang Y, Yao B, Hu T, Ma Z, Shi W, Ye Y. Curcumin inhibits Aspergillus flavus infection and aflatoxin production possibly by inducing ROS burst. Food Res Int 2023; 167:112646. [PMID: 37087237 DOI: 10.1016/j.foodres.2023.112646] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Aspergillus flavus contamination is common in various food and feed ingredients, and it poses to serious threats to human and animal health. Curcumin is a plant-derived polyphenol that exhibits antifungal activity. In this study, the antifungal effect of curcumin on A. flavus was evaluated, and the underlying mechanism was investigated. Curcumin effectively decreased aflatoxin B1 synthesis and suppressed A. flavus infection in peanut. Curcumin inhibited the mycelial growth and sporulation of A. flavus. Ergosterol biosynthesis in A. flavus was suppressed, and cell membrane permeability was enhanced. The pathogenicity of A. flavus was also reduced by curcumin treatment. Curcumin induced ROS burst in the hyphae of A. flavus, and those damages could be reversed by exogenous superoxide dismutase, suggesting that curcumin inhibited A. flavus possibly via inducing oxidative stress. These results indicate that curcumin has the potential to be used as a preservative to control A. flavus contamination in food and feedstuff.
Collapse
|
7
|
Luo H, Wang J, Goes JI, Gomes HDR, Al-Hashmi K, Tobias C, Koerting C, Lin S. A grazing-driven positive nutrient feedback loop and active sexual reproduction underpin widespread Noctiluca green tides. ISME COMMUNICATIONS 2022; 2:103. [PMID: 37938758 PMCID: PMC9723592 DOI: 10.1038/s43705-022-00187-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2023]
Abstract
The mixoplankton green Noctiluca scintillans (gNoctiluca) is known to form extensive green tides in tropical coastal ecosystems prone to eutrophication. In the Arabian Sea, their recent appearance and annual recurrence have upended an ecosystem that was once exclusively dominated by diatoms. Despite evidence of strong links to eutrophication, hypoxia and warming, the mechanisms underlying outbreaks of this mixoplanktonic dinoflagellate remain uncertain. Here we have used eco-physiological measurements and transcriptomic profiling to ascribe gNoctiluca's explosive growth during bloom formation to the form of sexual reproduction that produces numerous gametes. Rapid growth of gNoctiluca coincided with active ammonium and phosphate release from gNoctiluca cells, which exhibited high transcriptional activity of phagocytosis and metabolism generating ammonium. This grazing-driven nutrient flow ostensibly promotes the growth of phytoplankton as prey and offers positive support successively for bloom formation and maintenance. We also provide the first evidence that the host gNoctiluca cell could be manipulating growth of its endosymbiont population in order to exploit their photosynthetic products and meet critical energy needs. These findings illuminate gNoctiluca's little known nutritional and reproductive strategies that facilitate its ability to form intense and expansive gNoctiluca blooms to the detriment of regional water, food and the socio-economic security in several tropical countries.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, China
| | - Joaquim I Goes
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, 10964, USA.
| | - Helga do R Gomes
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, 10964, USA
| | - Khalid Al-Hashmi
- Department of Marine Sciences and Fisheries, Sultan Qaboos University, Muscat, Oman
| | - Craig Tobias
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Claudia Koerting
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
8
|
Carmo PHF, Freitas GJC, Dornelas JCM, Almeida BCT, Baltazar LM, Ferreira GF, Peres NTA, Santos DA. Reactive oxygen and nitrogen species are crucial for the antifungal activity of amorolfine and ciclopirox olamine against the dermatophyte Trichophyton interdigitale. Med Mycol 2022; 60:6650890. [PMID: 35896502 DOI: 10.1093/mmy/myac058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022] Open
Abstract
Onychomycosis is a nail infection caused by Trichophyton interdigitale and other fungi, which can be treated with topical amorolfine (AMR) and ciclopirox olamine (CPX). Although these drugs are widely used, little is known about the role of reactive oxygen (ROS) and nitrogen (RNS) in their mechanism of action. Aiming to better understand the effects of AMR and CPX in dermatophytes, we evaluated whether they act through the production of ROS and peroxynitrite (PRN). We tested a set of strains, all susceptible to AMR and CPX, and these antifungals significantly reduced T. interdigitale viability within 24 hours. This effect occurred concomitantly with reduced ergosterol, increased production of ROS and PRN, and consequently increased lipid peroxidation. Together, these mechanisms lead to cell damage and fungal death. These fungicidal effects were abolished when PRN and superoxide scavengers were used in the assays, demonstrating the role of these species in the mechanism of action. We also studied the antioxidant system when T. interdigitale was exposed to AMR and CPX. Interestingly, superoxide dismutase and catalase inhibition lead to altered ROS and PRN production, lipid peroxidation, and ergosterol levels. In fact, the combination of AMR or CPX with a superoxide dismutase inhibitor was antagonistic. Together, these data demonstrate the importance of ROS and PRN in the antifungal action of AMR and CPX against the evaluated T. interdigitale strains.
Collapse
Affiliation(s)
- Paulo H F Carmo
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Gustavo J C Freitas
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - João C M Dornelas
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Bruna C T Almeida
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Ludmila M Baltazar
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Gabriella F Ferreira
- Programa Multicêntrico de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, Rua São Paulo, 745, Centro, 35010-180, Governador Valadares, MG, Brazil
| | - Nalu T A Peres
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Sellers-Moya Á, Nuévalos M, Molina M, Martín H. Clotrimazole-Induced Oxidative Stress Triggers Novel Yeast Pkc1-Independent Cell Wall Integrity MAPK Pathway Circuitry. J Fungi (Basel) 2021; 7:jof7080647. [PMID: 34436186 PMCID: PMC8399625 DOI: 10.3390/jof7080647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
Azoles are one of the most widely used drugs to treat fungal infections. To further understand the fungal response to azoles, we analyzed the MAPK circuitry of the model yeast Saccharomyces cerevisiae that operates under treatment with these antifungals. Imidazoles, and particularly clotrimazole, trigger deeper changes in MAPK phosphorylation than triazoles, involving a reduction in signaling through the mating pathway and the activation of the MAPKs Hog1 and Slt2 from the High-Osmolarity Glycerol (HOG) and the Cell Wall Integrity (CWI) pathways, respectively. Clotrimazole treatment leads to actin aggregation, mitochondrial alteration, and oxidative stress, which is essential not only for the activation of both MAPKs, but also for the appearance of a low-mobility form of Slt2 caused by additional phosphorylation to that occurring at the conserved TEY activation motif. Clotrimazole-induced ROS production and Slt2 phosphorylation are linked to Tpk3-mediated PKA activity. Resistance to clotrimazole depends on HOG and CWI-pathway-mediated stress responses. However, Pkc1 and other proteins acting upstream in the pathway are not critical for the activation of the Slt2 MAPK module, suggesting a novel rewiring of signaling through the CWI pathway. We further show that the strong impact of azole treatment on MAPK signaling is conserved in other yeast species.
Collapse
Affiliation(s)
| | | | - María Molina
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-3941888 (M.M. & H.M.)
| | - Humberto Martín
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-3941888 (M.M. & H.M.)
| |
Collapse
|
10
|
Watchaputi K, Somboon P, Phromma-in N, Ratanakhanokchai K, Soontorngun N. Actin cytoskeletal inhibitor 19,20-epoxycytochalasin Q sensitizes yeast cells lacking ERG6 through actin-targeting and secondarily through disruption of lipid homeostasis. Sci Rep 2021; 11:7779. [PMID: 33833332 PMCID: PMC8032726 DOI: 10.1038/s41598-021-87342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Repetitive uses of antifungals result in a worldwide crisis of drug resistance; therefore, natural fungicides with minimal side-effects are currently sought after. This study aimed to investigate antifungal property of 19, 20-epoxycytochalasin Q (ECQ), derived from medicinal mushroom Xylaria sp. BCC 1067 of tropical forests. In a model yeast Saccharomyces cerevisiae, ECQ is more toxic in the erg6∆ strain, which has previously been shown to allow higher uptake of many hydrophilic toxins. We selected one pathway to study the effects of ECQ at very high levels on transcription: the ergosterol biosynthesis pathway, which is unlikely to be the primary target of ECQ. Ergosterol serves many functions that cholesterol does in human cells. ECQ's transcriptional effects were correlated with altered sterol and triacylglycerol levels. In the ECQ-treated Δerg6 strain, which presumably takes up far more ECQ than the wild-type strain, there was cell rupture. Increased actin aggregation and lipid droplets assembly were also found in the erg6∆ mutant. Thereby, ECQ is suggested to sensitize yeast cells lacking ERG6 through actin-targeting and consequently but not primarily led to disruption of lipid homeostasis. Investigation of cytochalasins may provide valuable insight with potential biopharmaceutical applications in treatments of fungal infection, cancer or metabolic disorder.
Collapse
Affiliation(s)
- Kwanrutai Watchaputi
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Pichayada Somboon
- grid.419784.70000 0001 0816 7508Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, 10520 Thailand
| | - Nipatthra Phromma-in
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Khanok Ratanakhanokchai
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Nitnipa Soontorngun
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| |
Collapse
|
11
|
Tits J, Cools F, De Cremer K, De Brucker K, Berman J, Verbruggen K, Gevaert B, Cos P, Cammue BPA, Thevissen K. Combination of Miconazole and Domiphen Bromide Is Fungicidal against Biofilms of Resistant Candida spp. Antimicrob Agents Chemother 2020; 64:e01296-20. [PMID: 32690639 PMCID: PMC7508569 DOI: 10.1128/aac.01296-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence and recurrence of mucosal biofilm-related Candida infections, such as oral and vulvovaginal candidiasis, are serious clinical issues. Vaginal infections caused by Candida spp., for example, affect 70 to 75% of women at least once during their lives. Miconazole (MCZ) is the preferred topical treatment against these fungal infections, yet it has only moderate antibiofilm activity. Through screening of a drug-repurposing library, we identified the quaternary ammonium compound domiphen bromide (DB) as an MCZ potentiator against Candida biofilms. DB displayed synergistic anti-Candida albicans biofilm activity with MCZ, reducing the number of viable biofilm cells 1,000-fold. In addition, the MCZ-DB combination also resulted in significant killing of biofilm cells of azole-resistant C. albicans, C. glabrata, and C. auris isolates. In vivo, the MCZ-DB combination had significantly improved activity in a vulvovaginal candidiasis rat model compared to that of single-compound treatments. Data from an artificial evolution experiment indicated that the development of resistance against the combination did not occur, highlighting the potential of MCZ-DB combination therapy to treat Candida biofilm-related infections.
Collapse
Affiliation(s)
- Jana Tits
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Freya Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Lam PL, Wong MM, Hung LK, Yung LH, Tang JCO, Lam KH, Chung PY, Wong WY, Ho YW, Wong RSM, Gambari R, Chui CH. Miconazole and terbinafine induced reactive oxygen species accumulation and topical toxicity in human keratinocytes. Drug Chem Toxicol 2020; 45:834-838. [PMID: 32538189 DOI: 10.1080/01480545.2020.1778019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There are an estimated 1 billion cases of superficial fungal infection globally. Fungal pathogens form biofilms within wounds and delay the wound healing process. Miconazole and terbinafine are commonly used to treat fungal infections. They induce the accumulation of reactive oxygen species (ROS) in fungi, resulting in the death of fungal cells. ROS are highly reactive molecules, such as oxygen (O2), superoxide anion (O2•-), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH). Although ROS generation is useful for killing pathogenic fungi, it is cytotoxic to human keratinocytes. To the best of our knowledge, the effect of miconazole and terbinafine on HaCaT cells has not been studied with respect to intracellular ROS stimulation. We hypothesized that miconazole and terbinafine have anti-wound healing effects on skin cells when used in antifungal treatment because they generate ROS in fungal cells. We used sulforhodamine B protein staining to investigate cytotoxicity and 2',7'-dichlorofluorescein diacetate to determine ROS accumulation at the 50% inhibitory concentrations of miconazole and terbinafine in HaCaT cells. Our preliminary results showed that topical treatment with miconazole and terbinafine induced cytotoxic responses, with miconazole showing higher cytotoxicity than terbinafine. Both the treatments stimulated ROS in keratinocytes, which may induce oxidative stress and cell death. This suggests a negative correlation between intracellular ROS accumulation in keratinocytes treated with miconazole or terbinafine and the healing of fungi-infected skin wounds.
Collapse
Affiliation(s)
- P-L Lam
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China
| | - M-M Wong
- Research Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - L-K Hung
- Research Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - L-H Yung
- Research Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - J C-O Tang
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China
| | - K-H Lam
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China
| | - P-Y Chung
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China
| | - W-Y Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China
| | - Y-W Ho
- Allways Health Care Medical Centre, Tsuen Wan, Hong Kong, China
| | - R S-M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - R Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - C-H Chui
- Research Development Division, Kamford Genetics Company Limited, Hong Kong, China.,Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Bencova A, Goffa E, Morvova M, Valachovic M, Griač P, Toth Hervay N, Gbelska Y. The Absence of PDR16 Gene Restricts the Overexpression of CaSNQ2 Gene in the Presence of Fluconazole in Candida albicans. Mycopathologia 2020; 185:455-465. [PMID: 32451851 DOI: 10.1007/s11046-020-00459-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023]
Abstract
In yeast, the PDR16 gene encodes one of the PITP proteins involved in lipid metabolism and is regarded as a factor involved in clinical azole resistance of fungal pathogens. In this study, we prepared Candida albicans CaPDR16/pdr16Δ and Capdr16Δ/Δ heterozygous and homozygous mutant strains and assessed their responses to different stresses. The CaPDR16 deletion strains exhibited increased susceptibility to antifungal azoles and acetic acid. The addition of Tween80 restored the growth of Capdr16 mutants in the presence of azoles. However, the PDR16 gene deletion has not remarkable influence on sterol profile or membrane properties (membrane potential, anisotropy) of Capdr16Δ and Capdr16Δ/Δ mutant cells. Changes in halotolerance of C. albicans pdr16 deletion mutants were not observed. Fluconazole treatment leads to increased expression of ERG genes both in the wild-type and Capdr16Δ and Capdr16Δ/Δ mutant cells, and the amount of ergosterol and its precursors remain comparable in all three strains tested. Fluconazole treatment induced the expression of ATP-binding cassette transporter gene CaSNQ2 and MFS transporter gene CaTPO3 in the wild-type strain but not in the Capdr16Δ and Capdr16Δ/Δ mutants. The expression of CaSNQ2 gene markedly increased also in cells treated with hydrogen peroxide irrespective of the presence of CaPdr16p. CaPDR16 gene thus belongs to genes whose presence is required for full induction of CaSNQ2 and CaTPO3 genes in the presence of fluconazole in C. albicans.
Collapse
Affiliation(s)
- Alexandra Bencova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| | - Eduard Goffa
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic.,Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovak Republic
| | - Marcela Morvova
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F1, 842 48, Bratislava, Slovak Republic
| | - Martin Valachovic
- Institute of Animal Biochemistry and Genetics CBS SAS, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| | - Peter Griač
- Institute of Animal Biochemistry and Genetics CBS SAS, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| | - Nora Toth Hervay
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| | - Yvetta Gbelska
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic.
| |
Collapse
|
14
|
Vieira M, Soares AMVM, Nunes B. Biomarker-based assessment of the toxicity of the antifungal clotrimazol to the microcrustacean Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103210. [PMID: 31280003 DOI: 10.1016/j.etap.2019.103210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Among the vast list of xenobiotics that may promote harmful effects in aquatic ecosystems, pharmaceuticals are currently a prominent class due to their ability to persist in these environments and also due to the lack of information regarding their effects on the different components of the aquatic biota. Antifungals in particular, despite their massive use, are not extensively studied in environbmental terms. The main objective of this study was to characterize the toxicity of the antifungal clotrimazole to the aquatic organism Daphnia magna. To attain this purpose, the effects of this compound were measured, focusing on the determination of acute lethality, and quantification of biomarkers, such as neurotoxicity (soluble cholinesterases, ChEs); and oxidative stress and metabolism (such as catalase, CAT; and glutathione-S-transferases, GSTs). The toxicity assessment with biomarkers was based on animals exposed to concentrations similar to those already found in surface waters in order to increase the ecological relevance of the obtained data. The results showed that exposure to clotrimazole was able to induce significant increases in both CAT amd GSTs activities. ChE activity was not significantly altered after clotrimazol exposure. In view of the above, it is concluded that the drug studied caused adverse effects in terms of oxidative stress, at an ecological relevant levels, showing that the presence of clotrimazol in the wild is not innocuous.
Collapse
Affiliation(s)
- Madalena Vieira
- Departamento de Química, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM-LA), Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM-LA), Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae. Sci Rep 2019; 9:9185. [PMID: 31235707 PMCID: PMC6591360 DOI: 10.1038/s41598-019-45070-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (ctt1) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H2O2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H2O2 preconditioning does not alter the resistance of ctt1Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4–8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.
Collapse
|
16
|
In Vitro Activity of Fenticonazole against Candida and Bacterial Vaginitis Isolates Determined by Mono- or Dual-Species Testing Assays. Antimicrob Agents Chemother 2019; 63:AAC.02693-18. [PMID: 31061161 DOI: 10.1128/aac.02693-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
We determined the in vitro activity of fenticonazole against 318 vaginitis isolates of Candida and bacterial species and selected 28 isolates for time-kill studies. At concentrations equal to 4× MIC, fenticonazole reached the 99.9% killing endpoint by ∼10 h for Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli and by ∼17 h for Candida albicans and Candida parapsilosis; and at concentrations equal to 8× MIC, by ∼19 and ∼20 h for Candida glabrata and Candida tropicalis, respectively. At concentrations equal to 2× MIC, fenticonazole required ∼20 h to reach the above endpoint against C. albicans in mixed culture with S. aureus, S. agalactiae, or E. coli versus ∼17 h against C. albicans in pure culture. Supra-MICs are achievable in topically treated patients' vaginal surfaces.
Collapse
|
17
|
Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B Biointerfaces 2019; 174:409-415. [DOI: 10.1016/j.colsurfb.2018.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
18
|
Genetically Compromising Phospholipid Metabolism Limits Candida albicans' Virulence. Mycopathologia 2019; 184:213-226. [PMID: 30693413 DOI: 10.1007/s11046-019-00320-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/19/2019] [Indexed: 01/06/2023]
Abstract
Perturbing ergosterol synthesis has been previously shown to reduce the virulence of Candida albicans. We tested the hypothesis that further altering cell membrane composition by limiting phospholipid synthesis or remodeling will have the same effect. To model partial inhibition, C. albicans strains independently harboring heterozygous deletion of four genes that encode for enzymes that mediate phospholipid synthesis or modification were generated. Quantitative PCR determined that heterozygous deletion routinely caused a nearly 50% reduction in the respective gene's transcript abundance. Compensatory increased transcript abundance was only found with the deletion of LRO1, a homolog of phospholipid diacylglycerol acyltransferases. Virulence of the mutants was assayed in a Caenorhabditis elegans host model. Even modestly reduced expression of LRO1, phosphatidylserine synthase (CHO1), and lysophospholipid acyltransferase (LPT1) significantly reduced virulence by 23-38%. Reintroducing a second functional allele, respectively, to all three mutants restored virulence. Heterozygous deletion of SLC1, a homolog of 1-acylglycerol-3-phosphate O-acyltransferases, did not significantly reduce virulence. Electrospray ionization tandem mass spectrometry analysis of phospholipid composition followed by principal component analysis identified comprehensive changes in the LRO1 and CHO1 deletion heterozygotes. Strikingly (p < 0.001), univariate comparisons found that both deletion heterozygotes had 20% more phosphatidylinositol, 75% less lysophosphatidylcholine, and 35% less lysophosphatidylethanolamine compared to wild type. Heterozygous deletion of LPT1 also significantly increased phosphatidylinositol abundance. No growth phenotype, including filamentation, was affected by any mutation. Together, these data predict that even partial pharmacological inhibition of Lro1p, Cho1p, and Lpt1p will limit C. albicans virulence through altering phospholipid composition.
Collapse
|
19
|
Bhakt P, Shivarathri R, Choudhary DK, Borah S, Kaur R. Fluconazole-induced actin cytoskeleton remodeling requires phosphatidylinositol 3-phosphate 5-kinase in the pathogenic yeast Candida glabrata. Mol Microbiol 2018; 110:425-443. [PMID: 30137648 PMCID: PMC6221164 DOI: 10.1111/mmi.14110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
Known azole antifungal resistance mechanisms include mitochondrial dysfunction and overexpression of the sterol biosynthetic target enzyme and multidrug efflux pumps. Here, we identify, through a genetic screen, the vacuolar membrane‐resident phosphatidylinositol 3‐phosphate 5‐kinase (CgFab1) to be a novel determinant of azole tolerance. We demonstrate for the first time that fluconazole promotes actin cytoskeleton reorganization in the emerging, inherently less azole‐susceptible fungal pathogen Candida glabrata, and genetic or chemical perturbation of actin structures results in intracellular sterol accumulation and azole susceptibility. Further, CgFAB1 disruption impaired vacuole homeostasis and actin organization, and the F‐actin‐stabilizing compound jasplakinolide rescued azole toxicity in cytoskeleton defective‐mutants including the Cgfab1Δ mutant. In vitro assays revealed that the actin depolymerization factor CgCof1 binds to multiple lipids including phosphatidylinositol 3,5‐bisphosphate. Consistently, CgCof1 distribution along with the actin filament‐capping protein CgCap2 was altered upon both CgFAB1 disruption and fluconazole exposure. Altogether, these data implicate CgFab1 in azole tolerance through actin network remodeling. Finally, we also show that actin polymerization inhibition rendered fluconazole fully and partially fungicidal in azole‐susceptible and azole‐resistant C. glabrata clinical isolates, respectively, thereby, underscoring the role of fluconazole‐effectuated actin remodeling in azole resistance.
Collapse
Affiliation(s)
- Priyanka Bhakt
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raju Shivarathri
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Deepak Kumar Choudhary
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Sapan Borah
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Miranda-Cadena K, Marcos-Arias C, Mateo E, Aguirre JM, Quindós G, Eraso E. Prevalence and antifungal susceptibility profiles of Candida glabrata, Candida parapsilosis and their close-related species in oral candidiasis. Arch Oral Biol 2018; 95:100-107. [PMID: 30096698 DOI: 10.1016/j.archoralbio.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To evaluate the importance of Candida glabrata, Candida parapsilosis and their close-related species, Candida bracarensis, Candida nivariensis, Candida metapsilosis and Candida orthopsilosis in patients with oral candidiasis and, to determine the in vitro activities of antifungal drugs currently used for the treatment. METHODS One hundred fourteen isolates of C. glabrata and 97 of C. parapsilosis, previously identified by conventional mycological methods, were analysed by molecular techniques. In vitro antifungal susceptibility to fluconazole, itraconazole, miconazole, and nystatin was evaluated by CLSI M44-A2 disk diffusion test, and by CLSI M27-A3 microdilution for fluconazole. RESULTS All C. glabrata isolates were identified as C. glabrata sensu stricto, 93 out of 97 C. parapsilosis isolates as C. parapsilosis sensu stricto, three as C. orthopsilosis and one as C. metapsilosis. Candida glabrata was mainly isolated in mixed cultures but C. parapsilosis complex was more frequent in pure culture. Candida metapsilosis and C. orthopsilosis were isolated as pure culture and both species were susceptible to all antifungal agents tested. Most C. glabrata isolates were susceptible to miconazole and nystatin, but resistant to fluconazole and itraconazole. Azole cross resistance was also observed. Candida parapsilosis isolates were susceptible to fluconazole although azole cross resistance to miconazole and itraconazole was observed. CONCLUSION This study highlights the importance of accurate identification and antifungal susceptibility testing of oral Candida isolates in order to have an in-depth understanding of the role of C. glabrata and C. parapsilosis in oral candidiasis.
Collapse
Affiliation(s)
- Katherine Miranda-Cadena
- UFI 11/25 "Microbios y Salud", Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Bilbao, Spain
| | - Cristina Marcos-Arias
- UFI 11/25 "Microbios y Salud", Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Bilbao, Spain
| | - Estibaliz Mateo
- UFI 11/25 "Microbios y Salud", Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Bilbao, Spain
| | - José Manuel Aguirre
- UFI 11/25 "Microbios y Salud", Departamento de Estomatología II, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Bilbao, Spain
| | - Guillermo Quindós
- UFI 11/25 "Microbios y Salud", Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Bilbao, Spain
| | - Elena Eraso
- UFI 11/25 "Microbios y Salud", Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Bilbao, Spain.
| |
Collapse
|
21
|
Gyanfosu L, Koffuor GA, Kyei S, Ababio-Danso B, Peprah-Donkor K, Nyansah WB, Asare F. Efficacy and safety of extemporaneously prepared miconazole eye drops in Candida albicans-induced keratomycosis. Int Ophthalmol 2017; 38:2089-2100. [PMID: 28900810 DOI: 10.1007/s10792-017-0707-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023]
Abstract
PURPOSE Extemporaneously prepared miconazole eye drops (EPMD) are used by some eye care practitioners to manage keratomycosis in Ghana. This study therefore aimed to determine the efficacy and safety of EPMD using in vitro and in vivo experimental models. METHODS The minimum inhibitory concentration (MIC) of EPMD was determined by the agar-well diffusion method. In vivo, the activity of EPMD on corneal ulcer, neovascularization, clouding, edema, carring and on keratomycotic conjunctivitis and corneal scarring (clinical features) associated with Candida albicans-induced keratomycosis in rabbits was determined by treating them with 0.034-1.08% (weight-in-volume) EPMD for a period of 30 days. The safety of EPMD on the healthy eye was determined by instilling various concentrations into the intact eye of the rabbits. RESULTS The MIC of EPMD on Candida albicans was 1.08% (zone of inhibition of 13 mm ± 0.578), which resulted in significantly better improvements (p ≤ 0.001) in clinical findings than eyes treated with sterile water (p > 0.05), and showed no significant difference (p > 0.05) compared to eyes treated with 0.3% fluconazole. There were no visible signs of ocular toxicity on instilling it into healthy eyes of rabbits. CONCLUSION The extemporaneously prepared miconazole eye drops are effective and safe to use in keratomycosis.
Collapse
Affiliation(s)
- Linda Gyanfosu
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,St. Michael's Catholic Hospital, Pramso, Bosomtwe District, Ashanti Region, Ghana
| | - George Asumeng Koffuor
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Samuel Kyei
- Department of Optometry, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ben Ababio-Danso
- St. Michael's Catholic Hospital, Pramso, Bosomtwe District, Ashanti Region, Ghana
| | - Kwabena Peprah-Donkor
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Wilson Bright Nyansah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frederick Asare
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
22
|
Helliwell SB, Karkare S, Bergdoll M, Rahier A, Leighton-Davis JR, Fioretto C, Aust T, Filipuzzi I, Frederiksen M, Gounarides J, Hoepfner D, Hofmann A, Imbert PE, Jeker R, Knochenmuss R, Krastel P, Margerit A, Memmert K, Miault CV, Rao Movva N, Muller A, Naegeli HU, Oberer L, Prindle V, Riedl R, Schuierer S, Sexton JA, Tao J, Wagner T, Yin H, Zhang J, Roggo S, Reinker S, Parker CN. FR171456 is a specific inhibitor of mammalian NSDHL and yeast Erg26p. Nat Commun 2015; 6:8613. [PMID: 26456460 PMCID: PMC4633953 DOI: 10.1038/ncomms9613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023] Open
Abstract
FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae—Erg26p, Homo sapiens—NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound. FR171456 is a bioactive chemical produced by some microorganisms. Here, the authors identify the enzyme NSDHL of the sterol synthesis pathway as the molecular target of FR171456, rendering it the first compound to specifically target this class of enzyme in yeast and mammalian cells.
Collapse
Affiliation(s)
- Stephen B Helliwell
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Shantanu Karkare
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Strasbourg cedex 67083, France
| | - Alain Rahier
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Strasbourg cedex 67083, France
| | | | - Celine Fioretto
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Thomas Aust
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Ireos Filipuzzi
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Mathias Frederiksen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - John Gounarides
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Andreas Hofmann
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Pierre-Eloi Imbert
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Rolf Jeker
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Richard Knochenmuss
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Anais Margerit
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Klaus Memmert
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Charlotte V Miault
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - N Rao Movva
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Alban Muller
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Hans-Ulrich Naegeli
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Lukas Oberer
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | | | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Jessica A Sexton
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | | | - Trixie Wagner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Hong Yin
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Juan Zhang
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Silvio Roggo
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Stefan Reinker
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Christian N Parker
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| |
Collapse
|
23
|
Culakova H, Dzugasova V, Valencikova R, Gbelska Y, Subik J. Stress response and expression of fluconazole resistance associated genes in the pathogenic yeast Candida glabrata deleted in the CgPDR16 gene. Microbiol Res 2015; 174:17-23. [PMID: 25946325 DOI: 10.1016/j.micres.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
In yeasts, the PDR16 gene encodes a phosphatidylinositol transfer protein which belongs to the Sec14 homologue (SFH) family and localizes to lipid droplets, microsomes and at the cell periphery. The loss of its function alters the lipid droplet metabolism and plasma membrane properties, and renders yeast cells more sensitive to azole antimycotics. In this study, the entire chromosomal CgPDR16 ORF was replaced by the ScURA3 gene both in azole sensitive and azole resistant strains of Candida glabrata bearing a gain-of-function mutation in the CgPDR1 gene, and their responses to different stresses were assessed. The CgPDR16 deletion was found to sensitize the mutant strains to azole antifungals without changes in their osmo- and halotolerance. Fluconazole treated pdr16Δ mutant strains displayed a reduced expression of several genes involved in azole tolerance. The gain-of-function CgPDR1 allele as well as the cycloheximide and hydrogen peroxide treatments of cells enhanced the expression of the CgPDR16 gene. The results indicate that CgPDR16 belongs to genes whose expression is induced by chemical and oxidative stresses. The loss of its function can attenuate the expression of drug efflux pump encoding genes that might also contribute to the decreased azole tolerance in pdr16Δ mutant cells.
Collapse
Affiliation(s)
- Hana Culakova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Vladimira Dzugasova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Romana Valencikova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Yvetta Gbelska
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Julius Subik
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
24
|
Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals. Antimicrob Agents Chemother 2015; 59:2410-20. [PMID: 25666149 DOI: 10.1128/aac.04239-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of "toxic" sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of "trailing growth" that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular "redistribution" of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy.
Collapse
|
25
|
Kumar CG, Poornachandra Y. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids Surf B Biointerfaces 2014; 125:110-9. [PMID: 25460601 DOI: 10.1016/j.colsurfb.2014.11.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/13/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles.
Collapse
Affiliation(s)
- C Ganesh Kumar
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | - Y Poornachandra
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
26
|
Gebre S, Connor R, Xia Y, Jawed S, Bush JM, Bard M, Elsalloukh H, Tang F. Osh6 overexpression extends the lifespan of yeast by increasing vacuole fusion. Cell Cycle 2014; 11:2176-88. [DOI: 10.4161/cc.20691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Li X, Li JH, Wang W, Chen NZ, Ma TS, Xi YN, Zhang XL, Lin HF, Bai Y, Huang SJ, Chen YL. ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1548-60. [PMID: 24372484 DOI: 10.1111/pce.12259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/21/2013] [Accepted: 12/08/2013] [Indexed: 05/03/2023]
Abstract
Multiple cellular events like dynamic actin reorganization and hydrogen peroxide (H(2)O(2)) production were demonstrated to be involved in abscisic acid (ABA)-induced stomatal closure. However, the relationship between them as well as the underlying mechanisms remains poorly understood. Here, we showed that H(2)O(2) generation is indispensable for ABA induction of actin reorganization in guard cells of Arabidopsis that requires the presence of ARP2/3 complex. H(2)O(2) -induced stomatal closure was delayed in the mutants of arpc4 and arpc5, and the rate of actin reorganization was slowed down in arpc4 and arpc5 in response to H(2)O(2), suggesting that ARP2/3-mediated actin nucleation is required for H(2)O(2) -induced actin cytoskeleton remodelling. Furthermore, the expression of H(2)O(2) biosynthetic related gene AtrbohD and the accumulation of H(2)O(2) was delayed in response to ABA in arpc4 and arpc5, demonstrating that misregulated actin dynamics affects H(2)O(2) production upon ABA treatment. These results support a possible causal relation between the production of H(2)O(2) and actin dynamics in ABA-mediated guard cell signalling: ABA triggers H(2)O(2) generation that causes the reorganization of the actin cytoskeleton partially mediated by ARP2/3 complex, and ARP2/3 complex-mediated actin dynamics may feedback regulate H(2)O(2) production.
Collapse
Affiliation(s)
- Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bang CS, Kinnunen A, Karlsson M, Önnberg A, Söderquist B, Persson K. The antibacterial effect of nitric oxide against ESBL-producing uropathogenic E. coli is improved by combination with miconazole and polymyxin B nonapeptide. BMC Microbiol 2014; 14:65. [PMID: 24629000 PMCID: PMC3984681 DOI: 10.1186/1471-2180-14-65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/07/2014] [Indexed: 12/29/2022] Open
Abstract
Background Nitric oxide (NO) is produced as part of the host immune response to bacterial infections, including urinary tract infections. The enzyme flavohemoglobin, coded by the hmp gene, is involved in protecting bacterial cells from the toxic effects of NO and represents a potentially interesting target for development of novel treatment concepts against resistant uropathogenic bacteria. The aim of the present study was to investigate if the in vitro antibacterial effects of NO can be enhanced by pharmacological modulation of the enzyme flavohemoglobin. Results Four clinical isolates of multidrug-resistant extended-spectrum β-lactamase (ESBL)-producing uropathogenic E. coli were included in the study. It was shown that the NO-donor substance DETA/NO, but not inactivated DETA/NO, caused an initial growth inhibition with regrowth noted after 8 h of exposure. An hmp-deficient strain showed a prolonged growth inhibition in response to DETA/NO compared to the wild type. The imidazole antibiotic miconazole, that has been shown to inhibit bacterial flavohemoglobin activity, prolonged the DETA/NO-evoked growth inhibition. When miconazole was combined with polymyxin B nonapeptide (PMBN), in order to increase the bacterial wall permeability, DETA/NO caused a prolonged bacteriostatic response that lasted for up to 24 h. Conclusion An NO-donor in combination with miconazole and PMBN showed enhanced antimicrobial effects and proved effective against multidrug-resistant ESBL-producing uropathogenic E. coli.
Collapse
Affiliation(s)
| | | | | | | | | | - Katarina Persson
- Faculty of Medicine and Health, iRiSC - Inflammatory Response and Infection Susceptibility Centre, Örebro University, SE- 701 82 Örebro, Sweden.
| |
Collapse
|
29
|
Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AED, Wan DCC, Ye XJ, Xia J, Ng TB. Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 2014; 98:3475-94. [PMID: 24562325 DOI: 10.1007/s00253-014-5575-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/27/2023]
Abstract
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 2014; 6:77-90. [DOI: 10.4155/fmc.13.189] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections are associated with very high mortality rates ranging from 20–90% for opportunistic fungal pathogens such as Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungal resistance to antimycotic treatment can be genotypic (due to resistant strains) as well as phenotypic (due to more resistant fungal lifestyles, such as biofilms). With regard to the latter, biofilms are considered to be critical in the development of invasive fungal infections. However, there are only very few antimycotics, such as miconazole (azoles), echinocandins and liposomal formulations of amphotericin B (polyenes), which are also effective against fungal biofilms. Interestingly, these antimycotics all induce reactive oxygen species (ROS) in fungal (biofilm) cells. This review provides an overview of the different classes of antimycotics and novel antifungal compounds that induce ROS in fungal planktonic and biofilm cells. Moreover, different strategies to further enhance the antibiofilm activity of such ROS-inducing antimycotics will be discussed.
Collapse
|
31
|
Goffa E, Balazfyova Z, Toth Hervay N, Simova Z, Balazova M, Griac P, Gbelska Y. Isolation and functional analysis of theKlPDR16gene. FEMS Yeast Res 2013; 14:337-45. [DOI: 10.1111/1567-1364.12102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022] Open
Affiliation(s)
- Eduard Goffa
- Department of Microbiology and Virology; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Zuzana Balazfyova
- Department of Microbiology and Virology; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Nora Toth Hervay
- Department of Microbiology and Virology; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Zuzana Simova
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovak Republic
| | - Maria Balazova
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovak Republic
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovak Republic
| | - Yvetta Gbelska
- Department of Microbiology and Virology; Comenius University in Bratislava; Bratislava Slovak Republic
| |
Collapse
|
32
|
Vandenbosch D, De Canck E, Dhondt I, Rigole P, Nelis HJ, Coenye T. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility inSaccharomyces cerevisiae. FEMS Yeast Res 2013; 13:720-30. [DOI: 10.1111/1567-1364.12071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Davy Vandenbosch
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Evelien De Canck
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Inne Dhondt
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| |
Collapse
|
33
|
Belenky P, Camacho D, Collins JJ. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep 2013; 3:350-8. [PMID: 23416050 PMCID: PMC3656588 DOI: 10.1016/j.celrep.2012.12.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/28/2012] [Accepted: 12/18/2012] [Indexed: 11/21/2022] Open
Abstract
Amphotericin, miconazole, and ciclopirox are antifungal agents from three different drug classes that can effectively kill planktonic yeast, yet their complete fungicidal mechanisms are not fully understood. Here, we employ a systems biology approach to identify a common oxidative-damage cellular death pathway triggered by these representative fungicides in Candida albicans and Saccharomyces cerevisiae. This mechanism utilizes a signaling cascade involving the GTPases Ras1 and Ras2 and protein kinase A, and it culminates in death through the production of toxic reactive oxygen species in a tricarboxylic-acid-cycle- and respiratory-chain-dependent manner. We also show that the metabolome of C. albicans is altered by antifungal drug treatment, exhibiting a shift from fermentation to respiration, a jump in the AMP/ATP ratio, and elevated production of sugars; this coincides with elevated mitochondrial activity. Lastly, we demonstrate that DNA damage plays a critical role in antifungal-induced cellular death and that blocking DNA-repair mechanisms potentiates fungicidal activity.
Collapse
Affiliation(s)
- Peter Belenky
- Howard Hughes Medical Institute
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Center for BioDynamics Boston University, Boston, MA 02215, USA
| | - Diogo Camacho
- Howard Hughes Medical Institute
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Center for BioDynamics Boston University, Boston, MA 02215, USA
| | - James J. Collins
- Howard Hughes Medical Institute
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Center for BioDynamics Boston University, Boston, MA 02215, USA
- Boston University School of Medicine, Boston, MA 02118, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
34
|
Delattin N, Bardiot D, Marchand A, Chaltin P, De Brucker K, Cammue BPA, Thevissen K. Identification of fungicidal 2,6-disubstituted quinolines with activity against Candida biofilms. Molecules 2012; 17:12243-51. [PMID: 23079495 PMCID: PMC6268363 DOI: 10.3390/molecules171012243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 09/27/2012] [Accepted: 10/15/2012] [Indexed: 11/16/2022] Open
Abstract
We have identified two subseries of 2,6-disubstituted quinolines, consisting of 6-amide and 6-urea derivatives, which are characterized by fungicidal activity against Candida albicans with minimal fungicidal concentration (MFC) values < 15 µM. The 6-amide derivatives displayed the highest fungicidal activity against C. albicans, in particular compounds 1, 5 and 6 characterized by MFC values of 6.25–12.5 µM. Compounds 1 and 5 of this series displayed fungicidal activity against the emerging pathogen Candida glabrata(MFC < 50 µM). The 6-amide derivatives 1, 2, 5, and 6 and the 6-urea derivatives 10, 12, 13 and 15 could also eradicate C. albicans biofilms. We found that the 6-urea derivatives 10, 13, and 15 induced accumulation of endogenous reactive oxygen species in Candida albicans biofilms.
Collapse
Affiliation(s)
- Nicolas Delattin
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - Dorothée Bardiot
- CISTIM Leuven vzw, Minderbroedersstraat 12, B-3000, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Minderbroedersstraat 12, B-3000, Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Minderbroedersstraat 12, B-3000, Leuven, Belgium
- Centre for Drug Design and Discovery, Minderbroedersstraat 8a, B-3000, Leuven, Belgium
| | - Katrijn De Brucker
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
- Author to whom correspondence should be addressed; ; Tel.: +32-16-329-682; Fax: +32-16-321-966
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| |
Collapse
|
35
|
An integrated approach for identification and target validation of antifungal compounds active against Erg11p. Antimicrob Agents Chemother 2012; 56:4233-40. [PMID: 22615293 DOI: 10.1128/aac.06332-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Systemic life-threatening fungal infections represent a significant unmet medical need. Cell-based, phenotypic screening can be an effective means of discovering potential novel antifungal compounds, but it does not address target identification, normally required for compound optimization by medicinal chemistry. Here, we demonstrate a combination of screening, genetic, and biochemical approaches to identify and characterize novel antifungal compounds. We isolated a set of novel non-azole antifungal compounds for which no target or mechanism of action is known, using a screen for inhibition of Saccharomyces cerevisiae proliferation. Haploinsufficiency profiling of these compounds in S. cerevisiae suggests that they target Erg11p, a cytochrome P450 family member, which is the target of azoles. Consistent with this, metabolic profiling in S. cerevisiae revealed a buildup of the metabolic intermediates prior to Erg11p activity, following compound treatment. Further, human cytochrome P450 is also inhibited in in vitro assays by these compounds. We modeled the Erg11p protein based on the human CYP51 crystal structure, and in silico docking of these compounds suggests that they interact with the heme center in a manner similar to that of azoles. Consistent with these docking observations, Candida strains carrying azole-resistant alleles of ERG11 are also resistant to the compounds in this study. Thus, we have identified non-azole Erg11p inhibitors, using a systematic approach for ligand and target characterization.
Collapse
|
36
|
Piérard GE, Hermanns-Lê T, Delvenne P, Piérard-Franchimont C. Miconazole, a pharmacological barrier to skin fungal infections. Expert Opin Pharmacother 2012; 13:1187-94. [PMID: 22568580 DOI: 10.1517/14656566.2012.687047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Miconazole (MCZ) is a time-honored antifungal of the imidazole class. MCZ exerts a multipronged effect on fungi. It inhibits the cytochrome P450 complex, including the 14α-demethylase enzyme required for ergosterol biosynthesis, in fungal cell membranes. In addition, intracellular accumulation of toxic methylated sterols occurs and the synthesis of triglycerides and phospholipids is altered. Disturbances in oxidative and peroxidative enzyme activities lead to an intracellular toxic concentration of hydrogen peroxide. As a result, intracellular organelle destruction then leads to cell necrosis. Farnesol synthesis stimulated in Candida spp. prevents the yeast-to-mycelium formation. MCZ is further active against Gram-positive bacteria. AREAS COVERED This review aims at revisiting the MCZ antifungal activity in dermatomycoses. EXPERT OPINION MCZ's wide spectrum of activity appears noteworthy. The full pharmacological profile of MCZ indicates its fungistatic profile through its effect on ergosterol biosynthesis. In addition, it exhibits a fungicidal effect against a number of fungal species, due to hydrogen peroxide accumulation. MCZ is characterized by high safety, efficacy and versatility, and a unique, multifaceted nature of activity in the treatment of dermatomycoses.
Collapse
Affiliation(s)
- Gérald E Piérard
- University Hospital of Liège, Department of Dermatopathology, CHU Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
37
|
Vandenbosch D, Bink A, Govaert G, Cammue BPA, Nelis HJ, Thevissen K, Coenye T. Phytosphingosine-1-phosphate is a signaling molecule involved in miconazole resistance in sessile Candida albicans cells. Antimicrob Agents Chemother 2012; 56:2290-4. [PMID: 22354293 PMCID: PMC3346612 DOI: 10.1128/aac.05106-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 02/11/2012] [Indexed: 01/06/2023] Open
Abstract
Previous research has shown that 1% to 10% of sessile Candida albicans cells survive treatment with high doses of miconazole (a fungicidal imidazole). In the present study, we investigated the involvement of sphingolipid biosynthetic intermediates in this survival. We observed that the LCB4 gene, coding for the enzyme that catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is important in governing the miconazole resistance of sessile Saccharomyces cerevisiae and C. albicans cells. The addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically reduced the intracellular miconazole concentration and significantly increased the miconazole resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, indicating a protective effect of PHS-1-P against miconazole-induced cell death in sessile cells. At this concentration of PHS-1-P, we did not observe any effect on the fluidity of the cytoplasmic membrane. The protective effect of PHS-1-P was not observed when the efflux pumps were inhibited or when tested in a mutant without functional efflux systems. Also, the addition of PHS-1-P during miconazole treatment increased the expression levels of genes coding for efflux pumps, leading to the hypothesis that PHS-1-P acts as a signaling molecule and enhances the efflux of miconazole in sessile C. albicans cells.
Collapse
Affiliation(s)
- Davy Vandenbosch
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Anna Bink
- Centre of Microbial and Plant Genetics, K. U. Leuven, Heverlee, Belgium
| | - Gilmer Govaert
- Centre of Microbial and Plant Genetics, K. U. Leuven, Heverlee, Belgium
| | | | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, K. U. Leuven, Heverlee, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PWJ, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BPA. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 2012; 84:166-80. [PMID: 22384976 DOI: 10.1111/j.1365-2958.2012.08017.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Won KJ, Lin HY, Jung S, Cho SM, Shin HC, Bae YM, Lee SH, Kim HJ, Jeon BH, Kim B. Antifungal Miconazole Induces Cardiotoxicity Via Inhibition of APE/Ref-1-Related Pathway in Rat Neonatal Cardiomyocytes. Toxicol Sci 2012; 126:298-305. [DOI: 10.1093/toxsci/kfr347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
40
|
Snell SB, Foster TH, Haidaris CG. Miconazole induces fungistasis and increases killing of Candida albicans subjected to photodynamic therapy. Photochem Photobiol 2011; 88:596-603. [PMID: 22077904 DOI: 10.1111/j.1751-1097.2011.01039.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cutaneous and mucocutaneous Candida infections are considered to be important targets for antimicrobial photodynamic therapy (PDT). Clinical application of antimicrobial PDT will require strategies that enhance microbial killing while minimizing damage to host tissue. Increasing the sensitivity of infectious agents to PDT will help achieve this goal. Our previous studies demonstrated that raising the level of oxidative stress in Candida by interfering with fungal respiration increased the efficiency of PDT. Therefore, we sought to identify compounds in clinical use that would augment the oxidative stress caused by PDT by contributing to reactive oxygen species (ROS) formation themselves. Based on the ability of the antifungal miconazole to induce ROS in Candida, we tested several azole antifungals for their ability to augment PDT in vitro. Although miconazole and ketoconazole both stimulated ROS production in Candida albicans, only miconazole enhanced the killing of C. albicans and induced prolonged fungistasis in organisms that survived PDT using the porphyrin TMP-1363 and the phenothiazine methylene blue as photosensitizers. The data suggest that miconazole could be used to increase the efficacy of PDT against C. albicans, and its mechanism of action is likely to be multifactorial.
Collapse
Affiliation(s)
- Sara B Snell
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
41
|
Gallo-Ebert C, McCourt PC, Donigan M, Villasmil ML, Chen W, Pandya D, Franco J, Romano D, Chadwick SG, Gygax SE, Nickels JT. Arv1 lipid transporter function is conserved between pathogenic and nonpathogenic fungi. Fungal Genet Biol 2011; 49:101-13. [PMID: 22142782 DOI: 10.1016/j.fgb.2011.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 10/14/2022]
Abstract
The lipid transporter Arv1 regulates sterol trafficking, and glycosylphosphatidylinositol and sphingolipid biosyntheses in Saccharomyces cerevisiae. ScArv1 contains an Arv1 homology domain (AHD) that is conserved at the amino acid level in the pathogenic fungal species, Candida albicans and Candida glabrata. Here we show S. cerevisiae cells lacking Arv1 are highly susceptible to antifungal drugs. In the presence of drug, Scarv1 cells are unable to induce ERG gene expression, have an altered pleiotrophic drug response, and are defective in multi-drug resistance efflux pump expression. All phenotypes are remediated by ectopic expression of CaARV1 or CgARV1. The AHDs of these pathogenic fungi are required for specific drug tolerance, demonstrating conservation of function. In order to understand how Arv1 regulates antifungal susceptibility, we examined sterol trafficking. CaARV1/CgARV1 expression suppressed the sterol trafficking defect of Scarv1 cells. Finally, we show that C. albicansarv1/arv1 cells are avirulent using a BALB/c disseminated mouse model. We suggest that overall cell survival in response to antifungal treatment requires the lipid transporter function of Arv1.
Collapse
|
42
|
In Vitro Activities of New Triazole Antifungal Agents, Posaconazole and Voriconazole, Against Oral Candida Isolates from Patients Suffering from Denture Stomatitis. Mycopathologia 2011; 173:35-46. [DOI: 10.1007/s11046-011-9460-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/03/2011] [Indexed: 11/27/2022]
|
43
|
Villasmil ML, Nickels Jr JT. Determination of the membrane topology of Arv1 and the requirement of the ER luminal region for Arv1 function in Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:524-7. [DOI: 10.1111/j.1567-1364.2011.00737.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Aerts AM, Bammens L, Govaert G, Carmona-Gutierrez D, Madeo F, Cammue BPA, Thevissen K. The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans. Front Microbiol 2011; 2:47. [PMID: 21993350 PMCID: PMC3128936 DOI: 10.3389/fmicb.2011.00047] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/02/2011] [Indexed: 12/31/2022] Open
Abstract
Plant defensins are active against plant and human pathogenic fungi (such as Candida albicans) and baker's yeast. However, they are non-toxic to human cells, providing a possible source for treatment of fungal infections. In this study, we characterized the mode of action of the antifungal plant defensin HsAFP1 from coral bells by screening the Saccharomyces cerevisiae deletion mutant library for mutants with altered HsAFP1 sensitivity and verified the obtained genetic data by biochemical assays in S. cerevisiae and C. albicans. We identified 84 genes, which when deleted conferred at least fourfold hypersensitivity or resistance to HsAFP1. A considerable part of these genes were found to be implicated in mitochondrial functionality. In line, sodium azide, which blocks the respiratory electron transport chain, antagonized HsAFP1 antifungal activity, suggesting that a functional respiratory chain is indispensable for HsAFP1 antifungal action. Since mitochondria are the main source of cellular reactive oxygen species (ROS), we investigated the ROS-inducing nature of HsAFP1. We showed that HsAFP1 treatment of C. albicans resulted in ROS accumulation. As ROS accumulation is one of the phenotypic markers of apoptosis in yeast, we could further demonstrate that HsAFP1 induced apoptosis in C. albicans. These data provide novel mechanistic insights in the mode of action of a plant defensin.
Collapse
Affiliation(s)
- An M Aerts
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
45
|
Wei GX, Xu X, Wu CD. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Arch Oral Biol 2011; 56:565-72. [PMID: 21272859 DOI: 10.1016/j.archoralbio.2010.11.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/20/2010] [Accepted: 11/26/2010] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To investigate the antimycotic activity of the plant alkaloid berberine (BBR), alone and in combination with antifungal azoles, against planktonic and biofilm Candida cultures. DESIGN The minimum inhibitory concentrations (MICs) of BBR, miconazole (MCZ), and fluconazole (FLC) towards Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida parapsilosis, and Candida tropicalis were determined by a microdilution method. For C. albicans, the synergistic effects of BBR combined with MCZ or FLC were examined in a paper disc agar diffusion assay and checkerboard microdilution assay. The effect of the BBR/MCZ combination was further investigated in a C. albicans biofilm formation model with a dual-chamber flow cell. The effect on metabolic activity of biofilm cells was established using 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)/menadione. RESULTS Berberine inhibited the growth of various Candida species (MICs 0.98-31.25mg/L) in the following order of susceptibility: C. krusei > C. kefyr > C. glabrata > C. tropicalis > C. parapsilosis and C. albicans. Synergism between BBR and MCZ or FLC was observed in the disc diffusion assay as well as in suspension showing an FIC index <0.5 (∑FIC=0.19). Whilst neither BBR (16 mg/L) nor MCZ (0.8 mg/L) alone significantly inhibited biofilm formation of C. albicans, their combination reduced biofilm formation by >91% after 24 h, as established from the reduction in surface area coverage (P<0.01). The BBR/MCZ combination also exhibited synergy against the metabolic activity of pre-formed C. albicans biofilms in polystyrene microtiter plates (∑FIC=0.25). CONCLUSION Berberine exhibits synergistic effects with commonly used antimycotic drugs against C. albicans, either in planktonic or in biofilm growth phases.
Collapse
Affiliation(s)
- Guo-Xian Wei
- Department of Pediatric Dentistry, University of Illinois at Chicago, College of Dentistry, MC850, Chicago, IL 60612-7212, USA
| | | | | |
Collapse
|
46
|
Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci Rep 2011; 30:391-404. [PMID: 20017731 DOI: 10.1042/bsr20090151] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the present study, we have investigated the antifungal effects of a natural polyphenol, CUR (curcumin), against albicans and non-albicans species of Candida and have shown its ability to inhibit the growth of all the tested strains. The inhibitory effects of CUR were independent of the status of the multidrug efflux pump proteins belonging to either ABC transporter (ATP-binding cassette transporter) or MFS (major facilitator) superfamilies of transporters. By using a systemic murine model of infection, we established that CUR and piperine, when administered together, caused a significant fungal load reduction (1.4log10) in kidneys of Swiss mice. Additionally, CUR raised the levels of ROS (reactive oxygen species), which, as revealed by annexin V-FITC labelling, triggered early apoptosis in Candida cells. Coincident with the raised ROS levels, mRNAs of tested oxidative stress-related genes [CAP1 (Candida albicans AP-1), CaIPF7817 (putative NADH-dependent flavin oxidoreductase), SOD2 (superoxide dismutase 2), GRP2 (NADPH-dependent methyl glyoxal reductase) and CAT1 (catalase 1)] were also elevated. The growth inhibitory effects of CUR could be reversed by the addition of natural and synthetic antioxidants. Notably, independent of ROS status, polyphenol CUR prevented hyphae development in both liquid and solid hypha-inducing media by targeting the global suppressor TUP1 (thymidine uptake 1). Taken together, our results provide the first evidence that CUR acts as an antifungal agent, via generation of oxidative stress, and inhibits hyphae development by targeting TUP1.
Collapse
|
47
|
Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T. Fungicidal activity of miconazole against Candida spp. biofilms. J Antimicrob Chemother 2010; 65:694-700. [DOI: 10.1093/jac/dkq019] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Binding of azole antibiotics to Staphylococcus aureus flavohemoglobin increases intracellular oxidative stress. J Bacteriol 2010; 192:1527-33. [PMID: 20097858 DOI: 10.1128/jb.01378-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we report that flavohemoglobin contributes to the azole susceptibility of Staphylococcus aureus. We first observed that deletion of the flavohemoglobin gene leads to an increase in the viability of imidazole-treated S. aureus cells and that reversion to the wild-type phenotype occurs upon expression of flavohemoglobin from a multicopy plasmid. Further spectroscopic analyses showed that miconazole, the most efficient azole antibiotic against S. aureus, ligates to heme of both oxidized and reduced flavohemoglobin. The binding of miconazole to oxidized flavohemoglobin, with an association constant of 1.7 x 10(6) M(-1), typical of a tight, specific binding equilibrium, results in augmentation of the superoxide production by the enzyme. These results are corroborated by in vivo studies showing that imidazole-treated S. aureus cells expressing flavohemoglobin contain a larger amount of reactive oxygen species. Moreover, it was observed that the survival of miconazole-treated S. aureus internalized by murine macrophages is higher for cells lacking flavohemoglobin. Altogether, the present data revealed that in S. aureus, flavohemoglobin enhances the antimicrobial activity of imidazoles via an increase of intracellular oxidative stress.
Collapse
|
49
|
François I, Thevissen K, Pellens K, Meert E, Heeres J, Freyne E, Coesemans E, Viellevoye M, Deroose F, Martinez Gonzalez S, Pastor J, Corens D, Meerpoel L, Borgers M, Ausma J, Dispersyn G, Cammue B. Design and Synthesis of a Series of Piperazine-1-carboxamidine Derivatives with Antifungal Activity Resulting from Accumulation of Endogenous Reactive Oxygen Species. ChemMedChem 2009; 4:1714-21. [DOI: 10.1002/cmdc.200900249] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
François IEJA, Bink A, Vandercappellen J, Ayscough KR, Toulmay A, Schneiter R, van Gyseghem E, Van den Mooter G, Borgers M, Vandenbosch D, Coenye T, Cammue BPA, Thevissen K. Membrane rafts are involved in intracellular miconazole accumulation in yeast cells. J Biol Chem 2009; 284:32680-5. [PMID: 19783660 DOI: 10.1074/jbc.m109.014571] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Azoles inhibit ergosterol biosynthesis, resulting in ergosterol depletion and accumulation of toxic 14alpha-methylated sterols in membranes of susceptible yeast. We demonstrated previously that miconazole induces actin cytoskeleton stabilization in Saccharomyces cerevisiae prior to induction of reactive oxygen species, pointing to an ancillary mode of action. Using a genome-wide agar-based screening, we demonstrate in this study that S. cerevisiae mutants affected in sphingolipid and ergosterol biosynthesis, namely ipt1, sur1, skn1, and erg3 deletion mutants, are miconazole-resistant, suggesting an involvement of membrane rafts in its mode of action. This is supported by the antagonizing effect of membrane raft-disturbing compounds on miconazole antifungal activity as well as on miconazole-induced actin cytoskeleton stabilization and reactive oxygen species accumulation. These antagonizing effects point to a primary role for membrane rafts in miconazole antifungal activity. We further show that this primary role of membrane rafts in miconazole action consists of mediating intracellular accumulation of miconazole in yeast cells.
Collapse
Affiliation(s)
- Isabelle E J A François
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|