1
|
Martinez-Salas E, Francisco-Velilla R. GEMIN5 and neurodevelopmental diseases: from functional insights to disease perception. Neural Regen Res 2025; 21:01300535-990000000-00666. [PMID: 39819844 PMCID: PMC12094563 DOI: 10.4103/nrr.nrr-d-24-01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.
Collapse
|
2
|
Nelson CH, Pandey UB. Function and dysfunction of GEMIN5: understanding a novel neurodevelopmental disorder. Neural Regen Res 2024; 19:2377-2386. [PMID: 38526274 PMCID: PMC11090446 DOI: 10.4103/nrr.nrr-d-23-01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 03/26/2024] Open
Abstract
The recent identification of a neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) has resulted in an increased interest in GEMIN5, a multifunction RNA-binding protein. As the largest member of the survival motor neuron complex, GEMIN5 plays a key role in the biogenesis of small nuclear ribonucleoproteins while also exhibiting translational regulatory functions as an independent protein. Although many questions remain regarding both the pathogenesis and pathophysiology of this new disorder, considerable progress has been made in the brief time since its discovery. In this review, we examine GEMIN5 within the context of NEDCAM, focusing on the structure, function, and expression of the protein specifically in regard to the disorder itself. Additionally, we explore the current animal models of NEDCAM, as well as potential molecular pathways for treatment and future directions of study. This review provides a comprehensive overview of recent advances in our understanding of this unique member of the survival motor neuron complex.
Collapse
Affiliation(s)
- Charles H. Nelson
- Department of Pediatrics, Division of Child Neurology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai B. Pandey
- Department of Pediatrics, Division of Child Neurology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Matera AG, Steiner RE, Mills CA, McMichael BD, Herring LE, Garcia EL. Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. FRONTIERS IN RNA RESEARCH 2024; 2:1448194. [PMID: 39492846 PMCID: PMC11529804 DOI: 10.3389/frnar.2024.1448194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Introduction Molecular chaperones and co-chaperones are highly conserved cellular components that perform a variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an assembly chaperone and serves as a paradigm for studying how specific RNAs are identified and paired with their client substrate proteins to form RNPs. SMN is the eponymous component of a large complex, required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs), that localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN protein forms the oligomeric core of this complex, and missense mutations in the human SMN1 gene are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known. However, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Methods Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. We carried out affinity purification mass spectrometry (AP-MS) of Drosophila SMN complexes using fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Results Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially associated with SMA-causing alleles of SMN. Discussion Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - C. Allie Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Cook SL, Stout C, Kirkeby L, Vidal-Folch N, Oglesbee D, Hasadsri L, Selcen D, Milone M, Anderson D, Staff NP. SMN1 c.5C>G (p.Ala2Gly) missense variant, a challenging molecular SMA diagnosis associated with mild disease, preserves SMN nuclear gems in patient-specific fibroblasts. Front Genet 2024; 15:1406819. [PMID: 39139818 PMCID: PMC11319185 DOI: 10.3389/fgene.2024.1406819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Spinal muscular atrophy (SMA) is caused by homozygous loss of the SMN1 gene with SMN2 gene copy number correlating with disease severity. Rarely SMA is caused by a deletion on one allele and a pathogenic variant on the other. The pathogenic missense variant c.5C>G (p.Ala2Gly) correlates with a mild disease phenotype that does not correlate with SMN2 copy number. In a mouse model the c.5C>G transgene produces SMN that is thought to form partially functional SMN complexes, but levels in humans have not yet been investigated. Methods We identified two patients with mild SMA caused by a heterozygous deletion of SMN1 and the heterozygous variant, c.5C>G. Molecular findings were confirmed with deletion/duplication analysis and Sanger sequencing. Skin fibroblasts were collected and cultured, and SMN expression was analyzed using immunofluorescence. Results Two patients with slowly progressing mild weakness were confirmed to have heterozygous pathogenic missense variant c.5C>G and a heterozygous deletion of SMN1. Their clinical presentation revealed much milder disease progression than patients with matched SMN2 copy number. Analysis of the patients' fibroblasts revealed much higher numbers of SMN nuclear complexes than a patient with a homozygous SMN1 deletion and matched SMN2 copy number. Conclusions These case reports reinforce that the rare c.5C>G variant causes mild disease. Furthermore, the analysis of SMA nuclear gems in patient samples supports the theory that the p.Ala2Gly SMN can form partially functional SMN complexes that may carry out essential cellular functions and result in mild disease.
Collapse
Affiliation(s)
- Sara L. Cook
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Christian Stout
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Lindsey Kirkeby
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Daniel Anderson
- Department of Neurology, Mayo Clinic Health System, La Crosse, WI, United States
| | - Nathan P. Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Francisco-Velilla R, Abellan S, Embarc-Buh A, Martinez-Salas E. Oligomerization regulates the interaction of Gemin5 with members of the SMN complex and the translation machinery. Cell Death Discov 2024; 10:306. [PMID: 38942768 PMCID: PMC11213948 DOI: 10.1038/s41420-024-02057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end. The TPR module allows the recruitment of the endogenous Gemin5 protein in living cells and the assembly of a dimer in vitro. However, the biological relevance of Gemin5 oligomerization is not known. Here we interrogated the Gemin5 interactome focusing on oligomerization-dependent or independent regions. We show that the interactors associated with oligomerization-proficient domains were primarily annotated to ribosome, splicing, translation regulation, SMN complex, and RNA stability. The presence of distinct Gemin5 protein regions in polysomes highlighted differences in translation regulation based on their oligomerization capacity. Furthermore, the association with native ribosomes and negative regulation of translation was strictly dependent on both the WD40 repeats domain and the TPR dimerization moiety, while binding with the majority of the interacting proteins, including SMN, Gemin2, and Gemin4, was determined by the dimerization module. The loss of oligomerization did not perturb the predominant cytoplasmic localization of Gemin5, reinforcing the cytoplasmic functions of this essential protein. Our work highlights a distinctive role of the Gemin5 domains for its functions in the interaction with members of the SMN complex, ribosome association, and RBP interactome.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | | |
Collapse
|
6
|
Matera AG, Steiner RE, Mills CA, Herring LE, Garcia EL. Chaperoning the chaperones: Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594402. [PMID: 38903116 PMCID: PMC11188114 DOI: 10.1101/2024.05.15.594402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Molecular chaperones and co-chaperones are highly conserved cellular components that perform variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an RNP assembly chaperone and serves as a paradigm for studying how specific small nuclear (sn)RNAs are identified and paired with their client substrate proteins. SMN protein is the eponymous component of a large complex required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs) and localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN forms the oligomeric core of this complex, and missense mutations in its YG box self-interaction domain are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. Here, we carried out affinity purification mass spectrometry (AP-MS) of SMN using stable fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially interacted with SMA-causing alleles of SMN. Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
| | - C. Alison Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| |
Collapse
|
7
|
Francisco-Velilla R, Abellan S, Garcia-Martin JA, Oliveros JC, Martinez-Salas E. Alternative splicing events driven by altered levels of GEMIN5 undergo translation. RNA Biol 2024; 21:23-34. [PMID: 39194147 PMCID: PMC11364065 DOI: 10.1080/15476286.2024.2394755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes. RNA-Seq identification of the mRNAs associated with polysomes in cells with high levels of GEMIN5 revealed that a significant fraction of the differential AS events undergo translation. The association of mRNAs with polysomes was dependent on the type of AS event, being more frequent in the case of exon skipping. However, there were no major differences in the percentage of genes showing open-reading frame disruption. Importantly, differential AS events in mRNAs engaged in polysomes, eventually rendering non-functional proteins, encode factors controlling cell growth. The broad range of mRNAs comprising AS events engaged in polysomes upon GEMIN5 upregulation supports the notion that this multifunctional protein has evolved as a gene expression balancer, consistent with its dual role as a member of the SMN complex and as a modulator of protein synthesis, ultimately impinging on cell homoeostasis.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnologia. CSIC, Madrid, Spain
| | | |
Collapse
|
8
|
Musawi S, Donnio LM, Zhao Z, Magnani C, Rassinoux P, Binda O, Huang J, Jacquier A, Coudert L, Lomonte P, Martinat C, Schaeffer L, Mottet D, Côté J, Mari PO, Giglia-Mari G. Nucleolar reorganization after cellular stress is orchestrated by SMN shuttling between nuclear compartments. Nat Commun 2023; 14:7384. [PMID: 37968267 PMCID: PMC10652021 DOI: 10.1038/s41467-023-42390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
Spinal muscular atrophy is an autosomal recessive neuromuscular disease caused by mutations in the multifunctional protein Survival of Motor Neuron, or SMN. Within the nucleus, SMN localizes to Cajal bodies, which are associated with nucleoli, nuclear organelles dedicated to the first steps of ribosome biogenesis. The highly organized structure of the nucleolus can be dynamically altered by genotoxic agents. RNAP1, Fibrillarin, and nucleolar DNA are exported to the periphery of the nucleolus after genotoxic stress and, once DNA repair is fully completed, the organization of the nucleolus is restored. We find that SMN is required for the restoration of the nucleolar structure after genotoxic stress. During DNA repair, SMN shuttles from the Cajal bodies to the nucleolus. This shuttling is important for nucleolar homeostasis and relies on the presence of Coilin and the activity of PRMT1.
Collapse
Affiliation(s)
- Shaqraa Musawi
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Lise-Marie Donnio
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France.
| | - Zehui Zhao
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Charlène Magnani
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Phoebe Rassinoux
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Olivier Binda
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Ontario, Canada
| | - Jianbo Huang
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Laurent Coudert
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Patrick Lomonte
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100, Corbeil-Essonnes, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Denis Mottet
- GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, B34 + 1, University of Liege, Avenue de l'Hôpital 1, B-4000, Liège, Belgium
| | - Jocelyn Côté
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Ontario, Canada
| | - Pierre-Olivier Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Giuseppina Giglia-Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France.
| |
Collapse
|
9
|
Giorgia Q, Gomez Garcia de la Banda M, Smeriglio P. Role of circulating biomarkers in spinal muscular atrophy: insights from a new treatment era. Front Neurol 2023; 14:1226969. [PMID: 38020652 PMCID: PMC10679720 DOI: 10.3389/fneur.2023.1226969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease due to biallelic mutations in the SMN1 gene on chromosome 5. It is characterized by progressive muscle weakness of limbs, bulbar and respiratory muscles. The disease is usually classified in four different phenotypes (1-4) according to age at symptoms onset and maximal motor milestones achieved. Recently, three disease modifying treatments have received approval from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), while several other innovative drugs are under study. New therapies have been game changing, improving survival and life quality for SMA patients. However, they have also intensified the need for accurate biomarkers to monitor disease progression and treatment efficacy. While clinical and neurophysiological biomarkers are well established and helpful in describing disease progression, there is a great need to develop more robust and sensitive circulating biomarkers, such as proteins, nucleic acids, and other small molecules. Used alone or in combination with clinical biomarkers, they will play a critical role in enhancing patients' stratification for clinical trials and access to approved treatments, as well as in tracking response to therapy, paving the way to the development of individualized therapeutic approaches. In this comprehensive review, we describe the foremost circulating biomarkers of current significance, analyzing existing literature on non-treated and treated patients with a special focus on neurofilaments and circulating miRNA, aiming to identify and examine their role in the follow-up of patients treated with innovative treatments, including gene therapy.
Collapse
Affiliation(s)
- Querin Giorgia
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Marta Gomez Garcia de la Banda
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- APHP, Pediatric Neurology Department, Hôpital Armand Trousseau, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- APHP, Pediatric Neurology and ICU Department, Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France
| | - Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, Paris, France
| |
Collapse
|
10
|
He L, Yang J, Hao Y, Yang X, Shi X, Zhang D, Zhao D, Yan W, Bie X, Chen L, Chen G, Zhao S, Liu X, Zheng H, Zhang K. DDX20: A Multifunctional Complex Protein. Molecules 2023; 28:7198. [PMID: 37894677 PMCID: PMC10608988 DOI: 10.3390/molecules28207198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
DEAD-box decapping enzyme 20 (DDX20) is a putative RNA-decapping enzyme that can be identified by the conserved motif Asp-Glu-Ala-Asp (DEAD). Cellular processes involve numerous RNA secondary structure alterations, including translation initiation, nuclear and mitochondrial splicing, and assembly of ribosomes and spliceosomes. DDX20 reportedly plays an important role in cellular transcription and post-transcriptional modifications. On the one hand, DDX20 can interact with various transcription factors and repress the transcriptional process. On the other hand, DDX20 forms the survival motor neuron complex and participates in the assembly of snRNP, ultimately affecting the RNA splicing process. Finally, DDX20 can potentially rely on its RNA-unwinding enzyme function to participate in microRNA (miRNA) maturation and act as a component of the RNA-induced silencing complex. In addition, although DDX20 is not a key component in the innate immune system signaling pathway, it can affect the nuclear factor kappa B (NF-κB) and p53 signaling pathways. In particular, DDX20 plays different roles in tumorigenesis development through the NF-κB signaling pathway. This process is regulated by various factors such as miRNA. DDX20 can influence processes such as viral replication in cells by interacting with two proteins in Epstein-Barr virus and can regulate the replication process of several viruses through the innate immune system, indicating that DDX20 plays an important role in the innate immune system. Herein, we review the effects of DDX20 on the innate immune system and its role in transcriptional and post-transcriptional modification processes, based on which we provide an outlook on the future of DDX20 research in innate immunity and viral infections.
Collapse
Affiliation(s)
- Lu He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Siyue Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
11
|
Pánek J, Roithová A, Radivojević N, Sýkora M, Prusty AB, Huston N, Wan H, Pyle AM, Fischer U, Staněk D. The SMN complex drives structural changes in human snRNAs to enable snRNP assembly. Nat Commun 2023; 14:6580. [PMID: 37852981 PMCID: PMC10584915 DOI: 10.1038/s41467-023-42324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Spliceosomal snRNPs are multicomponent particles that undergo a complex maturation pathway. Human Sm-class snRNAs are generated as 3'-end extended precursors, which are exported to the cytoplasm and assembled together with Sm proteins into core RNPs by the SMN complex. Here, we provide evidence that these pre-snRNA substrates contain compact, evolutionarily conserved secondary structures that overlap with the Sm binding site. These structural motifs in pre-snRNAs are predicted to interfere with Sm core assembly. We model structural rearrangements that lead to an open pre-snRNA conformation compatible with Sm protein interaction. The predicted rearrangement pathway is conserved in Metazoa and requires an external factor that initiates snRNA remodeling. We show that the essential helicase Gemin3, which is a component of the SMN complex, is crucial for snRNA structural rearrangements during snRNP maturation. The SMN complex thus facilitates ATP-driven structural changes in snRNAs that expose the Sm site and enable Sm protein binding.
Collapse
Affiliation(s)
- Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Adriana Roithová
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Nenad Radivojević
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sýkora
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Nicholas Huston
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, USA
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, USA
- Department of Chemistry, Yale University, New Haven, USA
- Howard Hughes Medical Institute, Chevy Chase, USA
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Hu Y, Hou Y, Zhou S, Wang Y, Shen C, Mu L, Su D, Zhang R. Mechanism of assembly of snRNP cores assisted by ICln and the SMN complex in fission yeast. iScience 2023; 26:107604. [PMID: 37664592 PMCID: PMC10470402 DOI: 10.1016/j.isci.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The spliceosomal snRNP cores, each comprised of a snRNA and a seven-membered Sm ring (D1/D2/F/E/G/D3/B), are assembled by twelve chaperoning proteins in human. However, only six assembly-assisting proteins, ICln and the SMN complex (SMN/Gemin2/Gemin6-8), have been found in Schizosaccharomyces pombe (Sp). Here, we used recombinant proteins to reconstitute the chaperone machinery and investigated the roles of these proteins systematically. We found that, like the human system, the assembly in S. pombe requires ICln and the SMN complex sequentially. However, there are several significant differences. For instance, h_F/E/G forms heterohexamers and heterotrimers, while Sp_F/E/G only forms heterohexamers; h_Gemin2 alone can bind D1/D2/F/E/G, but Sp_Gemin2 cannot. Moreover, we found that Sp_Gemin2 is essential using genetic approaches. These mechanistic studies reveal that these six proteins are necessary and sufficient for Sm core assembly at the molecular level, and enrich our understanding of the chaperone systems in species variation and evolution.
Collapse
Affiliation(s)
- Yan Hu
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yan Hou
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Shijie Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yingzhi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Congcong Shen
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Li Mu
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Rundong Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
13
|
Fortuna TR, Kour S, Chimata AV, Muiños-Bühl A, Anderson EN, Nelson Iv CH, Ward C, Chauhan O, O'Brien C, Rajasundaram D, Rajan DS, Wirth B, Singh A, Pandey UB. SMN regulates GEMIN5 expression and acts as a modifier of GEMIN5-mediated neurodegeneration. Acta Neuropathol 2023; 146:477-498. [PMID: 37369805 PMCID: PMC11348892 DOI: 10.1007/s00401-023-02607-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.
Collapse
Affiliation(s)
- Tyler R Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Anixa Muiños-Bühl
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Charlie H Nelson Iv
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Om Chauhan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Esser LM, Schmitz K, Hillebrand F, Erkelenz S, Schaal H, Stork B, Grimmler M, Wesselborg S, Peter C. Phosphorylation of pICln by the autophagy activating kinase ULK1 regulates snRNP biogenesis and splice activity of the cell. Comput Struct Biotechnol J 2023; 21:2100-2109. [PMID: 36968021 PMCID: PMC10034211 DOI: 10.1016/j.csbj.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The spliceosome, responsible for all mature protein-coding transcripts of eukaryotic intron-containing genes, consists of small uridine-rich nuclear ribonucleoproteins (UsnRNPs). The assembly of UsnRNPs depends, on one hand, on the arginine methylation of Sm proteins catalyzed by the PRMT5 complex. On the other hand, it depends on the phosphorylation of the PRMT5 subunit pICln by the Uncoordinated Like Kinase 1 (ULK1). In consequence, phosphorylation of pICln affects the stability of the UsnRNP assembly intermediate, the so-called 6 S complex. The detailed mechanisms of phosphorylation-dependent integrity and subsequent UsnRNP assembly of the 6 S complex in vivo have not yet been analyzed. By using a phospho-specific antibody against ULK1-dependent phosphorylation sites of pICln, we visualize the intracellular distribution of phosphorylated pICln. Furthermore, we detect the colocaliphosphor-pICln1 with phospho-pICln by size-exclusion chromatography and immunofluorescence techniques. We also show that phosphorylated pICln is predominantly present in the 6 S complex. The addition of ULK1 to in vitro produced 6 S complex, as well as the reconstitution of ULK1 in ULK1-deficient cells, increases the efficiency of snRNP biogenesis. Accordingly, inhibition of ULK1 and the associated decreased pICln phosphorylation lead to accumulation of the 6 S complex and reduction in the spliceosomal activity of the cell.
Collapse
|
15
|
Kowalczyk M, Kowalczyk E, Gogolewska M, Skrzypek M, Talarowska M, Majsterek I, Poplawski T, Kwiatkowski P, Sienkiewicz M. Association of polymorphic variants in GEMIN genes with the risk of depression in a Polish population. PeerJ 2022; 10:e14317. [PMID: 36405016 PMCID: PMC9673762 DOI: 10.7717/peerj.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background The role of miRNA in depression is widely described by many researchers. miRNA is a final product of many genes involved in its formation (maturation). One of the final steps in the formation of miRNAs is the formation of the RISC complex, called the RNA-induced silencing complex, which includes, among others, GEMIN proteins. Single-nucleotide polymorphisms (SNPs) may lead to disturbance of miRNA biogenesis and function. The objective of our research was to assess the relationship between the appearance of depression and single nucleotide polymorphisms in the GEMIN3 (rs197388) and GEMIN4 (rs7813; rs3744741) genes. Our research provides new knowledge on the genetic factors that influence the risk of depression. They can be used as an element of diagnostics helpful in identifying people at increased risk, as well as indicating people not at risk of depression. Methods A total of 218 participants were examined, including individuals with depressive disorders (n = 102; study group) and healthy people (n = 116, control group). All the patients in the study group and the people in the control group were non-related native Caucasian Poles from central Poland. Blood was collected from study and control groups in order to assess the SNPs of GEMIN genes. Results An analysis of the results obtained showed that in patient population, the risk of depression is almost doubled by polymorphic variants of the genes: rs197388/GEMIN3 genotype A/A in the recessive model and rs3744741/GEMIN4 genotype T/T, codominant and recessive model. The dual role of rs7813/GEMIN4 is noteworthy, where the G/A genotype in the codominant and over dominant model protects against depression.
Collapse
Affiliation(s)
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | - Monika Gogolewska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Department of Clinical Psychology and Psychopathology, University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Poplawski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, del Caño-Ochoa F, Ramón-Maiques S, Martinez-Salas E. Phosphorylation of T897 in the dimerization domain of Gemin5 modulates protein interactions and translation regulation. Comput Struct Biotechnol J 2022; 20:6182-6191. [DOI: 10.1016/j.csbj.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
17
|
Francisco-Velilla R, Embarc-Buh A, Del Caño-Ochoa F, Abellan S, Vilar M, Alvarez S, Fernandez-Jaen A, Kour S, Rajan DS, Pandey UB, Ramón-Maiques S, Martinez-Salas E. Functional and structural deficiencies of Gemin5 variants associated with neurological disorders. Life Sci Alliance 2022; 5:5/7/e202201403. [PMID: 35393353 PMCID: PMC8989681 DOI: 10.26508/lsa.202201403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protein.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Francisco Del Caño-Ochoa
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Sara Alvarez
- New Integrated Medical Genetics (NIMGENETICS), Madrid, Spain
| | - Alberto Fernandez-Jaen
- Neuropediatric Department, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
18
|
Saida K, Tamaoki J, Sasaki M, Haniffa M, Koshimizu E, Sengoku T, Maeda H, Kikuchi M, Yokoyama H, Sakamoto M, Iwama K, Sekiguchi F, Hamanaka K, Fujita A, Mizuguchi T, Ogata K, Miyake N, Miyatake S, Kobayashi M, Matsumoto N. Pathogenic variants in the survival of motor neurons complex gene GEMIN5 cause cerebellar atrophy. Clin Genet 2021; 100:722-730. [PMID: 34569062 DOI: 10.1111/cge.14066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022]
Abstract
Cerebellar ataxia is a genetically heterogeneous disorder. GEMIN5 encoding an RNA-binding protein of the survival of motor neuron complex, is essential for small nuclear ribonucleoprotein biogenesis, and it was recently reported that biallelic loss-of-function variants cause neurodevelopmental delay, hypotonia, and cerebellar ataxia. Here, whole-exome analysis revealed compound heterozygous GEMIN5 variants in two individuals from our cohort of 162 patients with cerebellar atrophy/hypoplasia. Three novel truncating variants and one previously reported missense variant were identified: c.2196dupA, p.(Arg733Thrfs*6) and c.1831G > A, p.(Val611Met) in individual 1, and c.3913delG, p.(Ala1305Leufs*14) and c.4496dupA, p.(Tyr1499*) in individual 2. Western blotting analysis using lymphoblastoid cell lines derived from both affected individuals showed significantly reduced levels of GEMIN5 protein. Zebrafish model for null variants p.(Arg733Thrfs*6) and p.(Ala1305Leufs*14) exhibited complete lethality at 2 weeks and recapitulated a distinct dysplastic phenotype. The phenotypes of affected individuals and the zebrafish mutant models strongly suggest that biallelic loss-of-function variants in GEMIN5 cause cerebellar atrophy/hypoplasia.
Collapse
Affiliation(s)
- Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Muzhirah Haniffa
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroki Maeda
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Kikuchi
- Department of Pediatrics, Hitachi General Hospital, Hitachi, Japan
| | - Haruna Yokoyama
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Toyama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
19
|
Veepaschit J, Viswanathan A, Bordonné R, Grimm C, Fischer U. Identification and structural analysis of the Schizosaccharomyces pombe SMN complex. Nucleic Acids Res 2021; 49:7207-7223. [PMID: 33754639 PMCID: PMC8287938 DOI: 10.1093/nar/gkab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 01/20/2023] Open
Abstract
The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.
Collapse
Affiliation(s)
- Jyotishman Veepaschit
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Aravindan Viswanathan
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier 34293, France
| | - Clemens Grimm
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
20
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
21
|
Gupta K, Wen Y, Ninan NS, Raimer AC, Sharp R, Spring A, Sarachan KL, Johnson MC, Van Duyne GD, Matera AG. Assembly of higher-order SMN oligomers is essential for metazoan viability and requires an exposed structural motif present in the YG zipper dimer. Nucleic Acids Res 2021; 49:7644-7664. [PMID: 34181727 PMCID: PMC8287954 DOI: 10.1093/nar/gkab508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ying Wen
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nisha S Ninan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Amanda C Raimer
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ashlyn M Spring
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathryn L Sarachan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Meghan C Johnson
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - A Gregory Matera
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Kour S, Rajan DS, Fortuna TR, Anderson EN, Ward C, Lee Y, Lee S, Shin YB, Chae JH, Choi M, Siquier K, Cantagrel V, Amiel J, Stolerman ES, Barnett SS, Cousin MA, Castro D, McDonald K, Kirmse B, Nemeth AH, Rajasundaram D, Innes AM, Lynch D, Frosk P, Collins A, Gibbons M, Yang M, Desguerre I, Boddaert N, Gitiaux C, Rydning SL, Selmer KK, Urreizti R, Garcia-Oguiza A, Osorio AN, Verdura E, Pujol A, McCurry HR, Landers JE, Agnihotri S, Andriescu EC, Moody SB, Phornphutkul C, Sacoto MJG, Begtrup A, Houlden H, Kirschner J, Schorling D, Rudnik-Schöneborn S, Strom TM, Leiz S, Juliette K, Richardson R, Yang Y, Zhang Y, Wang M, Wang J, Wang X, Platzer K, Donkervoort S, Bönnemann CG, Wagner M, Issa MY, Elbendary HM, Stanley V, Maroofian R, Gleeson JG, Zaki MS, Senderek J, Pandey UB. Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nat Commun 2021; 12:2558. [PMID: 33963192 PMCID: PMC8105379 DOI: 10.1038/s41467-021-22627-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/19/2021] [Indexed: 02/01/2023] Open
Abstract
GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tyler R Fortuna
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caroline Ward
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangmoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Beom Shin
- Department of Rehabilitative Medicine, Pusan National University School of Medicine, Pusan, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Karine Siquier
- Developmental Brain Disorders Laboratory, Paris University, Imagine Institute, INSERM UMR, Paris, France
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Paris University, Imagine Institute, INSERM UMR, Paris, France
| | - Jeanne Amiel
- Department of Genetics, AP-HP, Necker Enfants Malades Hospital, Paris University, Imagine Institute, Paris, France
| | | | - Sarah S Barnett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Diana Castro
- Department of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Brian Kirmse
- Division of Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Childrens Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Danielle Lynch
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abigail Collins
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Melissa Gibbons
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michele Yang
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Desguerre
- Department of Pediatric Neurology, AP-HP, Necker Enfants Malades Hospital, Paris University Imagine Institute, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, AP-HP, Necker Enfants Malades Hospital, Paris University Imagine Institute, Paris, France
| | - Cyril Gitiaux
- Department of Pediatric Neurophysiology AP-HP, Necker Enfants Malades Hospital, Paris University, Paris, France
| | | | - Kaja K Selmer
- Department of Research and Development, Division of Neuroscience, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Roser Urreizti
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | | | | | - Edgard Verdura
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Pujol
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Hannah R McCurry
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Corina Andriescu
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX, USA
| | - Shade B Moody
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX, USA
| | - Chanika Phornphutkul
- Department of Pediatrics, Division of Human Genetics, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center,, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Schorling
- Department of Neuropediatrics and Muscle Disorders, Medical Center,, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Tim M Strom
- Institute of Human Genetics, Faculty of Medicine, Technical University Munich, Munich, Germany
| | - Steffen Leiz
- Clinic for Children and Adolescents Dritter Orden, Divison of Neuropediatrics, Munchen, Germany
| | - Kali Juliette
- Department of Neurology, Gillette Children's Specialty Healthcare, St Paul, MN, USA
| | - Randal Richardson
- Department of Neurology, Gillette Children's Specialty Healthcare, St Paul, MN, USA
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Minghui Wang
- The First People's Hospital of Changde City, Hunan, China
| | | | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der IsarTechnical, University of Munich, Munich, Germany
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Valentina Stanley
- Departments of Neurosciences and Pediatrics, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Joseph G Gleeson
- Departments of Neurosciences and Pediatrics, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Jan Senderek
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, LMU Munich, Munich, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Rademacher S, Detering NT, Schüning T, Lindner R, Santonicola P, Wefel IM, Dehus J, Walter LM, Brinkmann H, Niewienda A, Janek K, Varela MA, Bowerman M, Di Schiavi E, Claus P. A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells 2020; 9:cells9112405. [PMID: 33153033 PMCID: PMC7692393 DOI: 10.3390/cells9112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Nora T. Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Pamela Santonicola
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Inga-Maria Wefel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Janina Dehus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Lisa M. Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Agathe Niewienda
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Katharina Janek
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
24
|
Berciano MT, Castillo-Iglesias MS, Val-Bernal JF, Lafarga V, Rodriguez-Rey JC, Lafarga M, Tapia O. Mislocalization of SMN from the I-band and M-band in human skeletal myofibers in spinal muscular atrophy associates with primary structural alterations of the sarcomere. Cell Tissue Res 2020; 381:461-478. [PMID: 32676861 DOI: 10.1007/s00441-020-03236-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by a deletion or mutation of the survival motor neuron 1 (SMN1) gene. Reduced SMN levels lead to motor neuron degeneration and muscular atrophy. SMN protein localizes to the cytoplasm and Cajal bodies. Moreover, in myofibrils from Drosophila and mice, SMN is a sarcomeric protein localized to the Z-disc. Although SMN participates in multiple functions, including the biogenesis of spliceosomal small nuclear ribonucleoproteins, its role in the sarcomere is unclear. Here, we analyzed the sarcomeric organization of SMN in human control and type I SMA skeletal myofibers. In control sarcomeres, we demonstrate that human SMN is localized to the titin-positive M-band and actin-positive I-band, and to SMN-positive granules that flanked the Z-discs. Co-immunoprecipitation assays revealed that SMN interacts with the sarcomeric protein actin, α-actinin, titin, and profilin2. In the type I SMA muscle, SMN levels were reduced, and atrophic (denervated) and hypertrophic (nondenervated) myofibers coexisted. The hypertrophied myofibers, which are potential primary targets of SMN deficiency, exhibited sites of focal or segmental alterations of the actin cytoskeleton, where the SMN immunostaining pattern was altered. Moreover, SMN was relocalized to the Z-disc in overcontracted minisarcomeres from hypertrophic myofibers. We propose that SMN could have an integrating role in the molecular components of the sarcomere. Consequently, low SMN levels might impact the normal sarcomeric architecture, resulting in the disruption of myofibrils found in SMA muscle. This primary effect might be independent of the neurogenic myopathy produced by denervation and contribute to pathophysiology of the SMA myopathy.
Collapse
Affiliation(s)
- María T Berciano
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | | | - J Fernando Val-Bernal
- Unidad de Patología, Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - José C Rodriguez-Rey
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain.
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
25
|
Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1. Biomolecules 2020; 10:biom10060872. [PMID: 32517187 PMCID: PMC7356810 DOI: 10.3390/biom10060872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.
Collapse
|
26
|
Emerging Roles of Gemin5: From snRNPs Assembly to Translation Control. Int J Mol Sci 2020; 21:ijms21113868. [PMID: 32485878 PMCID: PMC7311978 DOI: 10.3390/ijms21113868] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The disfunction of RBPs is frequently the cause of cell disorders which are incompatible with life. Furthermore, the ordered assembly of RBPs and RNAs in ribonucleoprotein (RNP) particles determines the function of biological complexes, as illustrated by the survival of the motor neuron (SMN) complex. Defects in the SMN complex assembly causes spinal muscular atrophy (SMA), an infant invalidating disease. This multi-subunit chaperone controls the assembly of small nuclear ribonucleoproteins (snRNPs), which are the critical components of the splicing machinery. However, the functional and structural characterization of individual members of the SMN complex, such as SMN, Gemin3, and Gemin5, have accumulated evidence for the additional roles of these proteins, unveiling their participation in other RNA-mediated events. In particular, Gemin5 is a multidomain protein that comprises tryptophan-aspartic acid (WD) repeat motifs at the N-terminal region, a dimerization domain at the middle region, and a non-canonical RNA-binding domain at the C-terminal end of the protein. Beyond small nuclear RNA (snRNA) recognition, Gemin5 interacts with a selective group of mRNA targets in the cell environment and plays a key role in reprogramming translation depending on the RNA partner and the cellular conditions. Here, we review recent studies on the SMN complex, with emphasis on the individual components regarding their involvement in cellular processes critical for cell survival.
Collapse
|
27
|
Roldán DB, Grimmler M, Hartmann C, Hubich-Rau S, Beißert T, Paret C, Cagna G, Rohde C, Wöll S, Koslowski M, Türeci Ö, Sahin U. PLAC1 is essential for FGF7/FGFRIIIb-induced Akt-mediated cancer cell proliferation. Oncotarget 2020; 11:1862-1875. [PMID: 32499871 PMCID: PMC7244013 DOI: 10.18632/oncotarget.27582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
PLAC1 (placenta enriched 1) is a mammalian trophoblast-specific protein. Aberrant expression of PLAC1 is observed in various human cancers, where it is involved in the motility, migration, and invasion of tumor cells, which are associated with the phosphoinositide 3-kinase (PI3K)/AKT pathway. We previously demonstrated that AKT activation mediates the downstream effects of PLAC1; however, the molecular mechanisms of PLAC1-induced AKT-mediated tumor-related processes are unclear. We studied human choriocarcinoma and breast cancer cell lines to explore the localization and receptor-ligand interactions, as well as the downstream effects of PLAC1. We show secretion and adherence of PLAC1 to the extracellular matrix, where it forms a trimeric complex with fibroblast growth factor 7 (FGF7) and its receptor, FGF receptor 2 IIIb (FGFR2IIIb). We further show that PLAC1 signaling via FGFR2IIIb activates AKT phosphorylation in cancer cell lines. As the FGF pathway is of major interest in anticancer therapeutic strategies, these data further promote PLAC1 as a promising anticancer drug target.
Collapse
Affiliation(s)
- Diana Barea Roldán
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- These authors contributed equally to this work
| | - Matthias Grimmler
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current address: DiaSys Diagnostic Systems GmbH, Holzheim, Germany
- These authors contributed equally to this work
| | - Christoph Hartmann
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current address: Merck KGaA, Darmstadt, Germany
- These authors contributed equally to this work
| | - Stefanie Hubich-Rau
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- These authors contributed equally to this work
| | - Tim Beißert
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Paret
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Giuseppe Cagna
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Current address: Lonza Pharma & Biotech, Cologne, Germany
| | - Christoph Rohde
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Current address: Merck KGaA, Darmstadt, Germany
| | - Stefan Wöll
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Michael Koslowski
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Formerly of University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current address: GammaDelta Therapeutics, London, United Kingdom
| | - Özlem Türeci
- Formerly of TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- Ci3 Cluster for Individualized Immune Intervention, Mainz, Germany
| | - Ugur Sahin
- TRON–Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Sapaly D, Delers P, Coridon J, Salman B, Letourneur F, Dumont F, Lefebvre S. The Small-Molecule Flunarizine in Spinal Muscular Atrophy Patient Fibroblasts Impacts on the Gemin Components of the SMN Complex and TDP43, an RNA-Binding Protein Relevant to Motor Neuron Diseases. Front Mol Biosci 2020; 7:55. [PMID: 32363199 PMCID: PMC7181958 DOI: 10.3389/fmolb.2020.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The motor neurodegenerative disease spinal muscular atrophy (SMA) is caused by alterations of the survival motor neuron 1 (SMN1) gene involved in RNA metabolism. Although the disease mechanisms are not completely elucidated, SMN protein deficiency leads to abnormal small nuclear ribonucleoproteins (snRNPs) assembly responsible for widespread splicing defects. SMN protein localizes in nuclear bodies that are lost in SMA and adult onset amyotrophic lateral sclerosis (ALS) patient cells harboring TDP-43 or FUS/TLS mutations. We previously reported that flunarizine recruits SMN into nuclear bodies and improves the phenotype of an SMA mouse model. However, the precise mode of action remains elusive. Here, a marked reduction of the integral components of the SMN complex is observed in severe SMA patient fibroblast cells. We show that flunarizine increases the protein levels of a subset of components of the SMN-Gemins complex, Gemins2-4, and markedly reduces the RNA and protein levels of the pro-oxydant thioredoxin-interacting protein (TXNIP) encoded by an mRNA target of Gemin5. We further show that SMN deficiency causes a dissociation of the localization of the SMN complex components from the same nuclear bodies. The accumulation of TDP-43 in SMN-positive nuclear bodies is also perturbed in SMA cells. Notably, TDP-43 is found to co-localize with SMN in nuclear bodies of flunarizine-treated SMA cells. Our findings indicate that flunarizine reverses cellular changes caused by SMN deficiency in SMA cells and further support the view of a common pathway in RNA metabolism underlying infantile and adult motor neuron diseases.
Collapse
Affiliation(s)
- Delphine Sapaly
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Perrine Delers
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Jennifer Coridon
- BioMedTech Facilities INSERM US36 - CNRS UMS 2009, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Badih Salman
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | | | - Florent Dumont
- Genom'ic Platform, INSERM U1016, Institut Cochin, Paris, France
| | - Suzie Lefebvre
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| |
Collapse
|
29
|
Yi H, Mu L, Shen C, Kong X, Wang Y, Hou Y, Zhang R. Negative cooperativity between Gemin2 and RNA provides insights into RNA selection and the SMN complex's release in snRNP assembly. Nucleic Acids Res 2020; 48:895-911. [PMID: 31799625 PMCID: PMC6954390 DOI: 10.1093/nar/gkz1135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
The assembly of snRNP cores, in which seven Sm proteins, D1/D2/F/E/G/D3/B, form a ring around the nonameric Sm site of snRNAs, is the early step of spliceosome formation and essential to eukaryotes. It is mediated by the PMRT5 and SMN complexes sequentially in vivo. SMN deficiency causes neurodegenerative disease spinal muscular atrophy (SMA). How the SMN complex assembles snRNP cores is largely unknown, especially how the SMN complex achieves high RNA assembly specificity and how it is released. Here we show, using crystallographic and biochemical approaches, that Gemin2 of the SMN complex enhances RNA specificity of SmD1/D2/F/E/G via a negative cooperativity between Gemin2 and RNA in binding SmD1/D2/F/E/G. Gemin2, independent of its N-tail, constrains the horseshoe-shaped SmD1/D2/F/E/G from outside in a physiologically relevant, narrow state, enabling high RNA specificity. Moreover, the assembly of RNAs inside widens SmD1/D2/F/E/G, causes the release of Gemin2/SMN allosterically and allows SmD3/B to join. The assembly of SmD3/B further facilitates the release of Gemin2/SMN. This is the first to show negative cooperativity in snRNP assembly, which provides insights into RNA selection and the SMN complex's release. These findings reveal a basic mechanism of snRNP core assembly and facilitate pathogenesis studies of SMA.
Collapse
Affiliation(s)
- Hongfei Yi
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Li Mu
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Congcong Shen
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Xi Kong
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yingzhi Wang
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yan Hou
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Rundong Zhang
- Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
30
|
Thelen MP, Kye MJ. The Role of RNA Binding Proteins for Local mRNA Translation: Implications in Neurological Disorders. Front Mol Biosci 2020; 6:161. [PMID: 32010708 PMCID: PMC6974540 DOI: 10.3389/fmolb.2019.00161] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
As neurons are one of the most highly polarized cells in our body, they require sophisticated cellular mechanisms to maintain protein homeostasis in their subcellular compartments such as axons and dendrites. When neuronal protein homeostasis is disturbed due to genetic mutations or deletions, this often results in degeneration of neurons leading to devastating outcome such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and fragile X syndrome (FXS). Ribonucleoprotein (RNP) complexes are macromolecular complexes composed of RNA binding proteins (RBPs) and their target RNAs. RBPs contain RNA binding domains and bind to RNA molecules via specific sequence motifs. RNP complexes have various functions in gene expression including messenger RNA (mRNA) trafficking, RNA processing and silencing. In neurons, RBPs deliver specific sets of mRNAs to subcellular compartments such as axons and dendrites to be locally translated. Mutations or deletions in genes coding for RNPs have been reported as causes for neurological disorders such as SMA, ALS, and FXS. As RBPs determine axonal or dendritic mRNA repertoires as well as proteomes by trafficking selective mRNAs and regulating local protein synthesis, they play a crucial role for neuronal function. In this review, we summarize the role of well-known RBPs, SMN, TDP-43, FUS, and FMRP, and review their function for local protein synthesis in neurons. Furthermore, we discuss their pathological contribution to the neurological disorders.
Collapse
Affiliation(s)
| | - Min Jeong Kye
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Francisco-Velilla R, Fernandez-Chamorro J, Dotu I, Martinez-Salas E. The landscape of the non-canonical RNA-binding site of Gemin5 unveils a feedback loop counteracting the negative effect on translation. Nucleic Acids Res 2019; 46:7339-7353. [PMID: 29771365 PMCID: PMC6101553 DOI: 10.1093/nar/gky361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/08/2018] [Indexed: 01/01/2023] Open
Abstract
Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem–loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem–loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.
Collapse
Affiliation(s)
| | | | - Ivan Dotu
- Pompeu Fabra University (UPF), 08003 Barcelona, Spain.,IMIM - Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | | |
Collapse
|
32
|
Composition of the Survival Motor Neuron (SMN) Complex in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:491-503. [PMID: 30563832 PMCID: PMC6385987 DOI: 10.1534/g3.118.200874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila melanogaster Using transgenic flies that exclusively express Flag-tagged SMN from its native promoter, we previously found that Gemin2, Gemin3, Gemin5, and all nine classical Sm proteins, including Lsm10 and Lsm11, co-purify with SMN. Here, we show that CG2941 is also highly enriched in the pulldown. Reciprocal co-immunoprecipitation reveals that epitope-tagged CG2941 interacts with endogenous SMN in Schneider2 cells. Bioinformatic comparisons show that CG2941 shares sequence and structural similarity with metazoan Gemin4. Additional analysis shows that three other genes (CG14164, CG31950 and CG2371) are not orthologous to Gemins 6-7-8, respectively, as previously suggested. In D.melanogaster, CG2941 is located within an evolutionarily recent genomic triplication with two other nearly identical paralogous genes (CG32783 and CG32786). RNAi-mediated knockdown of CG2941 and its two close paralogs reveals that Gemin4 is essential for organismal viability.
Collapse
|
33
|
Dotu I, Adamson SI, Coleman B, Fournier C, Ricart-Altimiras E, Eyras E, Chuang JH. SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data. PLoS Comput Biol 2018; 14:e1006078. [PMID: 29596423 PMCID: PMC5892938 DOI: 10.1371/journal.pcbi.1006078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 12/02/2022] Open
Abstract
RNA-protein binding is critical to gene regulation, controlling fundamental processes including splicing, translation, localization and stability, and aberrant RNA-protein interactions are known to play a role in a wide variety of diseases. However, molecular understanding of RNA-protein interactions remains limited; in particular, identification of RNA motifs that bind proteins has long been challenging, especially when such motifs depend on both sequence and structure. Moreover, although RNA binding proteins (RBPs) often contain more than one binding domain, algorithms capable of identifying more than one binding motif simultaneously have not been developed. In this paper we present a novel pipeline to determine binding peaks in crosslinking immunoprecipitation (CLIP) data, to discover multiple possible RNA sequence/structure motifs among them, and to experimentally validate such motifs. At the core is a new semi-automatic algorithm SARNAclust, the first unsupervised method to identify and deconvolve multiple sequence/structure motifs simultaneously. SARNAclust computes similarity between sequence/structure objects using a graph kernel, providing the ability to isolate the impact of specific features through the bulge graph formalism. Application of SARNAclust to synthetic data shows its capability of clustering 5 motifs at once with a V-measure value of over 0.95, while GraphClust achieves only a V-measure of 0.083 and RNAcontext cannot detect any of the motifs. When applied to existing eCLIP sets, SARNAclust finds known motifs for SLBP and HNRNPC and novel motifs for several other RBPs such as AGGF1, AKAP8L and ILF3. We demonstrate an experimental validation protocol, a targeted Bind-n-Seq-like high-throughput sequencing approach that relies on RNA inverse folding for oligo pool design, that can validate the components within the SLBP motif. Finally, we use this protocol to experimentally interrogate the SARNAclust motif predictions for protein ILF3. Our results support a newly identified partially double-stranded UUUUUGAGA motif similar to that known for the splicing factor HNRNPC. RNA-protein binding is critical to gene regulation, and aberrant RNA-protein interactions play a role in a wide variety of diseases. However, molecular understanding of these interactions remains limited because of the difficulty of ascertaining the motifs that bind each protein. To address this challenge, we have developed a novel algorithm, SARNAclust, to computationally identify combined structure/sequence motifs from immunoprecipitation data. SARNAclust can deconvolve multiple motifs simultaneously and determine the importance of specific features through a graph kernel and bulge graph formalism. We have verified SARNAclust to be effective on synthetic motif data and also tested it on ENCODE eCLIP datasets, identifying known motifs and novel predictions. We have experimentally validated SARNAclust for two proteins, SLBP and ILF3, using RNA Bind-n-Seq measurements. Applying SARNAclust to ENCODE data provides new evidence for previously unknown regulatory interactions, notably splicing co-regulation by ILF3 and the splicing factor hnRNPC.
Collapse
Affiliation(s)
- Ivan Dotu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)–Pompeu Fabra University (UPF), Barcelona, Spain
| | - Scott I. Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
- UCONN Health, Department of Genetics and Genome Sciences, Farmington, CT, United States of America
| | - Benjamin Coleman
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
| | - Cyril Fournier
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
| | - Emma Ricart-Altimiras
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)–Pompeu Fabra University (UPF), Barcelona, Spain
| | - Eduardo Eyras
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)–Pompeu Fabra University (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
- UCONN Health, Department of Genetics and Genome Sciences, Farmington, CT, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Gemin3, also known as DDX20 or DP103, is a DEAD-box RNA helicase which is involved in more than one cellular process. Though RNA unwinding has been determined in vitro, it is surprisingly not required for all of its activities in cellular metabolism. Gemin3 is an essential gene, present in Amoeba and Metazoa. The highly conserved N-terminus hosts the helicase core, formed of the helicase- and DEAD-domains, which, based on crystal structure determination, have key roles in RNA binding. The C-terminus of Gemin3 is highly divergent between species and serves as the interaction site for several accessory factors that could recruit Gemin3 to its target substrates and/or modulate its function. This review article focuses on the known roles of Gemin3, first as a core member of the survival motor neuron (SMN) complex, in small nuclear ribonucleoprotein biogenesis. Although mechanistic details are lacking, a critical function for Gemin3 in this pathway is supported by numerous in vitro and in vivo studies. Gene expression activities of Gemin3 are next underscored, mainly messenger ribonucleoprotein trafficking, gene silencing via microRNA processing, and transcriptional regulation. The involvement of Gemin3 in abnormal cell signal transduction pathways involving p53 and NF-κB is also highlighted. Finally, the clinical implications of Gemin3 deregulation are discussed including links to spinal muscular atrophy, poliomyelitis, amyotrophic lateral sclerosis, and cancer. Impressive progress made over the past two decades since the discovery of Gemin3 bodes well for further work that refines the mechanism(s) underpinning its multiple activities.
Collapse
|
35
|
Meier ID, Walker MP, Matera AG. Gemin4 is an essential gene in mice, and its overexpression in human cells causes relocalization of the SMN complex to the nucleoplasm. Biol Open 2018; 7:bio.032409. [PMID: 29371219 PMCID: PMC5861365 DOI: 10.1242/bio.032409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gemin4 is a member of the Survival Motor Neuron (SMN) protein complex, which is responsible for the assembly and maturation of Sm-class small nuclear ribonucleoproteins (snRNPs). In metazoa, Sm snRNPs are assembled in the cytoplasm and subsequently imported into the nucleus. We previously showed that the SMN complex is required for snRNP import in vitro, although it remains unclear which specific components direct this process. Here, we report that Gemin4 overexpression drives SMN and the other Gemin proteins from the cytoplasm into the nucleus. Moreover, it disrupts the subnuclear localization of the Cajal body marker protein, coilin, in a dose-dependent manner. We identified three putative nuclear localization signal (NLS) motifs within Gemin4, one of which is necessary and sufficient to direct nuclear import. Overexpression of Gemin4 constructs lacking this NLS sequestered Gemin3 and, to a lesser extent Gemin2, in the cytoplasm but had little effect on the nuclear accumulation of SMN. We also investigated the effects of Gemin4 depletion in the laboratory mouse, Mus musculus. Gemin4 null mice die early in embryonic development, demonstrating that Gemin4 is an essential mammalian protein. When crossed onto a severe SMA mutant background, heterozygous loss of Gemin4 failed to modify the early postnatal mortality phenotype of SMA type I (Smn−/−;SMN2+/+) mice. We conclude that Gemin4 plays an essential role in mammalian snRNP biogenesis, and may facilitate import of the SMN complex (or subunits thereof) into the nucleus. Summary:Gemin4 loss-of-function is recessive lethal in mice, whereas in cell culture its overexpression results in a dominant, gain-of-function relocalization of SMN and other Gemin proteins to the nucleus.
Collapse
Affiliation(s)
- Ingo D Meier
- Integrative Program for Biological and Genome Sciences, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michael P Walker
- Integrative Program for Biological and Genome Sciences, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-3280, USA.,Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | | |
Collapse
|
36
|
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations/deletions within the survival of motor neuron 1 (SMN1) gene that lead to a pathological reduction of SMN protein levels. SMN is part of a multiprotein complex, functioning as a molecular chaperone that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNP). In addition to its role in spliceosome formation, SMN has also been found to interact with mRNA-binding proteins (mRBPs), and facilitate their assembly into mRNP transport granules. The association of protein and RNA in RNP complexes plays an important role in an extensive and diverse set of cellular processes that regulate neuronal growth, differentiation, and the maturation and plasticity of synapses. This review discusses the role of SMN in RNP assembly and localization, focusing on molecular defects that affect mRNA processing and may contribute to SMA pathology.
Collapse
|
37
|
Lanfranco M, Cacciottolo R, Borg RM, Vassallo N, Juge F, Bordonné R, Cauchi RJ. Novel interactors of the Drosophila
Survival Motor Neuron (SMN) Complex suggest its full conservation. FEBS Lett 2017; 591:3600-3614. [DOI: 10.1002/1873-3468.12853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Maia Lanfranco
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Rebecca Cacciottolo
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Rebecca M. Borg
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier; CNRS-UMR 5535; Université de Montpellier; France
| | - Ruben J. Cauchi
- Department of Physiology and Biochemistry; Faculty of Medicine and Surgery; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| |
Collapse
|
38
|
Dominguez CE, Cunningham D, Chandler DS. SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities. Hum Genet 2017; 136:1173-1191. [PMID: 28852871 PMCID: PMC6201753 DOI: 10.1007/s00439-017-1835-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Low levels of the survival of motor neuron (SMN) protein cause the neurodegenerative disease spinal muscular atrophy (SMA). SMA is a pediatric disease characterized by spinal motor neuron degeneration. SMA exhibits several levels of severity ranging from early antenatal fatality to only mild muscular weakness, and disease prognosis is related directly to the amount of functional SMN protein that a patient is able to express. Current therapies are being developed to increase the production of functional SMN protein; however, understanding the effect that natural stresses have on the production and function of SMN is of critical importance to ensuring that these therapies will have the greatest possible effect for patients. Research has shown that SMN, both on the mRNA and protein level, is highly affected by cellular stress. In this review we will summarize the research that highlights the roles of SMN in the disease process and the response of SMN to various environmental stresses.
Collapse
Affiliation(s)
- Catherine E Dominguez
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David Cunningham
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Dawn S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
39
|
Gruss OJ, Meduri R, Schilling M, Fischer U. UsnRNP biogenesis: mechanisms and regulation. Chromosoma 2017; 126:577-593. [PMID: 28766049 DOI: 10.1007/s00412-017-0637-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
Abstract
Macromolecular complexes composed of proteins or proteins and nucleic acids rather than individual macromolecules mediate many cellular activities. Maintenance of these activities is essential for cell viability and requires the coordinated production of the individual complex components as well as their faithful incorporation into functional entities. Failure of complex assembly may have fatal consequences and can cause severe diseases. While many macromolecular complexes can form spontaneously in vitro, they often require aid from assembly factors including assembly chaperones in the crowded cellular environment. The assembly of RNA protein complexes implicated in the maturation of pre-mRNAs (termed UsnRNPs) has proven to be a paradigm to understand the action of assembly factors and chaperones. UsnRNPs are assembled by factors united in protein arginine methyltransferase 5 (PRMT5)- and survival motor neuron (SMN)-complexes, which act sequentially in the UsnRNP production line. While the PRMT5-complex pre-arranges specific sets of proteins into stable intermediates, the SMN complex displaces assembly factors from these intermediates and unites them with UsnRNA to form the assembled RNP. Despite advanced mechanistic understanding of UsnRNP assembly, our knowledge of regulatory features of this essential and ubiquitous cellular function remains remarkably incomplete. One may argue that the process operates as a default biosynthesis pathway and does not require sophisticated regulatory cues. Simple theoretical considerations and a number of experimental data, however, indicate that regulation of UsnRNP assembly most likely happens at multiple levels. This review will not only summarize how individual components of this assembly line act mechanistically but also why, how, and when the UsnRNP workflow might be regulated by means of posttranslational modification in response to cellular signaling cues.
Collapse
Affiliation(s)
- Oliver J Gruss
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
| | - Rajyalakshmi Meduri
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany
| | - Maximilian Schilling
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Utz Fischer
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
40
|
Prusty AB, Meduri R, Prusty BK, Vanselow J, Schlosser A, Fischer U. Impaired spliceosomal UsnRNP assembly leads to Sm mRNA down-regulation and Sm protein degradation. J Cell Biol 2017. [PMID: 28637748 PMCID: PMC5551706 DOI: 10.1083/jcb.201611108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cellular spliceosomal UsnRNP assembly is assisted by the PRMT5 and SMN complexes. Prusty et al. demonstrate that perturbations in the assembly machinery of UsnRNPs trigger complex cellular responses, using ribosomes, exosome-mediated RNA degradation, and autophagy to prevent Sm protein aggregation. Specialized assembly factors facilitate the formation of many macromolecular complexes in vivo. The formation of Sm core structures of spliceosomal U-rich small nuclear ribonucleoprotein particles (UsnRNPs) requires assembly factors united in protein arginine methyltransferase 5 (PRMT5) and survival motor neuron (SMN) complexes. We demonstrate that perturbations of this assembly machinery trigger complex cellular responses that prevent aggregation of unassembled Sm proteins. Inactivation of the SMN complex results in the initial tailback of Sm proteins on the PRMT5 complex, followed by down-regulation of their encoding mRNAs. In contrast, reduction of pICln, a PRMT5 complex subunit, leads to the retention of newly synthesized Sm proteins on ribosomes and their subsequent lysosomal degradation. Overexpression of Sm proteins under these conditions results in a surplus of Sm proteins over pICln, promoting their aggregation. Our studies identify an elaborate safeguarding system that prevents individual Sm proteins from aggregating, contributing to cellular UsnRNP homeostasis.
Collapse
Affiliation(s)
| | - Rajyalakshmi Meduri
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Bhupesh Kumar Prusty
- Department of Microbiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Jens Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany .,Department of Radiation Medicine and Applied Sciences, University of California at San Diego, San Diego, CA
| |
Collapse
|
41
|
Lanfranco M, Vassallo N, Cauchi RJ. Spinal Muscular Atrophy: From Defective Chaperoning of snRNP Assembly to Neuromuscular Dysfunction. Front Mol Biosci 2017. [PMID: 28642865 PMCID: PMC5463183 DOI: 10.3389/fmolb.2017.00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder that results from decreased levels of the survival motor neuron (SMN) protein. SMN is part of a multiprotein complex that also includes Gemins 2–8 and Unrip. The SMN-Gemins complex cooperates with the protein arginine methyltransferase 5 (PRMT5) complex, whose constituents include WD45, PRMT5 and pICln. Both complexes function as molecular chaperones, interacting with and assisting in the assembly of an Sm protein core onto small nuclear RNAs (snRNAs) to generate small nuclear ribonucleoproteins (snRNPs), which are the operating components of the spliceosome. Molecular and structural studies have refined our knowledge of the key events taking place within the crowded environment of cells and the numerous precautions undertaken to ensure the faithful assembly of snRNPs. Nonetheless, it remains unclear whether a loss of chaperoning in snRNP assembly, considered as a “housekeeping” activity, is responsible for the selective neuromuscular phenotype in SMA. This review thus shines light on in vivo studies that point toward disturbances in snRNP assembly and the consequential transcriptome abnormalities as the primary drivers of the progressive neuromuscular degeneration underpinning the disease. Disruption of U1 snRNP or snRNP assembly factors other than SMN induces phenotypes that mirror aspects of SMN deficiency, and splicing defects, described in numerous SMA models, can lead to a DNA damage and stress response that compromises the survival of the motor system. Restoring the correct chaperoning of snRNP assembly is therefore predicted to enhance the benefit of SMA therapeutic modalities based on augmenting SMN expression.
Collapse
Affiliation(s)
- Maia Lanfranco
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta.,Center for Molecular Medicine and Biobanking, University of MaltaMsida, Malta.,Institut de Génétique Moléculaire de Montpellier, Center National de la Recherche Scientifique-UMR 5535, Université de MontpellierMontpellier, France
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta.,Center for Molecular Medicine and Biobanking, University of MaltaMsida, Malta
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta.,Center for Molecular Medicine and Biobanking, University of MaltaMsida, Malta
| |
Collapse
|
42
|
Li W. How do SMA-linked mutations of SMN1 lead to structural/functional deficiency of the SMA protein? PLoS One 2017; 12:e0178519. [PMID: 28570645 PMCID: PMC5453535 DOI: 10.1371/journal.pone.0178519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease with dysfunctional α-motor neurons in the anterior horn of the spinal cord. SMA is caused by loss (∼95% of SMA cases) or mutation (∼5% of SMA cases) of the survival motor neuron 1 gene SMN1. As the product of SMN1, SMN is a component of the SMN complex, and is also involved in the biosynthesis of the small nuclear ribonucleoproteins (snRNPs), which play critical roles in pre-mRNA splicing in the pathogenesis of SMA. To investigate how SMA-linked mutations of SMN1 lead to structural/functional deficiency of SMN, a set of computational analysis of SMN-related structures were conducted and are described in this article. Of extraordinary interest, the structural analysis highlights three SMN residues (Asp44, Glu134 and Gln136) with SMA-linked missense mutations, which cause disruptions of electrostatic interactions for Asp44, Glu134 and Gln136, and result in three functionally deficient SMA-linked SMN mutants, Asp44Val, Glu134Lys and Gln136Glu. From the computational analysis, it is also possible that SMN’s Lys45 and Asp36 act as two electrostatic clips at the SMN-Gemin2 complex structure interface.
Collapse
Affiliation(s)
- Wei Li
- Medical College, Shantou University, Shantou City, Guangdong Province, China
- * E-mail:
| |
Collapse
|
43
|
Gribling-Burrer AS, Leichter M, Wurth L, Huttin A, Schlotter F, Troffer-Charlier N, Cura V, Barkats M, Cavarelli J, Massenet S, Allmang C. SECIS-binding protein 2 interacts with the SMN complex and the methylosome for selenoprotein mRNP assembly and translation. Nucleic Acids Res 2017; 45:5399-5413. [PMID: 28115638 PMCID: PMC5605228 DOI: 10.1093/nar/gkx031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
Selenoprotein synthesis requires the co-translational recoding of a UGASec codon. This process involves an RNA structural element, called Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2). Several selenoprotein mRNAs undergo unusual cap hypermethylation by the trimethylguanosine synthase 1 (Tgs1), which is recruited by the ubiquitous Survival of MotoNeurons (SMN) protein. SMN, the protein involved in spinal muscular atrophy, is part of a chaperone complex that collaborates with the methylosome for RNP assembly. Here, we analyze the role of individual SMN and methylosome components in selenoprotein mRNP assembly and translation. We show that SBP2 interacts directly with four proteins of the SMN complex and the methylosome core proteins. Nevertheless, SBP2 is not a methylation substrate of the methylosome. We found that both SMN and methylosome complexes are required for efficient translation of the selenoprotein GPx1 in vivo. We establish that the steady-state level of several selenoprotein mRNAs, major regulators of oxidative stress damage in neurons, is specifically reduced in the spinal cord of SMN-deficient mice and that cap hypermethylation of GPx1 mRNA is affected. Altogether we identified a new function of the SMN complex and the methylosome in selenoprotein mRNP assembly and expression.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Michael Leichter
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Laurence Wurth
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Alexandra Huttin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Martine Barkats
- Université Pierre et Marie Curie, UMRS 974, INSERM, FRE3617, Institut de Myologie, 75013 Paris, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Christine Allmang
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France,To whom correspondence should be addressed. Tel : +33 3 88 41 70 80; Fax : +33 3 88 60 22 18;
| |
Collapse
|
44
|
Donlin-Asp PG, Fallini C, Campos J, Chou CC, Merritt ME, Phan HC, Bassell GJ, Rossoll W. The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Rep 2017; 18:1660-1673. [PMID: 28199839 PMCID: PMC5492976 DOI: 10.1016/j.celrep.2017.01.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival of motor neuron (SMN) protein. SMN is part of a multiprotein complex that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN has also been found to associate with mRNA-binding proteins, but the nature of this association was unknown. Here, we have employed a combination of biochemical and advanced imaging methods to demonstrate that SMN promotes the molecular interaction between IMP1 protein and the 3' UTR zipcode region of β-actin mRNA, leading to assembly of messenger ribonucleoprotein (mRNP) complexes that associate with the cytoskeleton to facilitate trafficking. We have identified defects in mRNP assembly in cells and tissues from SMA disease models and patients that depend on the SMN Tudor domain and explain the observed deficiency in mRNA localization and local translation, providing insight into SMA pathogenesis as a ribonucleoprotein (RNP)-assembly disorder.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia Fallini
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ching-Chieh Chou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Megan E Merritt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Han C Phan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Xu C, Ishikawa H, Izumikawa K, Li L, He H, Nobe Y, Yamauchi Y, Shahjee HM, Wu XH, Yu YT, Isobe T, Takahashi N, Min J. Structural insights into Gemin5-guided selection of pre-snRNAs for snRNP assembly. Genes Dev 2016; 30:2376-2390. [PMID: 27881600 PMCID: PMC5131778 DOI: 10.1101/gad.288340.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
Xu et al. show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs. They also determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA. In cytoplasm, the survival of motor neuron (SMN) complex delivers pre-small nuclear RNAs (pre-snRNAs) to the heptameric Sm ring for the assembly of the ring complex on pre-snRNAs at the conserved Sm site [A(U)4–6G]. Gemin5, a WD40 protein component of the SMN complex, is responsible for recognizing pre-snRNAs. In addition, Gemin5 has been reported to specifically bind to the m7G cap. In this study, we show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs by isothermal titration calorimetry (ITC) and mutagenesis assays. We further determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA, which reveal that the WD40 domain of Gemin5 recognizes the Sm site and m7G cap of pre-snRNAs via two distinct binding sites by respective base-specific interactions. In addition, we also uncovered a novel role of Gemin5 in escorting the truncated forms of U1 pre-snRNAs for proper disposal. Overall, the elucidated Gemin5 structures will contribute to a better understanding of Gemin5 in small nuclear ribonucleic protein (snRNP) biogenesis as well as, potentially, other cellular activities.
Collapse
Affiliation(s)
- Chao Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei Science Center of CAS, Chinese Academy of Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Keiichi Izumikawa
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hao He
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Hanief M Shahjee
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Xian-Hui Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
46
|
Weiss MS, Diederichs K, Read RJ, Panjikar S, Van Duyne GD, Matera AG, Fischer U, Grimm C. A critical examination of the recently reported crystal structures of the human SMN protein. Hum Mol Genet 2016; 25:4717–4725. [PMID: 27577872 PMCID: PMC5418738 DOI: 10.1093/hmg/ddw298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
A recent publication by Seng et al. in this journal reports the crystallographic structure of refolded, full-length SMN protein and two disease-relevant derivatives thereof. Here, we would like to suggest that at least two of the structures reported in that study are incorrect. We present evidence that one of the associated crystallographic datasets is derived from a crystal of the bacterial Sm-like protein Hfq and that a second dataset is derived from a crystal of the bacterial Gab protein. Both proteins are frequent contaminants of bacterially overexpressed proteins which might have been co-purified during metal affinity chromatography. A third structure presented in the Seng et al. paper cannot be examined further because neither the atomic coordinates, nor the diffraction intensities were made publicly available. The Tudor domain protein SMN has been shown to be a component of the SMN complex, which mediates the assembly of RNA-protein complexes of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). Importantly, this activity is reduced in SMA patients, raising the possibility that the aetiology of SMA is linked to RNA metabolism. Structural studies on diverse components of the SMN complex, including fragments of SMN itself have contributed greatly to our understanding of the cellular UsnRNP assembly machinery. Yet full-length SMN has so far evaded structural elucidation. The Seng et al. study claimed to have closed this gap, but based on the results presented here, the only conclusion that can be drawn is that the Seng et al. study is largely invalid and should be retracted from the literature.
Collapse
Affiliation(s)
- Manfred S Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | | | - Randy J Read
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge, UK
| | | | | | | | - Utz Fischer
- Departement of Biochemistry, Biocenter of the University, University of Wuerzburg, Würzburg, Germany
| | - Clemens Grimm
- Departement of Biochemistry, Biocenter of the University, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
47
|
Francisco-Velilla R, Fernandez-Chamorro J, Ramajo J, Martinez-Salas E. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation. Nucleic Acids Res 2016; 44:8335-51. [PMID: 27507887 PMCID: PMC5041490 DOI: 10.1093/nar/gkw702] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation.
Collapse
Affiliation(s)
| | | | - Jorge Ramajo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049-Madrid, Spain
| | | |
Collapse
|
48
|
Borg RM, Fenech Salerno B, Vassallo N, Bordonne R, Cauchi RJ. Disruption of snRNP biogenesis factors Tgs1 and pICln induces phenotypes that mirror aspects of SMN-Gemins complex perturbation in Drosophila, providing new insights into spinal muscular atrophy. Neurobiol Dis 2016; 94:245-58. [PMID: 27388936 DOI: 10.1016/j.nbd.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 01/27/2023] Open
Abstract
The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.
Collapse
Affiliation(s)
- Rebecca M Borg
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta; Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Benji Fenech Salerno
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Rémy Bordonne
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.
| |
Collapse
|
49
|
Donlin-Asp PG, Bassell GJ, Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016; 39:53-61. [PMID: 27131421 DOI: 10.1016/j.conb.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Localization and local translation of mRNA plays a key role in neuronal development and function. While studies in various systems have provided insights into molecular mechanisms of mRNA transport and local protein synthesis, the factors that control the assembly of mRNAs and mRNA binding proteins into messenger ribonucleoprotein (mRNP) transport granules remain largely unknown. In this review we will discuss how insights on a motor neuron disease, spinal muscular atrophy (SMA), is advancing our understanding of regulated assembly of transport competent mRNPs and how defects in their assembly and delivery may contribute to the degeneration of motor neurons observed in SMA and other neurological disorders.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
50
|
Bizarro J, Dodré M, Huttin A, Charpentier B, Schlotter F, Branlant C, Verheggen C, Massenet S, Bertrand E. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res 2015; 43:8973-89. [PMID: 26275778 PMCID: PMC4605303 DOI: 10.1093/nar/gkv809] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
The Sm proteins are loaded on snRNAs by the SMN complex, but how snRNP-specific proteins are assembled remains poorly characterized. U4 snRNP and box C/D snoRNPs have structural similarities. They both contain the 15.5K and proteins with NOP domains (PRP31 for U4, NOP56/58 for snoRNPs). Biogenesis of box C/D snoRNPs involves NUFIP and the HSP90/R2TP chaperone system and here, we explore the function of this machinery in U4 RNP assembly. We show that yeast Prp31 interacts with several components of the NUFIP/R2TP machinery, and that these interactions are separable from each other. In human cells, PRP31 mutants that fail to stably associate with U4 snRNA still interact with components of the NUFIP/R2TP system, indicating that these interactions precede binding of PRP31 to U4 snRNA. Knock-down of NUFIP leads to mislocalization of PRP31 and decreased association with U4. Moreover, NUFIP is associated with the SMN complex through direct interactions with Gemin3 and Gemin6. Altogether, our data suggest a model in which the NUFIP/R2TP system is connected with the SMN complex and facilitates assembly of U4 snRNP-specific proteins.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Maxime Dodré
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Alexandra Huttin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Céline Verheggen
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|