1
|
Rahman F, Muthaiah N, Kumaramanickavel G. Current concepts and molecular mechanisms in pharmacogenetics of essential hypertension. Indian J Pharmacol 2021; 53:301-309. [PMID: 34414909 PMCID: PMC8411967 DOI: 10.4103/ijp.ijp_593_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hypertension is a leading age-related disease in our society and if left untreated, leads to fatal cardiovascular complications. The prevalence of hypertension has increased and becomes a significant global health economic burden, particularly in lower-income societies. Many loci associated with blood pressure and hypertension have been reported by genome-wide association studies that provided potential targets for pharmacotherapy. Pharmacogenetic research had shown interindividual variations in drug efficacy, safety, and tolerability. This could be due to genetic polymorphisms in the pharmacokinetics (genes involved in a transporter, plasma protein binding, and metabolism) or pharmacodynamic pathway (receptors, ion channels, enzymes). Pharmacogenetics promises great hope toward targeted therapy, but challenges remain in implementing pharmacogenetic aided antihypertensive therapy in clinical practice. Using various databases, we analyzed the underlying mechanisms between the candidate gene polymorphisms and antihypertensive drug interactions and the challenges of implementing precision medicine. We review the emergence of pharmacogenetics and its relevance to clinical pharmacological practice.
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Pharmacology, Sree Balaji Medical College and Hospital, Bharat University, Chennai, Tamil Nadu, India
| | - Nagasundaram Muthaiah
- Department of Pharmacology, Sree Balaji Medical College and Hospital, Bharat University, Chennai, Tamil Nadu, India
| | - Govindasamy Kumaramanickavel
- Genomic Research Centre, Sree Balaji Medical College and Hospital, Bharat University, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Hagan R, Rex E, Woody D, Milewski M, Glaza T, Maher MP, Liu Y. Development of phenotypic assays for identifying novel blockers of L-type calcium channels in neurons. Sci Rep 2021; 11:456. [PMID: 33432098 PMCID: PMC7801380 DOI: 10.1038/s41598-020-80692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
L-type calcium channels (LTCCs) are highly expressed in the heart and brain and are critical for cardiac and neuronal functions. LTCC-blocking drugs have a long and successful record in the clinic for treating cardiovascular disorders. In contrast, establishment of their efficacy for indications of the central nervous system remains challenging given the tendency of existing LTCC drugs being functionally and mechanistically more selective for peripheral tissues. LTCCs in vivo are large macromolecular complexes consisting of a pore-forming subunit and other modulatory proteins, some of which may be neuro-specific and potentially harbor mechanisms for neuronal selectivity. To exploit the possibility of identifying mechanistically novel and/or neuro-selective blockers, we developed two phenotypic assays—a calcium flux-based primary screening assay and a patch clamp secondary assay, using rat primary cortical cultures. We screened a library comprised of 1278 known bioactive agents and successfully identified a majority of the potent LTCC-blocking drugs in the library. Significantly, we identified a previously unrecognized LTCC blocker with a novel mechanism, which was corroborated by patch clamp and binding studies. As such, these phenotypic assays are robust and represent an important step towards identifying mechanistically novel and neuro-selective LTCC blockers.
Collapse
Affiliation(s)
- Rebecca Hagan
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Elizabeth Rex
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - David Woody
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Monika Milewski
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Glaza
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael P Maher
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yi Liu
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
Kushner J, Ferrer X, Marx SO. Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. J Innov Card Rhythm Manag 2019; 10:3874-3880. [PMID: 32494407 PMCID: PMC7252866 DOI: 10.19102/icrm.2019.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Calcium flowing through voltage-dependent calcium channels into cardiomyocytes mediates excitation–contraction coupling, controls action-potential duration and automaticity in nodal cells, and regulates gene expression. Proper surface targeting and basal and hormonal regulation of calcium channels are vital for normal cardiac physiology. In this review, we discuss the roles of voltage-gated calcium channels in the heart and the mechanisms by which these channels are regulated by physiological signaling pathways in health and disease.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xavier Ferrer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Hering S, Zangerl-Plessl EM, Beyl S, Hohaus A, Andranovits S, Timin EN. Calcium channel gating. Pflugers Arch 2018; 470:1291-1309. [PMID: 29951751 PMCID: PMC6096772 DOI: 10.1007/s00424-018-2163-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tuned calcium entry through voltage-gated calcium channels is a key requirement for many cellular functions. This is ensured by channel gates which open during membrane depolarizations and seal the pore at rest. The gating process is determined by distinct sub-processes: movement of voltage-sensing domains (charged S4 segments) as well as opening and closure of S6 gates. Neutralization of S4 charges revealed that pore opening of CaV1.2 is triggered by a "gate releasing" movement of all four S4 segments with activation of IS4 (and IIIS4) being a rate-limiting stage. Segment IS4 additionally plays a crucial role in channel inactivation. Remarkably, S4 segments carrying only a single charged residue efficiently participate in gating. However, the complete set of S4 charges is required for stabilization of the open state. Voltage clamp fluorometry, the cryo-EM structure of a mammalian calcium channel, biophysical and pharmacological studies, and mathematical simulations have all contributed to a novel interpretation of the role of voltage sensors in channel opening, closure, and inactivation. We illustrate the role of the different methodologies in gating studies and discuss the key molecular events leading CaV channels to open and to close.
Collapse
Affiliation(s)
- S Hering
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - E-M Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - A Hohaus
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Andranovits
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - E N Timin
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
5
|
Striessnig J, Ortner NJ, Pinggera A. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? Curr Mol Pharmacol 2016; 8:110-22. [PMID: 25966690 PMCID: PMC5384371 DOI: 10.2174/1874467208666150507105845] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/10/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
Abstract
Inhibition of voltage-gated L-type calcium channels by organic calcium channel blockers is a well-established pharmacodynamic concept for the treatment of hypertension and cardiac ischemia. Since decades these antihypertensives (such as the dihydropyridines amlodipine, felodipine or nifedipine) belong to the most widely prescribed drugs
world-wide. Their tolerability is excellent because at therapeutic doses their pharmacological effects in humans are limited to the cardiovascular system. During the last years substantial progress has been made to reveal the physiological role of different L-type calcium channel isoforms in many other tissues, including the brain, endocrine and sensory cells.
Moreover, there is accumulating evidence about their involvement in various human diseases, such as Parkinson's disease, neuropsychiatric disorders and hyperaldosteronism. In this review we discuss the pathogenetic role of L-type calcium channels, potential new indications for existing or isoform-selective compounds and strategies to minimize potential side effects.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
6
|
Linder T, Saxena P, Timin E, Hering S, Stary-Weinzinger A. Structural Insights into Trapping and Dissociation of Small Molecules in K+ Channels. J Chem Inf Model 2014; 54:3218-28. [DOI: 10.1021/ci500353r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias Linder
- Department for Pharmacology and Toxicology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Priyanka Saxena
- Department for Pharmacology and Toxicology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Eugen Timin
- Department for Pharmacology and Toxicology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Steffen Hering
- Department for Pharmacology and Toxicology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Anna Stary-Weinzinger
- Department for Pharmacology and Toxicology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
7
|
Lainé V, Ségor JR, Zhan H, Bessereau JL, Jospin M. Hyperactivation of L-type voltage-gated Ca2+ channels in Caenorhabditis elegans striated muscle can result from point mutations in the IS6 or the IIIS4 segment of the α1 subunit. ACTA ACUST UNITED AC 2014; 217:3805-14. [PMID: 25214488 DOI: 10.1242/jeb.106732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several human diseases, including hypokalemic periodic paralysis and Timothy syndrome, are caused by mutations in voltage-gated calcium channels. The effects of these mutations are not always well understood, partially because of difficulties in expressing these channels in heterologous systems. The use of Caenorhabditis elegans could be an alternative approach to determine the effects of mutations on voltage-gated calcium channel function because all the main types of voltage-gated calcium channels are found in C. elegans, a large panel of mutations already exists and efficient genetic tools are available to engineer customized mutations in any gene. In this study, we characterize the effects of two gain-of-function mutations in egl-19, which encodes the L-type calcium channel α1 subunit. One of these mutations, ad695, leads to the replacement of a hydrophobic residue in the IIIS4 segment. The other mutation, n2368, changes a conserved glycine of IS6 segment; this mutation has been identified in patients with Timothy syndrome. We show that both egl-19 (gain-of-function) mutants have defects in locomotion and morphology that are linked to higher muscle tone. Using in situ electrophysiological approaches in striated muscle cells, we provide evidence that this high muscle tone is due to a shift of the voltage dependency towards negative potentials, associated with a decrease of the inactivation rate of the L-type Ca(2+) current. Moreover, we show that the maximal conductance of the Ca(2+) current is decreased in the strongest mutant egl-19(n2368), and that this decrease is correlated with a mislocalization of the channel.
Collapse
Affiliation(s)
- Viviane Lainé
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| | - Jean Rony Ségor
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| | - Hong Zhan
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| | | | - Maelle Jospin
- CNRS, UMR 5534, Université Lyon 1, Villeurbanne, F-69622, France
| |
Collapse
|
8
|
Lipkind GM, Fozzard HA, Hanck DA. A molecular model of the inner pore of the Ca channel in its open state. Channels (Austin) 2011; 5:482-8. [PMID: 22020562 DOI: 10.4161/chan.5.6.18354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115. This produced an intermediate open state, which was populated by amino acid residues of Ca channels and then successively optimized until the opening of the pore reached a diameter of about 10 Å, large enough to allow verapamil to enter and block the Ca channel from inside. Although this approach produced a sterically plausible structure, it was in significant disagreement with the MTSET accessibility data for single cysteine mutations of S6 segments of the P/Q channel(1) that do not fit with an α-helical pattern. Last we explored the idea that the four S6 segments of Ca channels may contain intra-molecular deformations that lead to reorientation of its side chains. After introduction of π-bulges, the model agreed with the MTSET accessibility data. MTSET modification of a cysteine at the C-end of only one S6 could produce physical occlusion and block of the inner pore of the open Ca channel, as observed experimentally, and as expected if the pore opening is narrower than that of K channels.
Collapse
|
9
|
Shabbir W, Beyl S, Timin EN, Schellmann D, Erker T, Hohaus A, Hockerman GH, Hering S. Interaction of diltiazem with an intracellularly accessible binding site on Ca(V)1.2. Br J Pharmacol 2011; 162:1074-82. [PMID: 20973779 PMCID: PMC3051262 DOI: 10.1111/j.1476-5381.2010.01091.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND PURPOSE Diltiazem inhibits CaV1.2 channels and is widely used in clinical practice to treat cardiovascular diseases. Binding determinants for diltiazem are located on segments IIIS6, IVS6 and the selectivity filter of the pore forming α1 subunit of CaV1.2. The aim of the present study was to clarify the location of the diltiazem binding site making use of its membrane-impermeable quaternary derivative d-cis-diltiazem (qDil) and mutant α1 subunits. EXPERIMENTAL APPROACH CaV1.2 composed of α1, α2-δ and β2a subunits were expressed in tsA-201 cells and barium currents through CaV1.2 channels were recorded using the patch clamp method in the whole cell configuration. qDil was synthesized and applied to the intracellular side (via the patch pipette) or to the extracellular side of the membrane (by bath perfusion). KEY RESULTS Quaternary derivative d-cis-diltiazem inhibited CaV1.2 when applied to the intracellular side of the membrane in a use-dependent manner (59 ± 4% at 300 µM) and induced only a low level of tonic (non-use-dependent) block (16 ± 2% at 300 µM) when applied to the extracellular side of the membrane. Mutations in IIIS6 and IVS6 that have previously been shown to reduce the sensitivity of CaV1.2 to tertiary diltiazem also had reduced sensitivity to intracellularly applied qDil. CONCLUSION AND IMPLICATIONS The data show that use-dependent block of in CaV1.2 by diltiazem occurs by interaction with a binding site accessible via a hydrophilic route from the intracellular side of the membrane.
Collapse
Affiliation(s)
- W Shabbir
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Physicochemical properties of pore residues predict activation gating of Ca V1.2: a correlation mutation analysis. Pflugers Arch 2010; 461:53-63. [PMID: 20924598 PMCID: PMC3016219 DOI: 10.1007/s00424-010-0885-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/18/2022]
Abstract
Single point mutations in pore-forming S6 segments of calcium channels may transform a high-voltage-activated into a low-voltage-activated channel, and resulting disturbances in calcium entry may cause channelopathies (Hemara-Wahanui et al., Proc Natl Acad Sci U S A 102(21):7553–7558, 16). Here we ask the question how physicochemical properties of amino acid residues in gating-sensitive positions on S6 segments determine the threshold of channel activation of CaV1.2. Leucine in segment IS6 (L434) and a newly identified activation determinant in segment IIIS6 (G1193) were mutated to a variety of amino acids. The induced leftward shifts of the activation curves and decelerated current activation and deactivation suggest a destabilization of the closed and a stabilisation of the open channel state by most mutations. A selection of 17 physicochemical parameters (descriptors) was calculated for these residues and examined for correlation with the shifts of the midpoints of the activation curve (ΔVact). ΔVact correlated with local side-chain flexibility in position L434 (IS6), with the polar accessible surface area of the side chain in position G1193 (IIIS6) and with hydrophobicity in position I781 (IIS6). Combined descriptor analysis for positions I781 and G1193 revealed that additional amino acid properties may contribute to conformational changes during the gating process. The identified physicochemical properties in the analysed gating-sensitive positions (accessible surface area, side-chain flexibility, and hydrophobicity) predict the shifts of the activation curves of CaV1.2.
Collapse
|
11
|
Tadross MR, Ben Johny M, Yue DT. Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. ACTA ACUST UNITED AC 2010; 135:197-215. [PMID: 20142517 PMCID: PMC2828906 DOI: 10.1085/jgp.200910308] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca2+/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca2+ channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation in distinctive ways, depending on which hypothesis holds true. Thus, we systematically mutate the activation gate, formed by all S6 segments within CaV1.3. These channels feature robust baseline CDI, and the resulting mutant library exhibits significant diversity of activation, CDI, and VDI. For CDI, a clear and previously unreported pattern emerges: activation-enhancing mutations proportionately weaken inactivation. This outcome substantiates an allosteric CDI mechanism. For VDI, the data implicate a “hinged lid–shield” mechanism, similar to a hinged-lid process, with a previously unrecognized feature. Namely, we detect a “shield” in CaV1.3 channels that is specialized to repel lid closure. These findings reveal long-sought downstream mechanisms of inactivation and may furnish a framework for the understanding of Ca2+ channelopathies involving S6 mutations.
Collapse
Affiliation(s)
- Michael R Tadross
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
12
|
Cheng RCK, Tikhonov DB, Zhorov BS. Structural model for phenylalkylamine binding to L-type calcium channels. J Biol Chem 2009; 284:28332-28342. [PMID: 19700404 DOI: 10.1074/jbc.m109.027326] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phenylalkylamines (PAAs), a major class of L-type calcium channel (LTCC) blockers, have two aromatic rings connected by a flexible chain with a nitrile substituent. Structural aspects of ligand-channel interactions remain unclear. We have built a KvAP-based model of LTCC and used Monte Carlo energy minimizations to dock devapamil, verapamil, gallopamil, and other PAAs. The PAA-LTCC models have the following common features: (i) the meta-methoxy group in ring A, which is proximal to the nitrile group, accepts an H-bond from a PAA-sensing Tyr_IIIS6; (ii) the meta-methoxy group in ring B accepts an H-bond from a PAA-sensing Tyr_IVS6; (iii) the ammonium group is stabilized at the focus of P-helices; and (iv) the nitrile group binds to a Ca(2+) ion coordinated by the selectivity filter glutamates in repeats III and IV. The latter feature can explain Ca(2+) potentiation of PAA action and the presence of an electronegative atom at a similar position of potent PAA analogs. Tyr substitution of a Thr in IIIS5 is known to enhance action of devapamil and verapamil. Our models predict that the para-methoxy group in ring A of devapamil and verapamil accepts an H-bond from this engineered Tyr. The model explains structure-activity relationships of PAAs, effects of LTCC mutations on PAA potency, data on PAA access to LTCC, and Ca(2+) potentiation of PAA action. Common and class-specific aspects of action of PAAs, dihydropyridines, and benzothiazepines are discussed in view of the repeat interface concept.
Collapse
Affiliation(s)
- Ricky C K Cheng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
13
|
Vandana S, Bhatla SC. Co-localization of putative calcium channels (phenylalkylamine-binding sites) on oil bodies in protoplasts from dark-grown sunflower seedling cotyledons. PLANT SIGNALING & BEHAVIOR 2009; 4:604-9. [PMID: 19820351 PMCID: PMC2710551 DOI: 10.4161/psb.4.7.9165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oil bodies are spherical entities containing a triacylglycerol (TAG) matrix encased by a phospholipid monolayer, which is stabilized by oil body-specific proteins, principally oleosins. Biochemical investigations in the recent past have also demonstrated the expression of calcium-binding proteins, called caleosins, as a component of oil body membranes during seed germination. Using DM-Bodipy-phenylalkylamine (PAA; a fluorescent derivative of phenylalkylamine)-a fluorescent probe known to bind L-type calcium channel proteins, present investigations provide the first report on the localization and preferential accumulation of putative calcium channel proteins on/around oil bodies during peak lipolytic phase in protoplasts derived from dark-grown sunflower (Helianthus annuus L. cv Morden) seedling cotyledons. Specificity of DM-Bodipy-PAA labeling was confirmed by using bepridil, a non-fluorescent competitor of PAA while non-specific dye accumulation has been ruled out by using Bodipy-FL as control. Co-localization of fluorescence from DM-Bodipy-PAA binding sites (ex: 504 nm; em: 511 nm) and nile red fluorescing oil bodies (ex: 552 nm; em: 636 nm) has been undertaken by epifluorescence and confocal laser scanning microscopy (CLSM). It revealed the affinity of PAA-sensitive ion channels for the oil body surface. Findings from the current investigations highlight the significance of calcium and calcium channel proteins during oil body mobilization in sunflower.
Collapse
Affiliation(s)
- Shweta Vandana
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | | |
Collapse
|
14
|
Horak S, Koschak A, Stuppner H, Striessnig J. Use-dependent block of voltage-gated Cav2.1 Ca2+ channels by petasins and eudesmol isomers. J Pharmacol Exp Ther 2009; 330:220-6. [PMID: 19369579 DOI: 10.1124/jpet.109.151183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Migraine is a frequent and often disabling disease. Treatment is unsatisfactory in many patients. A disturbed dynamic balance between excitatory and inhibitory signal processing with enhanced cortical activity probably underlies common forms of migraine. Presynaptic voltage-gated Ca(2+) channels are critical determinants of neurotransmitter release and also contribute to trigeminovascular signal transduction. Because clinical evidence exists for migraine-prophylactic actions of Petasites hybridus extracts, we investigated whether petasins comprising the main constituents of the extract inhibit currents through presynaptic Ca(v)2.1 channels expressed in Xenopus laevis oocytes. P. hybridus extract (0.02 mg/ml), petasin, neopetasin, isopetasin, S-petasin, and iso-S-petasin (50 microM) were weak tonic blockers of Ca(v)2.1-mediated barium currents (I(Ba)) during infrequent depolarizations (0.1 Hz), but their inhibitory potency increased at higher stimulation rates (1 Hz), indicating preferential block of open and/or inactivated channels. Sulfur-containing compounds (S-petasin, Iso-S-petasin) were the most potent significantly promoting the accumulation of Ca(v)2.1 channel in inactivated states during pulse trains (I(Ba) decrease during 1-Hz pulse trains: control, 45%, S-petasin, 79%; iso-S-petasin, 80%). For the Eucalyptus williamsiania sesquiterpenes alpha- and gamma-eudesmol, a comparable use-dependent inhibition was found in addition to a tonic block component. Alpha-eudesmol and petasins accelerated the voltage-dependent inactivation of Ca(v)2.1 channels during depolarizations. We demonstrate that S-petasin, iso-S-petasin, and eudesmol are Ca(v)2.1 channel inhibitors preferentially acting as use-dependent channel blockers and with the sulfur-containing substituent in position 3 of the petasins serving as important functional feature. The Ca(v)2.1-inhibitory properties of these petasins may contribute to migraine-prophylactic properties described for P. hybridus extracts.
Collapse
Affiliation(s)
- Silja Horak
- Institute of Pharmacy, Peter-Mayr-Strasse 1/I, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
15
|
Kudrnac M, Beyl S, Hohaus A, Stary A, Peterbauer T, Timin E, Hering S. Coupled and independent contributions of residues in IS6 and IIS6 to activation gating of CaV1.2. J Biol Chem 2009; 284:12276-84. [PMID: 19265197 DOI: 10.1074/jbc.m808402200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage dependence and kinetics of Ca(V)1.2 activation are affected by structural changes in pore-lining S6 segments of the alpha(1)-subunit. Significant effects are induced by either proline or threonine substitutions in the lower third of segment IIS6 ("bundle crossing region"), where S6 segments are likely to seal the channel in the closed conformation (Hohaus, A., Beyl, S., Kudrnac, M., Berjukow, S., Timin, E. N., Marksteiner, R., Maw, M. A., and Hering, S. (2005) J. Biol. Chem. 280, 38471-38477). Here we report that S435P in IS6 results in a large shift of the activation curve (-25.9 +/- 1.2 mV) and slower current kinetics. Threonine substitutions at positions Leu-429 and Leu-434 induced a similar kinetic phenotype with shifted activation curves (L429T by -6.6 +/- 1.2 and L434T by -12.1 +/- 1.7 mV). Inactivation curves of all mutants were shifted to comparable extents as the activation curves. Interdependence of IS6 and IIS6 mutations was analyzed by means of mutant cycle analysis. Double mutations in segments IS6 and IIS6 induce either additive (L429T/I781T, -34.1 +/- 1.4 mV; L434T/I781T, -40.4 +/- 1.3 mV; L429T/L779T, -12.6 +/- 1.3 mV; and L434T/L779T, -22.4 +/- 1.3 mV) or nonadditive shifts of the activation curves along the voltage axis (S435P/I781T, -33.8 +/- 1.4 mV). Mutant cycle analysis revealed energetic coupling between residues Ser-435 and Ile-781, whereas other paired mutations in segments IS6 and IIS6 had independent effects on activation gating.
Collapse
Affiliation(s)
- Michaela Kudrnac
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Models of the structure and gating mechanisms of the pore domain of the NaChBac ion channel. Biophys J 2008; 95:3650-62. [PMID: 18641075 DOI: 10.1529/biophysj.108.135327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NaChBac prokaryotic sodium channel appears to be a descendent of an evolutionary link between voltage-gated K(V) and Ca(V) channels. Like K(V) channels, four identical six-transmembrane subunits comprise the NaChBac channel, but its selectivity filter possesses a signature sequence of eukaryotic Ca(V) channels. We developed structural models of the NaChBac channel in closed and open conformations, using K(+)-channel crystal structures as initial templates. Our models were also consistent with numerous experimental results and modeling criteria. This study concerns the pore domain. The major differences between our models and K(+) crystal structures involve the latter portion of the selectivity filter and the bend region in S6 of the open conformation. These NaChBac models may serve as a stepping stone between K(+) channels of known structure and Na(V), Ca(V), and TRP channels of unknown structure.
Collapse
|
17
|
Cens T, Leyris JP, Charnet P. Introduction into Cav2.1 of the homologous mutation of Cav1.2 causing the Timothy syndrome questions the role of V421 in the phenotypic definition of P-type Ca2+ channel. Pflugers Arch 2008; 457:417-30. [DOI: 10.1007/s00424-008-0534-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/17/2008] [Accepted: 05/15/2008] [Indexed: 01/06/2023]
|
18
|
The auxiliary subunit gamma 1 of the skeletal muscle L-type Ca2+ channel is an endogenous Ca2+ antagonist. Proc Natl Acad Sci U S A 2007; 104:17885-90. [PMID: 17978188 DOI: 10.1073/pnas.0704340104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca2+ channels play crucial roles in cellular signal transduction and are important targets of pharmacological agents. They are also associated with auxiliary subunits exhibiting functions that are still incompletely resolved. Skeletal muscle L-type Ca2+ channels (dihydropyridine receptors, DHPRs) are specialized for the remote voltage control of type 1 ryanodine receptors (RyR1) to release stored Ca2+. The skeletal muscle-specific gamma subunit of the DHPR (gamma 1) down-modulates availability by altering its steady state voltage dependence. The effect resembles the action of certain Ca2+ antagonistic drugs that are thought to stabilize inactivated states of the DHPR. In the present study we investigated the cross influence of gamma 1 and Ca2+ antagonists by using wild-type (gamma+/+) and gamma 1 knockout (gamma-/-) mice. We studied voltage-dependent gating of both L-type Ca2+ current and Ca2+ release and the allosteric modulation of drug binding. We found that 10 microM diltiazem, a benzothiazepine drug, more than compensated for the reduction in high-affinity binding of the dihydropyridine agent isradipine caused by gamma 1 elimination; 5 muM devapamil [(-)D888], a phenylalkylamine Ca2+ antagonist, approximately reversed the right-shifted voltage dependence of availability and the accelerated recovery kinetics of Ca2+ current and Ca2+ release. Moreover, the presence of gamma 1 altered the effect of D888 on availability and strongly enhanced its impact on recovery kinetics demonstrating that gamma 1 and the drug do not act independently of each other. We propose that the gamma 1 subunit of the DHPR functions as an endogenous Ca2+ antagonist whose task may be to minimize Ca2+ entry and Ca2+ release under stress-induced conditions favoring plasmalemma depolarization.
Collapse
|
19
|
Raybaud A, Baspinar EE, Dionne F, Dodier Y, Sauvé R, Parent L. The Role of Distal S6 Hydrophobic Residues in the Voltage-dependent Gating of CaV2.3 Channels. J Biol Chem 2007; 282:27944-52. [PMID: 17660294 DOI: 10.1074/jbc.m703895200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrophobic locus VAVIM is conserved in the S6 transmembrane segment of domain IV (IVS6) in Ca(V)1 and Ca(V)2 families. Herein we show that glycine substitution of the VAVIM motif in Ca(V)2.3 produced whole cell currents with inactivation kinetics that were either slower (A1719G approximately V1720G), similar (V1718G), or faster (I1721G approximately M1722G) than the wild-type channel. The fast kinetics of I1721G were observed with a approximately +10 mV shift in its voltage dependence of activation (E(0.5,act)). In contrast, the slow kinetics of A1719G and V1720G were accompanied by a significant shift of approximately -20 mV in their E(0.5,act) indicating that the relative stability of the channel closed state was decreased in these mutants. Glycine scan performed with Val (349) in IS6, Ile(701) in IIS6, and Leu(1420) in IIIS6 at positions predicted to face Val(1720) in IVS6 also produced slow inactivating currents with hyperpolarizing shifts in the activation and inactivation potentials, again pointing out a decrease in the stability of the channel closed state. Mutations to other hydrophobic residues at these positions nearly restored the channel gating. Altogether these data indicate that residues at positions equivalent to 1720 exert a critical control upon the relative stability of the channel closed and open states and more specifically, that hydrophobic residues at these positions promote the channel closed state. We discuss a three-dimensional homology model of Ca(V)2.3 based upon Kv1.2 where hydrophobic residues at positions facing Val(1720) in IS6, IIS6, and IIIS6 play a critical role in stabilizing the closed state in Ca(V)2.3.
Collapse
Affiliation(s)
- Alexandra Raybaud
- Département de Physiologie and the Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|