1
|
Nagar S, Mehta R, Kaur P, Sadia FZ, Reddy S, Olorunnimbe OR, Vancurova I, Vancura A. The yeast checkpoint kinase Dun1p represses transcription of RNR genes independently of catalytic activity or Rad53p during respiratory growth. J Biol Chem 2025; 301:108232. [PMID: 39880091 PMCID: PMC11914510 DOI: 10.1016/j.jbc.2025.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
One of the key events in DNA damage response is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs) required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid and glyoxylate cycles and gluconeogenesis. Dun1p, independently of its kinase activity or signaling from the upstream checkpoint kinase Rad53p, represses RNR2, RNR3, and RNR4 genes by maintaining Crt1p occupancy in the corresponding promoters. Consistently with the role of dNTPs in the regulation of mitochondrial DNA copy number, DUN1 inactivation elevates mitochondrial DNA copy number in acetate-grown cells. Together, our data reveal an unexpected role for Dun1p in transcriptional regulation of RNR2-4 and metabolic genes during growth on nonfermentable carbon source and suggest that Dun1p contributes to transcription regulation independently of its kinase activity as a structural component by binding to protein(s) involved in gene regulation.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Fatema Zohra Sadia
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Suprataptha Reddy
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | | | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
2
|
Comstock WJ, Bhattarai S, Sanford EJ, Navarro MVAS, Smolka MB. Profiling Tel1 signaling reveals a non-canonical motif targeting DNA repair and telomere control machineries. J Biol Chem 2025; 301:108194. [PMID: 39826692 PMCID: PMC11875207 DOI: 10.1016/j.jbc.2025.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
The stability of the genome relies on phosphatidyl inositol 3-kinase-related kinases (PIKKs) that sense DNA damage and trigger elaborate downstream signaling responses. In Saccharomyces cerevisiae, the Tel1 kinase (ortholog of human ATM) is activated at DNA double-strand breaks (DSBs) and short telomeres. Despite the well-established roles of Tel1 in the control of telomere maintenance, suppression of chromosomal rearrangements, activation of cell cycle checkpoints, and repair of DSBs, the substrates through which Tel1 controls these processes remain incompletely understood. Here we performed an in-depth phosphoproteomic screen for Tel1-dependent phosphorylation events. To achieve maximal coverage of the phosphoproteome, we developed a scaled-up approach that accommodates large amounts of protein extracts and chromatographic fractions. Compared to previous reports, we expanded the number of detected Tel1-dependent phosphorylation events by over 10-fold. Surprisingly, in addition to the identification of phosphorylation sites featuring the canonical motif for Tel1 phosphorylation (S/T-Q), the results revealed a novel motif (D/E-S/T) highly prevalent and enriched in the set of Tel1-dependent events. This motif is unique to Tel1 signaling and not shared with the Mec1 kinase, providing clues to how Tel1 plays specialized roles in DNA repair and telomere length control. Overall, these findings define a Tel1-signaling network targeting numerous proteins involved in DNA repair, chromatin regulation, and telomere maintenance that represents a framework for dissecting the molecular mechanisms of Tel1 action.
Collapse
Affiliation(s)
- William J Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Shrijan Bhattarai
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Marcos V A S Navarro
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA; IFSC Institute of Physics of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
3
|
Zhou FY, Waterman DP, Ashton M, Caban-Penix S, Memisoglu G, Eapen VV, Haber JE. Prolonged cell cycle arrest in response to DNA damage in yeast requires the maintenance of DNA damage signaling and the spindle assembly checkpoint. eLife 2024; 13:RP94334. [PMID: 39656839 PMCID: PMC11630823 DOI: 10.7554/elife.94334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12-15 hr, after which cells 'adapt' to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and maintain the arrest. Dun1 is required for the establishment, but not the maintenance, of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with two persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hr these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2's binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest require overlapping but different sets of factors.
Collapse
Affiliation(s)
- Felix Y Zhou
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - Marissa Ashton
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - Suhaily Caban-Penix
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
- Department of Molecular Genetics & Cell Biology, University of ChicagoChicagoUnited States
| | - Vinay V Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| |
Collapse
|
4
|
Zhou FY, Waterman DP, Ashton M, Caban-Penix S, Memisoglu G, Eapen VV, Haber JE. Prolonged Cell Cycle Arrest in Response to DNA damage in Yeast Requires the Maintenance of DNA Damage Signaling and the Spindle Assembly Checkpoint. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540538. [PMID: 37292675 PMCID: PMC10245577 DOI: 10.1101/2023.05.15.540538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12 to 15 hours, after which cells "adapt" to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well-understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and to maintain the arrest. Dun1 is required for establishment, but not maintenance of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with 2 persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hours these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle-assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2's binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest requires overlapping but different sets of factors.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - David P. Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Marissa Ashton
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Suhaily Caban-Penix
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
- Department of Molecular Genetics & Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Vinay V. Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
5
|
Comstock W, Sanford E, Navarro M, Smolka MB. Profiling Tel1 Signaling Reveals a Non-Canonical Motif Targeting DNA Repair and Telomere Control Machineries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601872. [PMID: 39005478 PMCID: PMC11244986 DOI: 10.1101/2024.07.03.601872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The stability of the genome relies on Phosphatidyl Inositol 3-Kinase-related Kinases (PIKKs) that sense DNA damage and trigger elaborate downstream signaling responses. In S. cerevisiae, the Tel1 kinase (ortholog of human ATM) is activated at DNA double strand breaks (DSBs) and short telomeres. Despite the well-established roles of Tel1 in the control of telomere maintenance, suppression of chromosomal rearrangements, activation of cell cycle checkpoints, and repair of DSBs, the substrates through which Tel1 controls these processes remain incompletely understood. Here we performed an in depth phosphoproteomic screen for Tel1-dependent phosphorylation events. To achieve maximal coverage of the phosphoproteome, we developed a scaled-up approach that accommodates large amounts of protein extracts and chromatographic fractions. Compared to previous reports, we expanded the number of detected Tel1-dependent phosphorylation events by over 10-fold. Surprisingly, in addition to the identification of phosphorylation sites featuring the canonical motif for Tel1 phosphorylation (S/T-Q), the results revealed a novel motif (D/E-S/T) highly prevalent and enriched in the set of Tel1-dependent events. This motif is unique to Tel1 signaling and not shared with the Mec1 kinase, providing clues to how Tel1 plays specialized roles in DNA repair and telomere length control. Overall, these findings define a Tel1-signaling network targeting numerous proteins involved in DNA repair, chromatin regulation, and telomere maintenance that represents a framework for dissecting the molecular mechanisms of Tel1 action.
Collapse
Affiliation(s)
- Will Comstock
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ethan Sanford
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Navarro
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Gao X, Zhou P, Li F. The multiple activations in budding yeast S-phase checkpoint are Poisson processes. PNAS NEXUS 2023; 2:pgad342. [PMID: 37941810 PMCID: PMC10629469 DOI: 10.1093/pnasnexus/pgad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Eukaryotic cells activate the S-phase checkpoint signal transduction pathway in response to DNA replication stress. Affected by the noise in biochemical reactions, such activation process demonstrates cell-to-cell variability. Here, through the analysis of microfluidics-integrated time-lapse imaging, we found multiple S-phase checkpoint activations in a certain budding yeast cell cycle. Yeast cells not only varied in their activation moments but also differed in the number of activations within the cell cycle, resulting in a stochastic multiple activation process. By investigating dynamics at the single-cell level, we showed that stochastic waiting times between consecutive activations are exponentially distributed and independent from each other. Finite DNA replication time provides a robust upper time limit to the duration of multiple activations. The mathematical model, together with further experimental evidence from the mutant strain, revealed that the number of activations under different levels of replication stress agreed well with Poisson distribution. Therefore, the activation events of S-phase checkpoint meet the criterion of Poisson process during DNA replication. In sum, the observed Poisson activation process may provide new insights into the complex stochastic dynamics of signal transduction pathways.
Collapse
Affiliation(s)
- Xin Gao
- School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Fangting Li
- School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Kar FM, Vogel C, Hochwagen A. Meiotic DNA breaks activate a streamlined phospho-signaling response that largely avoids protein-level changes. Life Sci Alliance 2022; 5:e202201454. [PMID: 36271494 PMCID: PMC9438802 DOI: 10.26508/lsa.202201454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Meiotic cells introduce a numerous programmed DNA breaks into their genome to stimulate meiotic recombination and ensure controlled chromosome inheritance and fertility. A checkpoint network involving key kinases and phosphatases coordinates the repair of these DNA breaks, but the precise phosphorylation targets remain poorly understood. It is also unknown whether meiotic DNA breaks change gene expression akin to the canonical DNA-damage response. To address these questions, we analyzed the meiotic DNA break response in Saccharomyces cerevisiae using multiple systems-level approaches. We identified 332 DNA break-dependent phosphorylation sites, vastly expanding the number of known events during meiotic prophase. Less than half of these events occurred in recognition motifs for the known meiotic checkpoint kinases Mec1 (ATR), Tel1 (ATM), and Mek1 (CHK2), suggesting that additional kinases contribute to the meiotic DNA-break response. We detected a clear transcriptional program but detected only very few changes in protein levels. We attribute this dichotomy to a decrease in transcript levels after meiotic entry that dampens the effects of break-induced transcription sufficiently to cause only minimal changes in the meiotic proteome.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York City, NY, USA
| | - Christine Vogel
- Department of Biology, New York University, New York City, NY, USA
| | | |
Collapse
|
8
|
Ozturk M, Metin M, Altay V, De Filippis L, Ünal BT, Khursheed A, Gul A, Hasanuzzaman M, Nahar K, Kawano T, Caparrós PG. Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae. Biol Trace Elem Res 2021; 199:4832-4846. [PMID: 33462792 DOI: 10.1007/s12011-021-02584-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | - Luigi De Filippis
- School of Life Sciences, University of Technology Sydney, Sydney, 123, Australia
| | - Bengu Turkyilmaz Ünal
- Faculty of Science and Arts, Department of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Anum Khursheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kamuran Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Pedro García Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Ctra. Sacramento s/n, La Cañadade San Urbano, 04120, Almería, Spain
| |
Collapse
|
9
|
Jessulat M, Amin S, Hooshyar M, Malty R, Moutaoufik MT, Zilocchi M, Istace Z, Phanse S, Aoki H, Omidi K, Burnside D, Samanfar B, Aly KA, Golshani A, Babu M. The conserved Tpk1 regulates non-homologous end joining double-strand break repair by phosphorylation of Nej1, a homolog of the human XLF. Nucleic Acids Res 2021; 49:8145-8160. [PMID: 34244791 PMCID: PMC8373142 DOI: 10.1093/nar/gkab585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 02/03/2023] Open
Abstract
The yeast cyclic AMP-dependent protein kinase A (PKA) is a ubiquitous serine-threonine kinase, encompassing three catalytic (Tpk1-3) and one regulatory (Bcy1) subunits. Evidence suggests PKA involvement in DNA damage checkpoint response, but how DNA repair pathways are regulated by PKA subunits remains inconclusive. Here, we report that deleting the tpk1 catalytic subunit reduces non-homologous end joining (NHEJ) efficiency, whereas tpk2-3 and bcy1 deletion does not. Epistatic analyses revealed that tpk1, as well as the DNA damage checkpoint kinase (dun1) and NHEJ factor (nej1), co-function in the same pathway, and parallel to the NHEJ factor yku80. Chromatin immunoprecipitation and resection data suggest that tpk1 deletion influences repair protein recruitments and DNA resection. Further, we show that Tpk1 phosphorylation of Nej1 at S298 (a Dun1 phosphosite) is indispensable for NHEJ repair and nuclear targeting of Nej1 and its binding partner Lif1. In mammalian cells, loss of PRKACB (human homolog of Tpk1) also reduced NHEJ efficiency, and similarly, PRKACB was found to phosphorylate XLF (a Nej1 human homolog) at S263, a corresponding residue of the yeast Nej1 S298. Together, our results uncover a new and conserved mechanism for Tpk1 and PRKACB in phosphorylating Nej1 (or XLF), which is critically required for NHEJ repair.
Collapse
Affiliation(s)
- Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zoe Istace
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Daniel Burnside
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
10
|
Faca VM, Sanford EJ, Tieu J, Comstock W, Gupta S, Marshall S, Yu H, Smolka MB. Maximized quantitative phosphoproteomics allows high confidence dissection of the DNA damage signaling network. Sci Rep 2020; 10:18056. [PMID: 33093574 PMCID: PMC7582137 DOI: 10.1038/s41598-020-74939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/ATR, the current network of its identified substrates remains incomplete due, in part, to limitations in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack of redundancy and statistical power for generating high confidence datasets, since information about phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that the approach allows drastic reduction of false positive quantitations and identifications even from phosphopeptides with a low number of spectral matches. Application of this approach identifies new Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling network. Overall, the proposed quantitative phosphoproteomic approach should be generally applicable for investigating kinase signaling networks with high confidence and depth.
Collapse
Affiliation(s)
- Vitor Marcel Faca
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennifer Tieu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shagun Gupta
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shannon Marshall
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res 2020; 48:8474-8489. [PMID: 32652040 PMCID: PMC7470947 DOI: 10.1093/nar/gkaa587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023] Open
Abstract
Highly toxic DNA double-strand breaks (DSBs) readily trigger the DNA damage response (DDR) in cells, which delays cell cycle progression to ensure proper DSB repair. In Saccharomyces cerevisiae, mitotic S phase (20–30 min) is lengthened upon DNA damage. During meiosis, Spo11-induced DSB onset and repair lasts up to 5 h. We report that the NH2-terminal domain (NTD; residues 1–66) of Rad51 has dual functions for repairing DSBs during vegetative growth and meiosis. Firstly, Rad51-NTD exhibits autonomous expression-enhancing activity for high-level production of native Rad51 and when fused to exogenous β-galactosidase in vivo. Secondly, Rad51-NTD is an S/T-Q cluster domain (SCD) harboring three putative Mec1/Tel1 target sites. Mec1/Tel1-dependent phosphorylation antagonizes the proteasomal degradation pathway, increasing the half-life of Rad51 from ∼30 min to ≥180 min. Our results evidence a direct link between homologous recombination and DDR modulated by Rad51 homeostasis.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Mika Higashide
- Laboratory of Genome-Chromosome Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Japan
| | - Akira Shinohara
- Laboratory of Genome-Chromosome Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Japan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
12
|
Gupta P, Meena RC, Kumar N. Functional characterization of Candida glabrata ORF, CAGL0M02233g for its role in stress tolerance and virulence. Microb Pathog 2020; 149:104469. [PMID: 32890635 DOI: 10.1016/j.micpath.2020.104469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
Present investigation is aimed to analyze the role of an uncharacterized ORF of Candida glabrata (CBS138), CAGL0M02233g (an ortholog of RAD53, a key DNA checkpoint effector in Saccharomyces cerevisiae) in tolerance of various stresses and in biofilm formation. The CAGL0M02233g was cloned in p416TEF shuttle vector for constitutive expression under TEF1 promoter in BG14 strain (ura3 auxotrophic C. glabrata), and upregulated expression of the cloned ORF was confirmed by immunoblotting. The constitutive expression of CAGL0M02233g rendered cells resistant to the DNA damage stressor (MMS), replication stressor (HU) and hypoxia mimetic (CoCl2) in plate spot and growth curve assays. Hypoxia (a low oxygen condition) is an imperative host factor that influences Candida pathogenesis. Biofilm formation by the BG14 cells transformed with p416TEF-CAGL0M02233g (REX cell) was reduced to approximately 50% under hypoxia. It is notable that biofilm formation by the REX cells was significantly lower than that of BG14 cells transformed with p416TEF vector (VC cell) under hypoxia. The biofilm of the REX cells has shown higher susceptibility to fluconazole than that of VC cells under hypoxia and REX cells at normoxia. This is the first report on the function of CAGL0M02233g in tolerance of various stressors and in modulation of the biofilm under hypoxia.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, PIN-248002, India
| | - R C Meena
- Molecular Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, PIN-248002, India.
| |
Collapse
|
13
|
Tang X, Ding X, Hou YL. Comparative analysis of transcriptomes revealed the molecular mechanism of development of Tricholoma matsutake at different stages of fruiting bodies. Food Sci Biotechnol 2020; 29:939-951. [PMID: 32582456 DOI: 10.1007/s10068-020-00732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022] Open
Abstract
The purpose of the study is to investigate the molecular mechanisms of development of Tricholoma matsutake fruiting body at the primordial stage (TM-1), the intermediate stage (TM-2) and the mature stage (TM-3) using RNA-Seq sequencing technology. The analysis of gene expression level revealed that the Spn2 and Eef1a1 gene were the key genes in the primordial stage of T. matsutake by regulating cytokinesis, protein synthesis, and cell growth. And the Ubc, Atp6, Cytb, and Pth2 gene were the key genes in the mature stage of T. matsutake by regulating energy metabolism and protein synthesis. Differential expression genes (DEGs) analysis results showed that Cdc28, Rad53, Dun1, Pho85 and Pho81 were the key DEGs regulating cell cycle genes of T. matsutake from primordial stage to intermediate stage. And APC, Cyr1, Cdc45, Spo11 and Rec8 genes were the key DEGs for the meiosis and sporogenesis of T. matsutake from the intermediate stage to the mature stage.
Collapse
Affiliation(s)
- Xian Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Yi-Ling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| |
Collapse
|
14
|
Yam CQX, Chia DB, Shi I, Lim HH, Surana U. Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage signaling. Nucleic Acids Res 2020; 48:6092-6107. [PMID: 32402080 PMCID: PMC7293041 DOI: 10.1093/nar/gkaa355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
The DNA damage checkpoint halts cell cycle progression in G2 in response to genotoxic insults. Central to the execution of cell cycle arrest is the checkpoint-induced stabilization of securin-separase complex (yeast Pds1-Esp1). The checkpoint kinases Chk1 and Chk2 (yeast Chk1 and Rad53) are thought to critically contribute to the stability of securin-separase complex by phosphorylation of securin, rendering it resistant to proteolytic destruction by the anaphase promoting complex (APC). Dun1, a Rad53 paralog related to Chk2, is also essential for checkpoint-imposed arrest. Dun1 is required for the DNA damage-induced transcription of DNA repair genes; however, its role in the execution of cell cycle arrest remains unknown. Here, we show that Dun1′s role in checkpoint arrest is independent of its involvement in the transcription of repair genes. Instead, Dun1 is necessary to prevent Pds1 destruction during DNA damage in that the Dun1-deficient cells degrade Pds1, escape G2 arrest and undergo mitosis despite the presence of checkpoint-active Chk1 and Rad53. Interestingly, proteolytic degradation of Pds1 in the absence of Dun1 is mediated not by APC but by the HECT domain-containing E3 ligase Rsp5. Our results suggest a regulatory scheme in which Dun1 prevents chromosome segregation during DNA damage by inhibiting Rsp5-mediated proteolytic degradation of securin Pds1.
Collapse
Affiliation(s)
- Candice Qiu Xia Yam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - David Boy Chia
- Biotransformation Innovation Platform, A*STAR, Singapore
| | - Idina Shi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore.,Biotransformation Innovation Platform, A*STAR, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
15
|
Affiliation(s)
- Nerea Sanvisens Delgado
- UCSF Helen Diller Comprehensive Cancer Center, Univerisity of Califorinia, San Francisco, California, United States of America
| | - David P. Toczyski
- UCSF Helen Diller Comprehensive Cancer Center, Univerisity of Califorinia, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
17
|
Versatility of the Mec1 ATM/ATR signaling network in mediating resistance to replication, genotoxic, and proteotoxic stresses. Curr Genet 2019; 65:657-661. [PMID: 30610294 PMCID: PMC6510830 DOI: 10.1007/s00294-018-0920-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/11/2023]
Abstract
The ataxia-telangiectasia mutated/ATM and Rad3-related (ATM/ATR) family proteins are evolutionarily conserved serine/threonine kinases best known for their roles in mediating the DNA damage response. Upon activation, ATM/ATR phosphorylate numerous targets to stabilize stalled replication forks, repair damaged DNA, and inhibit cell cycle progression to ensure survival of the cell and safeguard integrity of the genome. Intriguingly, separation of function alleles of the human ATM and MEC1, the budding yeast ATM/ATR, were shown to confer widespread protein aggregation and acute sensitivity to different types of proteotoxic agents including heavy metal, amino acid analogue, and an aggregation-prone peptide derived from the Huntington’s disease protein. Further analyses unveiled that ATM and Mec1 promote resistance to perturbation in protein homeostasis via a mechanism distinct from the DNA damage response. In this minireview, we summarize the key findings and discuss ATM/ATR as a multifaceted signalling protein capable of mediating cellular response to both DNA and protein damage.
Collapse
|
18
|
Chen ESW, Weng JH, Chen YH, Wang SC, Liu XX, Huang WC, Matsui T, Kawano Y, Liao JH, Lim LH, Bessho Y, Huang KF, Wu WJ, Tsai MD. Phospho-Priming Confers Functionally Relevant Specificities for Rad53 Kinase Autophosphorylation. Biochemistry 2017; 56:5112-5124. [PMID: 28858528 DOI: 10.1021/acs.biochem.7b00689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vast majority of in vitro structural and functional studies of the activation mechanism of protein kinases use the kinase domain alone. Well-demonstrated effects of regulatory domains or allosteric factors are scarce for serine/threonine kinases. Here we use a site-specifically phosphorylated SCD1-FHA1-kinase three-domain construct of the serine/threonine kinase Rad53 to show the effect of phospho-priming, an in vivo regulatory mechanism, on the autophosphorylation intermediate and specificity. Unphosphorylated Rad53 is a flexible monomer in solution but is captured in an asymmetric enzyme:substrate complex in crystal with the two FHA domains separated from each other. Phospho-priming induces formation of a stable dimer via intermolecular pT-FHA binding in solution. Importantly, autophosphorylation of unprimed and phospho-primed Rad53 produced predominantly inactive pS350-Rad53 and active pT354-Rad53, respectively. The latter mechanism was also demonstrated in vivo. Our results show that, while Rad53 can display active conformations under various conditions, simulation of in vivo regulatory conditions confers functionally relevant autophosphorylation.
Collapse
Affiliation(s)
- Eric Sheng-Wen Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| | - Yu-Hou Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Xiao-Xia Liu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University , Menlo Park, California 94025, United States
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Liang-Hin Lim
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
19
|
Liang J, Singh N, Carlson CR, Albuquerque CP, Corbett KD, Zhou H. Recruitment of a SUMO isopeptidase to rDNA stabilizes silencing complexes by opposing SUMO targeted ubiquitin ligase activity. Genes Dev 2017; 31:802-815. [PMID: 28487408 PMCID: PMC5435892 DOI: 10.1101/gad.296145.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Abstract
In this study, Liang et al. investigate the molecular mechanisms by which SUMO (small ubiquitin-like modifier) contributes to post-translational modifications. Their findings demonstrate how the opposing actions of a localized SUMO isopeptidase and a SUMO targeted ubiquitin ligase (STUbL), Slx5:Slx8, regulate rDNA silencing by controlling the abundance of a key rDNA silencing protein, Tof2. Post-translational modification by SUMO (small ubiquitin-like modifier) plays important but still poorly understood regulatory roles in eukaryotic cells, including as a signal for ubiquitination by SUMO targeted ubiquitin ligases (STUbLs). Here, we delineate the molecular mechanisms for SUMO-dependent control of ribosomal DNA (rDNA) silencing through the opposing actions of a STUbL (Slx5:Slx8) and a SUMO isopeptidase (Ulp2). We identify a conserved region in the Ulp2 C terminus that mediates its specificity for rDNA-associated proteins and show that this region binds directly to the rDNA-associated protein Csm1. Two crystal structures show that Csm1 interacts with Ulp2 and one of its substrates, the rDNA silencing protein Tof2, through adjacent conserved interfaces in its C-terminal domain. Disrupting Csm1's interaction with either Ulp2 or Tof2 dramatically reduces rDNA silencing and causes a marked drop in Tof2 abundance, suggesting that Ulp2 promotes rDNA silencing by opposing STUbL-mediated degradation of silencing proteins. Tof2 abundance is rescued by deletion of the STUbL SLX5 or disruption of its SUMO-interacting motifs, confirming that Tof2 is targeted for degradation in a SUMO- and STUbL-dependent manner. Overall, our results demonstrate how the opposing actions of a localized SUMO isopeptidase and a STUbL regulate rDNA silencing by controlling the abundance of a key rDNA silencing protein, Tof2.
Collapse
Affiliation(s)
- Jason Liang
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Namit Singh
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - Christopher R Carlson
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - Claudio P Albuquerque
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
20
|
Characterization of Pph3-mediated dephosphorylation of Rad53 during methyl methanesulfonate-induced DNA damage repair in Candida albicans. Biochem J 2017; 474:1293-1306. [DOI: 10.1042/bcj20160889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
Genotoxic stress causes DNA damage or stalled DNA replication and filamentous growth in the pathogenic fungus Candida albicans. The DNA checkpoint kinase Rad53 critically regulates by phosphorylation effectors that execute the stress response. Rad53 itself is activated by phosphorylation and inactivated by dephosphorylation. Previous studies have suggested that the phosphatase Pph3 dephosphorylates Rad53. Here, we used mass spectrometry and mutagenesis to identify Pph3 dephosphorylation sites on Rad53 in C. albicans. We found that serine residues 351, 461 and 477, which were dephosphorylated in wild-type cells during the recovery from DNA damage caused by methyl methanesulfonate (MMS), remained phosphorylated in pph3Δ/Δ cells. Phosphomimetic mutation of the three residues (rad53-3D) impaired Rad53 dephosphorylation, exit from cell cycle arrest, dephosphorylation of two Rad53 effectors Dun1 and Dbf4, and the filament-to-yeast growth transition during the recovery from MMS-induced DNA damage. The phenotypes observed in the rad53-3D mutant also occurred in the pph3Δ/Δ mutant. Together, our findings reveal a molecular mechanism by which Pph3 controls DNA damage response in C. albicans.
Collapse
|
21
|
Dmowski M, Rudzka J, Campbell JL, Jonczyk P, Fijałkowska IJ. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint. PLoS Genet 2017; 13:e1006572. [PMID: 28107343 PMCID: PMC5291541 DOI: 10.1371/journal.pgen.1006572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 02/03/2017] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. The viability of living organisms depends on the integrity of their genomes. Each cell has to constantly monitor DNA replication and coordinate it with cell division to avoid genomic instability. This is achieved through pathways known as cell cycle checkpoints. Therefore, upon replication perturbation, DNA synthesis slows down and cell division is delayed. For that, a specific signal is induced and propagated through a mechanism that have already been identified but still need investigations. We have isolated a mutated form of Dpb2, the essential subunit of DNA polymerase epsilon (Pol ε) holoenzyme. This mutated form of Pol ε impairs proper activation of the cellular response to replication stress. We show that yeast cells with mutations in the DPB2 gene fail to activate the Nrm1-regulated branch of the checkpoint, which controls numerous genes expressed in response to replication stress. Moreover, our results support the model of parallel activation of replication checkpoint from the leading and lagging DNA strands. This strongly suggests that Pol ε, the leading strand replicase, is involved in replication checkpoint activation from this strand. Our results contribute to the understanding of mechanisms of cellular response to replication stress, which are necessary to preserve genome stability.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
- * E-mail:
| | - Justyna Rudzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Judith L. Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA, United States of America
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Iwona J. Fijałkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| |
Collapse
|
22
|
Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response. G3-GENES GENOMES GENETICS 2016; 6:3869-3881. [PMID: 27678521 PMCID: PMC5144958 DOI: 10.1534/g3.116.033910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.
Collapse
|
23
|
Sanvisens N, Romero AM, Zhang C, Wu X, An X, Huang M, Puig S. Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Small Subunit Localization in Response to Iron Deficiency. J Biol Chem 2016; 291:9807-17. [PMID: 26970775 DOI: 10.1074/jbc.m116.720862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.
Collapse
Affiliation(s)
- Nerea Sanvisens
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Antonia M Romero
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Caiguo Zhang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiaorong Wu
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiuxiang An
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Mingxia Huang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Sergi Puig
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| |
Collapse
|
24
|
DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae. PLoS One 2015; 10:e0138085. [PMID: 26375390 PMCID: PMC4572706 DOI: 10.1371/journal.pone.0138085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage–including that induced by many anticancer drugs–results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events.
Collapse
|
25
|
Liang J, Suhandynata RT, Zhou H. Phosphorylation of Sae2 Mediates Forkhead-associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function. J Biol Chem 2015; 290:10751-63. [PMID: 25762720 DOI: 10.1074/jbc.m114.625293] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces cerevisiae Sae2 and its ortholog CtIP in higher eukaryotes have a conserved role in the initial processing of DNA lesions and influencing their subsequent repair pathways. Sae2 is phosphorylated by the ATR/ATM family kinases Mec1 and Tel1 in response to DNA damage. Among the Mec1/Tel1 consensus phosphorylation sites of Sae2, we found that mutations of Thr-90 and Thr-279 of Sae2 into alanine caused a persistent Rad53 activation in response to a transient DNA damage, similar to the loss of Sae2. To gain insight into the function of this phosphorylation of Sae2, we performed a quantitative proteomics analysis to identify its associated proteins. We found that phosphorylation of Thr-90 of Sae2 mediates its interaction with Rad53, Dun1, Xrs2, Dma1, and Dma2, whereas Rad53 and Dun1 additionally interact with phosphorylated Thr-279 of Sae2. Mutations of the ligand-binding residues of Forkhead-associated (FHA) domains of Rad53, Dun1, Xrs2, Dma1, and Dma2 abolished their interactions with Sae2, revealing the involvement of FHA-specific interactions. Mutations of Thr-90 and Thr-279 of Sae2 caused a synergistic defect when combined with sgs1Δ and exo1Δ and elevated gross chromosomal rearrangements. Likewise, mutations of RAD53 and DUN1 caused a synthetic growth defect with sgs1Δ and elevated gross chromosomal rearrangements. These findings suggest that threonine-specific phosphorylation of Sae2 by Mec1 and Tel1 contributes to DNA repair and genome maintenance via its interactions with Rad53 and Dun1.
Collapse
Affiliation(s)
- Jason Liang
- From the Ludwig Institute for Cancer Research, Department of Chemistry and Biochemistry
| | | | - Huilin Zhou
- From the Ludwig Institute for Cancer Research, Department of Chemistry and Biochemistry, Department of Cellular and Molecular Medicine, and Moores Cancer Center, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
26
|
Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol Cell Biol 2014; 34:3259-71. [PMID: 24958100 DOI: 10.1128/mcb.00472-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar proteolytic pathway. Depletion of core components of the mitochondrial iron-sulfur cluster assembly leads to a Dun1-dependent diminution of Sml1 protein levels. The physiological relevance of Sml1 downregulation by Dun1 under low-Fe conditions is highlighted by the synthetic growth defect observed between dun1Δ and fet3Δ fet4Δ mutants, which is rescued by SML1 deletion. Consistent with an increase in RNR function, Rnr1 protein levels are upregulated upon Fe deficiency. Finally, dun1Δ mutants display defects in deoxyribonucleoside triphosphate (dNTP) biosynthesis under low-Fe conditions. Taken together, these results reveal that the Dun1 checkpoint kinase promotes RNR function in response to Fe starvation by stimulating Sml1 protein degradation.
Collapse
|
27
|
Omidi K, Hooshyar M, Jessulat M, Samanfar B, Sanders M, Burnside D, Pitre S, Schoenrock A, Xu J, Babu M, Golshani A. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae. PLoS One 2014; 9:e87248. [PMID: 24498054 PMCID: PMC3909046 DOI: 10.1371/journal.pone.0087248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.
Collapse
Affiliation(s)
- Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Matthew Jessulat
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Megan Sanders
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sylvain Pitre
- Department of Computer Science, Carleton University, Ottawa, Ontario, Canada
| | - Andrew Schoenrock
- Department of Computer Science, Carleton University, Ottawa, Ontario, Canada
| | - Jianhua Xu
- College of Pharmaceutical Sciences, Zhejian University, Hangzhou, Zhejiang, China
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Chen ESW, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Mol Cell Proteomics 2013; 13:551-65. [PMID: 24302356 PMCID: PMC3916653 DOI: 10.1074/mcp.m113.034058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cell cycle checkpoint kinases play central roles in the genome maintenance of eukaryotes. Activation of the yeast checkpoint kinase Rad53 involves Rad9 or Mrc1 adaptor-mediated phospho-priming by Mec1 kinase, followed by auto-activating phosphorylation within its activation loop. However, the mechanisms by which these adaptors regulate priming phosphorylation of specific sites and how this then leads to Rad53 activation remain poorly understood. Here we used quantitative mass spectrometry to delineate the stepwise phosphorylation events in the activation of endogenous Rad53 in response to S phase alkylation DNA damage, and we show that the two Rad9 and Mrc1 adaptors, the four N-terminal Mec1-target TQ sites of Rad53 (Rad53-SCD1), and Rad53-FHA2 coordinate intimately for optimal priming phosphorylation to support substantial Rad53 auto-activation. Rad9 or Mrc1 alone can mediate surprisingly similar Mec1 target site phosphorylation patterns of Rad53, including previously undetected tri- and tetraphosphorylation of Rad53-SCD1. Reducing the number of TQ motifs turns the SCD1 into a proportionally poorer Mec1 target, which then requires the presence of both Mrc1 and Rad9 for sufficient priming and auto-activation. The phosphothreonine-interacting Rad53-FHA domains, particularly FHA2, regulate phospho-priming by interacting with the checkpoint mediators but do not seem to play a major role in the phospho-SCD1-dependent auto-activation step. Finally, mutation of all four SCD1 TQ motifs greatly reduces Rad53 activation but does not eliminate it, and residual Rad53 activity in this mutant is dependent on Rad9 but not Mrc1. Altogether, our results provide a paradigm for how phosphorylation site clusters and checkpoint mediators can be involved in the regulation of signaling relay in protein kinase cascades in vivo and elucidate an SCD1-independent Rad53 auto-activation mechanism through the Rad9 pathway. The work also demonstrates the power of mass spectrometry for in-depth analyses of molecular mechanisms in cellular signaling in vivo.
Collapse
Affiliation(s)
- Eric S-W Chen
- Institute of Biological Chemistry, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Jaehnig EJ, Kuo D, Hombauer H, Ideker TG, Kolodner RD. Checkpoint kinases regulate a global network of transcription factors in response to DNA damage. Cell Rep 2013; 4:174-88. [PMID: 23810556 DOI: 10.1016/j.celrep.2013.05.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 04/04/2013] [Accepted: 05/24/2013] [Indexed: 01/01/2023] Open
Abstract
DNA damage activates checkpoint kinases that induce several downstream events, including widespread changes in transcription. However, the specific connections between the checkpoint kinases and downstream transcription factors (TFs) are not well understood. Here, we integrate kinase mutant expression profiles, transcriptional regulatory interactions, and phosphoproteomics to map kinases and downstream TFs to transcriptional regulatory networks. Specifically, we investigate the role of the Saccharomyces cerevisiae checkpoint kinases (Mec1, Tel1, Chk1, Rad53, and Dun1) in the transcriptional response to DNA damage caused by methyl methanesulfonate. The result is a global kinase-TF regulatory network in which Mec1 and Tel1 signal through Rad53 to synergistically regulate the expression of more than 600 genes. This network involves at least nine TFs, many of which have Rad53-dependent phosphorylation sites, as regulators of checkpoint-kinase-dependent genes. We also identify a major DNA damage-induced transcriptional network that regulates stress response genes independently of the checkpoint kinases.
Collapse
Affiliation(s)
- Eric J Jaehnig
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
30
|
Molecular basis of the essential s phase function of the rad53 checkpoint kinase. Mol Cell Biol 2013; 33:3202-13. [PMID: 23754745 DOI: 10.1128/mcb.00474-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential yeast kinases Mec1 and Rad53, or human ATR and Chk1, are crucial for checkpoint responses to exogenous genotoxic agents, but why they are also required for DNA replication in unperturbed cells remains poorly understood. Here we report that even in the absence of DNA-damaging agents, the rad53-4AQ mutant, lacking the N-terminal Mec1 phosphorylation site cluster, is synthetic lethal with a deletion of the RAD9 DNA damage checkpoint adaptor. This phenotype is caused by an inability of rad53-4AQ to activate the downstream kinase Dun1, which then leads to reduced basal deoxynucleoside triphosphate (dNTP) levels, spontaneous replication fork stalling, and constitutive activation of and dependence on S phase DNA damage checkpoints. Surprisingly, the kinase-deficient rad53-K227A mutant does not share these phenotypes but is rendered inviable by additional phosphosite mutations that prevent its binding to Dun1. The results demonstrate that ultralow Rad53 catalytic activity is sufficient for normal replication of undamaged chromosomes as long as it is targeted toward activation of the effector kinase Dun1. Our findings indicate that the essential S phase function of Rad53 is comprised by the combination of its role in regulating basal dNTP levels and its compensatory kinase function if dNTP levels are perturbed.
Collapse
|
31
|
Wang G, Tong X, Weng S, Zhou H. Multiple phosphorylation of Rad9 by CDK is required for DNA damage checkpoint activation. Cell Cycle 2013; 11:3792-800. [PMID: 23070520 DOI: 10.4161/cc.21987] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.
Collapse
Affiliation(s)
- Guoliang Wang
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
32
|
Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance. Biomolecules 2012; 2:505-23. [PMID: 24970147 PMCID: PMC4030855 DOI: 10.3390/biom2040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023] Open
Abstract
In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs), suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR). Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.
Collapse
|
33
|
Chuang CN, Cheng YH, Wang TF. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res 2012; 40:11416-27. [PMID: 23047948 PMCID: PMC3526284 DOI: 10.1093/nar/gks920] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Red1, Hop1 and Mek1 are three yeast meiosis-specific chromosomal proteins that uphold the interhomolog (IH) bias of meiotic recombination. Mek1 is also an effector protein kinase in a checkpoint that responds to aberrant DNA and/or axis structure. The activation of Mek1 requires Red1-dependent Hop1-Thr(T)318 phosphorylation, which is mediated by Mec1 and Tel1, the yeast homologs of the mammalian DNA damage sensor kinases ATR and ATM. As the ectopic expression of Mek1-glutathione S-transferase (GST) was shown to promote IH recombination in the absence of Mec1/Tel1-dependent checkpoint function, it was proposed that Mek1 might play dual roles during meiosis by directly phosphorylating targets that are involved in the recombination checkpoint. Here, we report that Mek1 has a positive feedback activity in the stabilization of Mec1/Tel1-mediated Hop1-T318 phosphorylation against the dephosphorylation mediated by protein phosphatase 4. Our results also reveal that GST-Mek1 or Mek1-GST further increases Hop1-T318 phosphorylation. This positive feedback function of Mek1 is independent of Mek1’s kinase activity, but dependent on Mek1’s forkhead-associated (FHA) domain and its arginine 51 residue. Arginine 51 directly mediates the interaction of Mek1-FHA and phosphorylated Hop1-T318. We suggest that the Hop1–Mek1 interaction is similar to the Rad53-Dun1 signaling pathway, which is mediated through the interaction of phosphorylated Rad53 and Dun1-FHA.
Collapse
Affiliation(s)
- Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
34
|
Patil A, Dyavaiah M, Joseph F, Rooney JP, Chan CTY, Dedon PC, Begley TJ. Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle 2012; 11:3656-65. [PMID: 22935709 DOI: 10.4161/cc.21919] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm(5)U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G(1) and G(2), and that mcm(5)U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm(5)U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.
Collapse
Affiliation(s)
- Ashish Patil
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Baek IJ, Kang HJ, Chang M, Choi ID, Kang CM, Yun CW. Cadmium inhibits the protein degradation of Sml1 by inhibiting the phosphorylation of Sml1 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2012; 424:385-90. [PMID: 22771327 DOI: 10.1016/j.bbrc.2012.06.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/20/2012] [Indexed: 12/17/2022]
Abstract
Cadmium is a toxic metal, and the mechanism of cadmium toxicity in living organisms has been well studied. Here, we used Saccharomyces cerevisiae as a model system to examine the detailed molecular mechanism of cell growth defects caused by cadmium. Using a plate assay of a yeast deletion mutant collection, we found that deletion of SML1, which encodes an inhibitor of Rnr1, resulted in cadmium resistance. Sml1 protein levels increased when cells were treated with cadmium, even though the mRNA levels of SML1 remained unchanged. Using northern and western blot analyses, we found that cadmium inhibited Sml1 degradation by inhibiting Sml1 phosphorylation. Sml1 protein levels increased when cells were treated with cadmium due to disruption of the dependent protein degradation pathway. Furthermore, cadmium promoted cell cycle progression into the G2 phase. The same result was obtained using cells in which SML1 was overexpressed. Deletion of SML1 delayed cell cycle progression. These results are consistent with Sml1 accumulation and with growth defects caused by cadmium stress. Interestingly, although cadmium treatment led to increase Sml1 levels, intracellular dNTP levels also increased because of Rnr3 upregulation due to cadmium stress. Taken together, these results suggest that cadmium specifically affects the phosphorylation of Sml1 and that Sml1 accumulates in cells.
Collapse
Affiliation(s)
- In-Joon Baek
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
37
|
Dewar JM, Lydall D. Similarities and differences between "uncapped" telomeres and DNA double-strand breaks. Chromosoma 2011; 121:117-30. [PMID: 22203190 DOI: 10.1007/s00412-011-0357-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
Abstract
Telomeric DNA is present at the ends of eukaryotic chromosomes and is bound by telomere "capping" proteins, which are the (Cdc13-Stn1-Ten1) CST complex, Ku (Yku70-Yku80), and Rap1-Rif1-Rif2 in budding yeast. Inactivation of any of these complexes causes telomere "uncapping," stimulating a DNA damage response (DDR) that frequently involves resection of telomeric DNA and stimulates cell cycle arrest. This is presumed to occur because telomeres resemble one half of a DNA double-strand break (DSB). In this review, we outline the DDR that occurs at DSBs and compare it to the DDR occurring at uncapped telomeres, in both budding yeast and metazoans. We give particular attention to the resection of DSBs in budding yeast by Mre11-Xrs2-Rad50 (MRX), Sgs1/Dna2, and Exo1 and compare their roles at DSBs and uncapped telomeres. We also discuss how resection uncapped telomeres in budding yeast is promoted by the by 9-1-1 complex (Rad17-Mec3-Ddc1), to illustrate how analysis of uncapped telomeres can serve as a model for the DDR elsewhere in the genome. Finally, we discuss the role of the helicase Pif1 and its requirement for resection of uncapped telomeres, but not DSBs. Pif1 has roles in DNA replication and mammalian and plant CST complexes have been identified and have roles in global genome replication. Based on these observations, we suggest that while the DDR at uncapped telomeres is partially due to their resemblance to a DSB, it may also be partially due to defective DNA replication. Specifically, we propose that the budding yeast CST complex has dual roles to inhibit a DSB-like DDR initiated by Exo1 and a replication-associated DDR initiated by Pif1. If true, this would suggest that the mammalian CST complex inhibits a Pif1-dependent DDR.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
38
|
Abbà S, Vallino M, Daghino S, Di Vietro L, Borriello R, Perotto S. A PLAC8-containing protein from an endomycorrhizal fungus confers cadmium resistance to yeast cells by interacting with Mlh3p. Nucleic Acids Res 2011; 39:7548-63. [PMID: 21672957 PMCID: PMC3177179 DOI: 10.1093/nar/gkr336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cadmium is a genotoxic pollutant known to target proteins that are involved in DNA repair and in antioxidant defence, altering their functions and ultimately causing mutagenic and carcinogenic effects. We have identified a PLAC8 domain-containing protein, named OmFCR, by a yeast functional screen aimed at identifying genes involved in cadmium resistance in the endomycorrhizal fungus Oidiodendron maius. OmFCR shows a remarkable specificity in mediating cadmium resistance. Both its function and its nuclear localization in yeast strictly depend on the interaction with Mlh3p, a subunit of the mismatch repair (MMR) system. Although proteins belonging to the PLAC8 family are widespread in eukaryotes, they are poorly characterized and their biological role still remains elusive. Our work represents the first report about the potential role of a PLAC8 protein in physically coupling DNA lesion recognition by the MMR system to appropriate effectors that affect cell cycle checkpoint pathways. On the basis of cell survival assays and yeast growth curves, we hypothesize that, upon cadmium exposure, OmFCR might promote a higher rate of cell division as compared to control cells.
Collapse
Affiliation(s)
- S Abbà
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino, Viale Mattioli 25, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Zhou H, Albuquerque CP, Liang J, Suhandynata RT, Weng S. Quantitative phosphoproteomics: New technologies and applications in the DNA damage response. Cell Cycle 2010; 9:3479-84. [PMID: 20855976 DOI: 10.4161/cc.9.17.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cells are highly responsive to their environment. One of the main strategies used by cells in signal transduction is protein phosphorylation, a reversible modification that regulates numerous biological processes. Misregulation of phosphorylation-mediated processes is often implicated in many human diseases and cancers. A global and quantitative analysis of protein phosphorylation provides a powerful new approach and has the potential to reveal new insights in signaling pathways. Recent technological advances in high resolution mass spectrometers and multidimensional liquid chromatography, combined with the use of stable isotope labeling of proteins, have led to the application of quantitative phosphoproteomics to study in vivo signal transduction events on a proteome-wide scale. Here we review recent advancements in quantitative phosphoproteomic technologies, discuss their potentials and identify areas for future development. A key objective of proteomic technology is its application to addressing biological questions. We will therefore describe how current quantitative phosphoproteomic technology can be used to study the molecular basis of phosphorylation events in the DNA damage response.
Collapse
Affiliation(s)
- Huilin Zhou
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
40
|
Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H. A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 2010; 285:12803-12. [PMID: 20190278 DOI: 10.1074/jbc.m110.106989] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage checkpoint, consisting of an evolutionarily conserved protein kinase cascade, controls the DNA damage response in eukaryotes. Knowledge of the in vivo substrates of the checkpoint kinases is essential toward understanding their functions. Here we used quantitative mass spectrometry to identify 53 new and 34 previously known targets of Mec1/Tel1, Rad53, and Dun1 in Saccharomyces cerevisiae. Analysis of replication protein A (RPA)-associated proteins reveals extensive physical interactions between RPA-associated proteins and Mec1/Tel1-specific substrates. Among them, multiple subunits of the chromatin remodeling complexes including ISW1, ISW2, INO80, SWR1, RSC, and SWI/SNF are identified and they undergo DNA damage-induced phosphorylation by Mec1 and Tel1. Taken together, this study greatly expands the existing knowledge of the targets of DNA damage checkpoint kinases and provides insights into the role of RPA-associated chromatins in mediating Mec1 and Tel1 substrate phosphorylation in vivo.
Collapse
Affiliation(s)
- Sheng-hong Chen
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093-0653, USA
| | | | | | | | | |
Collapse
|
41
|
Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol Cell 2009; 35:657-68. [PMID: 19748359 DOI: 10.1016/j.molcel.2009.06.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/23/2009] [Accepted: 06/23/2009] [Indexed: 11/20/2022]
Abstract
The Smc5/6 complex is an evolutionarily conserved chromosomal ATPase required for cell growth and DNA repair. Its Mms21 subunit supports both functions by docking to the arm region of Smc5 and providing SUMO ligase activity. Here, we report the crystal structure of Mms21 in complex with the Smc5 arm. Our structure revealed two distinct structural and functional domains of the Smc5-bound Mms21: its N-terminal half is dedicated to Smc5 binding by forming a helix bundle with a coiled-coil structure of Smc5; its C-terminal half includes the SUMO ligase domain, which adopts a new type of RING E3 structure. Mutagenesis and structural analyses showed that the Mms21-Smc5 interface is required for cell growth and resistance to DNA damage, while the unique Mms21 RING domain confers specificity to the SUMO E2-E3 interaction. Through structure-based dissection of Mms21 functions, our studies establish a framework for understanding its roles in the Smc5/6 complex.
Collapse
|
42
|
Stracker TH, Usui T, Petrini JHJ. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 2009; 8:1047-54. [PMID: 19473886 PMCID: PMC2725228 DOI: 10.1016/j.dnarep.2009.04.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cellular DNA damage response (DDR) is activated by many types of DNA lesions. Upon recognition of DNA damage by sensor proteins, an intricate signal transduction network is activated to coordinate diverse cellular outcomes that promote genome integrity. Key components of the DDR in mammalian cells are the checkpoint effector kinases Chk1 and Chk2 (referred to henceforth as the effector kinases; orthologous to spChk1 and spCds1 in the fission yeast S. pombe and scChk1 and scRad53 in the budding yeast S. cerevisiae). These evolutionarily conserved and structurally divergent kinases phosphorylate numerous substrates to regulate the DDR. This review will focus on recent advances in our understanding of the structure, regulation, and functions of the effector kinases in the DDR, as well as their potential roles in human disease.
Collapse
|
43
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 PMCID: PMC2725198 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
44
|
The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol Cell Biol 2009; 29:5226-37. [PMID: 19635810 DOI: 10.1128/mcb.00894-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Asf1 and Rad6 pathways have been implicated in a number of common processes such as suppression of gross chromosomal rearrangements (GCRs), DNA repair, modification of chromatin, and proper checkpoint functions. We examined the relationship between Asf1 and different gene products implicated in postreplication repair (PRR) pathways in the suppression of GCRs, checkpoint function, sensitivity to hydroxyurea (HU) and methyl methanesulfonate (MMS), and ubiquitination of proliferating cell nuclear antigen (PCNA). We found that defects in Rad6 PRR pathway and Siz1/Srs2 homologous recombination suppression (HRS) pathway genes suppressed the increased GCR rates seen in asf1 mutants, which was independent of translesion bypass polymerases but showed an increased dependency on Dun1. Combining an asf1 deletion with different PRR mutations resulted in a synergistic increase in sensitivity to chronic HU and MMS treatment; however, these double mutants were not checkpoint defective, since they were capable of recovering from acute treatment with HU. Interestingly, we found that Asf1 and Rad6 cooperate in ubiquitination of PCNA, indicating that Rad6 and Asf1 function in parallel pathways that ubiquitinate PCNA. Our results show that ASF1 probably contributes to the maintenance of genome stability through multiple mechanisms, some of which involve the PRR and HRS pathways.
Collapse
|
45
|
Chen SH, Zhou H. Reconstitution of Rad53 activation by Mec1 through adaptor protein Mrc1. J Biol Chem 2009; 284:18593-604. [PMID: 19457865 DOI: 10.1074/jbc.m109.018242] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Upon DNA replication stress, stalled DNA replication forks serve as a platform to recruit many signaling proteins, leading to the activation of the DNA replication checkpoint. Activation of Rad53, a key effector kinase in the budding yeast Saccharomyces cerevisiae, is essential for stabilizing DNA replication forks during replication stress. Using an activity-based assay for Rad53, we found that Mrc1, a replication fork-associated protein, cooperates with Mec1 to activate Rad53 directly. Reconstitution of Rad53 activation using purified Mec1 and Mrc1 showed that the addition of Mrc1 stimulated a more than 70-fold increase in the ability of Mec1 to activate Rad53. Instead of increasing the catalytic activity of Mec1, Mrc1 was found to facilitate the phosphorylation of Rad53 by Mec1 via promotion of a stronger enzyme-substrate interaction between them. Further, the conserved C-terminal domain of Mrc1 was found to be required for Rad53 activation. These results thus provide insights into the role of the adaptor protein Mrc1 in activating Rad53 in the DNA replication checkpoint.
Collapse
Affiliation(s)
- Sheng-Hong Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0653, USA
| | | |
Collapse
|
46
|
Zhang YW, Jones TL, Martin SE, Caplen NJ, Pommier Y. Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem 2009; 284:18085-95. [PMID: 19416980 DOI: 10.1074/jbc.m109.003020] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate drug mechanisms of action and identify molecular targets for the development of rational drug combinations, we conducted synthetic small interfering RNA (siRNA)-based RNAi screens to identify genes whose silencing affects anti-cancer drug responses. Silencing of RRM1 and RRM2, which encode the large and small subunits of the human ribonucleotide reductase complex, respectively, markedly enhanced the cytotoxicity of the topoisomerase I inhibitor camptothecin (CPT). Silencing of RRM2 was also found to enhance DNA damage as measured by histone gamma-H2AX. Further studies showed that CPT up-regulates both RRM1 and RRM2 mRNA and protein levels and induces the nuclear translocation of RRM2. The checkpoint kinase 1 (Chk1) was up-regulated and activated in response to CPT, and CHEK1 down-regulation by siRNA and small molecule inhibitors of Chk1 blocked RRM2 induction by CPT. CHEK1 siRNA also suppressed E2F1 up-regulation by CPT, and silencing of E2F1 suppressed the up-regulation of RRM2. Silencing of ATR or ATM and inhibition of ATM activity by KU-55933 blocked Chk1 activation and RRM2 up-regulation. This study links the known components of CPT-induced DNA damage response with proteins required for the synthesis of dNTPs and DNA repair. Specifically, we propose that upon DNA damage, Chk1 activation, mediated by ATM and ATR, up-regulates RRM2 expression through the E2F1 transcription factor. Up-regulation in RRM2 expression levels coupled with its nuclear recruitment suggests an active role for ribonucleotide reductase in the cellular response to CPT-mediated DNA damage that could potentially be exploited as a strategy for enhancing the efficacy of topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Yong-Wei Zhang
- Laboratory of Molecular Pharmacology, Genetics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
47
|
Usui T, Foster SS, Petrini JH. Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Mol Cell 2009; 33:147-59. [PMID: 19187758 PMCID: PMC2995296 DOI: 10.1016/j.molcel.2008.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/17/2008] [Accepted: 12/16/2008] [Indexed: 12/30/2022]
Abstract
Oligomeric assembly of Brca1 C-terminal (BRCT) domain-containing mediator proteins occurs at sites of DNA damage. However, the functional significance and regulation of such assemblies are not well understood. In this study, we defined the molecular mechanism of DNA-damage-induced oligomerization of the S. cerevisiae BRCT protein Rad9. Our data suggest that Rad9's tandem BRCT domain mediates Rad9 oligomerization via its interaction with its own Mec1/Tel1-phosphorylated SQ/TQ cluster domain (SCD). Rad53 activation is unaffected by mutations that impair Rad9 oligomerization, but checkpoint maintenance is lost, indicating that oligomerization is required to sustain checkpoint signaling. Once activated, Rad53 phosphorylates the Rad9 BRCT domain, which attenuates the BRCT-SCD interaction. Failure to phosphorylate the Rad9 BRCT results in cytologically visible Rad9 foci. This suggests a feedback loop wherein Rad53 activity and Rad9 oligomerization are regulated to tune the DNA-damage response.
Collapse
Affiliation(s)
- Takehiko Usui
- Laboratory of Chromosome Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Steven S. Foster
- Laboratory of Chromosome Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | - John H.J. Petrini
- Laboratory of Chromosome Biology, Sloan-Kettering Institute, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
48
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
50
|
di Domenico EG, Auriche C, Viscardi V, Longhese MP, Gilson E, Ascenzioni F. The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions. DNA Repair (Amst) 2008; 8:209-18. [PMID: 19007917 DOI: 10.1016/j.dnarep.2008.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/01/2008] [Accepted: 10/10/2008] [Indexed: 01/23/2023]
Abstract
In this work we report that budding yeasts carrying human-type telomeric repeats at their chromosome termini show a chronic activation of the Rad53-dependent DNA damage checkpoint pathway and a G2/M cell cycle delay. Furthermore, in the absence of either TEL1/ATM or MEC1/ATR genes, which encodes phosphatidylinositol 3-kinase-related kinases (PIKKs), we detected telomere fusions, whose appearance correlates with a reduced cell viability and a high rate of genome instability. Based on sequence analysis, telomere fusions occurred primarily between ultrashort telomeres. Microcolony formation assays argue against the possibility that fusion-containing cells are eliminated by PIKK-dependent signalling. These findings reveal that humanized telomeres in yeast cells are sensed as a chronically damaged DNA but do not greatly impair cell viability as long as the cells have a functional DNA damage checkpoint.
Collapse
Affiliation(s)
- Enea Gino di Domenico
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma "La Sapienza", Roma, Italy
| | | | | | | | | | | |
Collapse
|