1
|
Sequence, structural and functional conservation among the human and fission yeast ELL and EAF transcription elongation factors. Mol Biol Rep 2021; 49:1303-1320. [PMID: 34807377 DOI: 10.1007/s11033-021-06958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.
Collapse
|
2
|
Dabas P, Dhingra Y, Sweta K, Chakrabarty M, Singhal R, Tyagi P, Behera PM, Dixit A, Bhattacharjee S, Sharma N. Arabidopsis thaliana possesses two novel ELL associated factor homologs. IUBMB Life 2021; 73:1115-1130. [PMID: 34089218 DOI: 10.1002/iub.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/06/2022]
Abstract
Transcription elongation is one of the key steps at which RNA polymerase II-directed expression of protein-coding genes is regulated in eukaryotic cells. Different proteins have been shown to control this process, including the ELL/EAF family. ELL Associated Factors (EAFs) were first discovered in a yeast two-hybrid screen as interaction partners of the human ELL (Eleven nineteen Lysine-rich Leukemia) transcription elongation factor. Subsequently, they have been identified in different organisms, including Schizosaccharomyces pombe. However, no homolog(s) of EAF has as yet been characterized from plants. In the present work, we identified EAF orthologous sequences in different plants and have characterized two novel Arabidopsis thaliana EAF homologs, AtEAF-1 (At1g71080) and AtEAF-2 (At5g38050). Sequence analysis showed that both AtEAF-1 and AtEAF-2 exhibit similarity with its S. pombe EAF counterpart. Moreover, both Arabidopsis thaliana and S. pombe EAF orthologs share conserved sequence characteristic features. Computational tools also predicted a high degree of disorder in regions towards the carboxyl terminus of these EAF proteins. We demonstrate that AtEAF-2, but not AtEAF-1 functionally complements growth deficiencies of Schizosaccharomyces pombe eaf mutant. We also show that only AtEAF-1 displays transactivation potential resembling the S. pombe EAF ortholog. Subsequent expression analysis in A. thaliana showed that both homologs were expressed at varying levels during different developmental stages and in different tissues tested in the study. Individual null-mutants of either AtEAF-1 or AtEAF-2 are developmentally normal implying their functional redundancy. Taken together, our results provide first evidence that A. thaliana also possesses functional EAF proteins, suggesting an evolutionary conservation of these proteins across organisms.
Collapse
Affiliation(s)
- Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Yukti Dhingra
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Mohima Chakrabarty
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Ritwik Singhal
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Prasidhi Tyagi
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | | | | | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and plant resistance, Regional Center of Biotechnology, NCR-Biotech Science Cluster, Gurgaon-Faridabad Expressway, Faridabad, Haryana, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| |
Collapse
|
3
|
Panagopoulos I, Andersen K, Eilert-Olsen M, Rognlien AG, Munthe-Kaas MC, Micci F, Heim S. Rare KMT2A-ELL and Novel ZNF56-KMT2A Fusion Genes in Pediatric T-cell Acute Lymphoblastic Leukemia. Cancer Genomics Proteomics 2021; 18:121-131. [PMID: 33608309 DOI: 10.21873/cgp.20247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIM Previous reports have associated the KMT2A-ELL fusion gene, generated by t(11;19)(q23;p13.1), with acute myeloid leukemia (AML). We herein report a KMT2A-ELL and a novel ZNF56-KMT2A fusion genes in a pediatric T-lineage acute lymphoblastic leukemia (T-ALL). MATERIALS AND METHODS Genetic investigations were performed on bone marrow of a 13-year-old boy diagnosed with T-ALL. RESULTS A KMT2A-ELL and a novel ZNF56-KMT2A fusion genes were generated on der(11)t(11;19)(q23;p13.1) and der(19)t(11;19)(q23;p13.1), respectively. Exon 20 of KMT2A fused to exon 2 of ELL in KMT2A-ELL chimeric transcript whereas exon 1 of ZNF56 fused to exon 21 of KMT2A in ZNF56-KMT2A transcript. A literature search revealed four more T-ALL patients carrying a KMT2A-ELL fusion. All of them were males aged 11, 11, 17, and 20 years. CONCLUSION KMT2A-ELL fusion is a rare recurrent genetic event in T-ALL with uncertain prognostic implications. The frequency and impact of ZNF56-KMT2A in T-ALL are unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Martine Eilert-Olsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Gro Rognlien
- Department of Pediatric Hematology and Oncology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Hematology and Oncology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Sweta K, Sharma N. Functional interaction between ELL transcription elongation factor and Epe1 reveals the role of Epe1 in the regulation of transcription outside heterochromatin. Mol Microbiol 2021; 116:80-96. [PMID: 33533152 DOI: 10.1111/mmi.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Eleven-nineteen lysine-rich leukemia (ELL) is a eukaryotic RNA polymerase II transcription elongation factor. In Schizosaccharomyces pombe, it is important for survival under genotoxic stress conditions. However, the molecular basis underlying this function of ELL in S. pombe is yet to be deciphered. Here, we carried out a genetic screen to identify multicopy suppressor(s) that could restore normal growth of ell1 deletion mutant in the presence of DNA damaging agent. Sequence analysis of the identified suppressors revealed the anti-silencing protein, Epe1, as one of the suppressors of ell1 deletion associated genotoxic stress sensitivity. Our results further demonstrate that the overexpression of Epe1 could suppress all other phenotypes associated with the absence of Ell1. Moreover, transcriptional defect of ell1Δ strain could also be alleviated by the overexpression of Epe1. Epe1 also showed a physical interaction with Ell1. Interestingly, we also observed that the region of Epe1 encompassing 403-948 amino acids was indispensable for all the above functions. Furthermore, our results show that the overexpression of Epe1 causes increased H3K9 acetylation and RNA polymerase II recruitment. Taken together, our results show a functional interaction between Epe1 and Ell1, and this function is independent of the well-known JmjC and N-terminal transcriptional activation domains of Epe1 in S. pombe.
Collapse
Affiliation(s)
- Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| |
Collapse
|
5
|
ELL-associated factors EAF1/2 negatively regulate HIV-1 transcription through inhibition of Super Elongation Complex formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194508. [PMID: 32087315 DOI: 10.1016/j.bbagrm.2020.194508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/03/2023]
Abstract
The ELL (ELL1 and ELL2)-containing Super Elongation Complex (SEC) is required for efficient HIV-1 transactivation by the viral-encoded Tat protein. EAF1 and EAF2 are ELL-associated factors and considered as positive regulators of ELL. However, their role in HIV-1 transcriptional control is unknown. In this study, we show that EAF1/2 inhibit the SEC-dependent and Tat-activated HIV-1 transcription. EAF1/2 are found to interact with the SEC components in an ELL1/2-dependent manner. Surprisingly, the depletion of EAF1/2 increases the SEC formation and occupancy on the HIV-1 proviral DNA, thereby stimulating Tat transactivation of HIV-1. Although EAF1/2 interact with members of the SEC in a ELL-dependent manner, this interaction competes with the binding of the scaffolding subunit AFF1 with ELL, thus reducing the SEC formation. Together, these data reveal how EAF1/2 regulate the SEC formation to control HIV-1 transcription.
Collapse
|
6
|
Pascal LE, Su F, Wang D, Ai J, Song Q, Wang Y, O'Malley KJ, Cross B, Rigatti LH, Green A, Dhir R, Wang Z. Conditional Deletion of Eaf1 Induces Murine Prostatic Intraepithelial Neoplasia in Mice. Neoplasia 2019; 21:752-764. [PMID: 31229879 PMCID: PMC6593215 DOI: 10.1016/j.neo.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
ELL-associated factor 1 is a transcription elongation factor that shares significant homology and functional similarity to the androgen-responsive prostate tumor suppressor ELL-associated factor 2. EAF2 is frequently down-regulated in advanced prostate cancer and Eaf2 deletion in the mouse induced the development of murine prostatic intraepithelial neoplasia. Here we show that similar to EAF2, EAF1 is frequently down-regulated in advanced prostate cancer. Co-downregulation of EAF1 and EAF2 occurred in 40% of clinical specimens with Gleason score >7. We developed and characterized a murine model of prostate-epithelial specific deletion of Eaf1 in the prostate and crossed it with our previously generated mouse with conventional deletion of Eaf2. The prostates of Eaf1 deletion mice displayed murine prostatic intraepithelial neoplasia lesions with increased proliferation and inflammation. Combined deletion of Eaf1 and Eaf2 in the murine model induced an increased incidence in mPIN lesions characterized by increased proliferation and CD3+ T cells and CD19+ B cells infiltration compared to individual deletion of either Eaf1 or Eaf2 in the murine prostate. These results suggest that EAF1 may play a tumor suppressive role in the prostate. Cooperation between EAF1 and EAF2 may be important for prostate maintaining prostate epithelial homeostasis, and concurrent loss of these two tumor suppressors may promote prostate tumorigenesis and progression.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Fei Su
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA; The Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Dan Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Qiong Song
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yujuan Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Katherine J O'Malley
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Brian Cross
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony Green
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Gopalan S, Gibbon DM, Banks CA, Zhang Y, Florens LA, Washburn MP, Dabas P, Sharma N, Seidel CW, Conaway RC, Conaway JW. Schizosaccharomyces pombe Pol II transcription elongation factor ELL functions as part of a rudimentary super elongation complex. Nucleic Acids Res 2019; 46:10095-10105. [PMID: 30102332 PMCID: PMC6212713 DOI: 10.1093/nar/gky713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
ELL family transcription factors activate the overall rate of RNA polymerase II (Pol II) transcription elongation by binding directly to Pol II and suppressing its tendency to pause. In metazoa, ELL regulates Pol II transcription elongation as part of a large multisubunit complex referred to as the Super Elongation Complex (SEC), which includes P-TEFb and EAF, AF9 or ENL, and an AFF family protein. Although orthologs of ELL and EAF have been identified in lower eukaryotes including Schizosaccharomyces pombe, it has been unclear whether SEC-like complexes function in lower eukaryotes. In this report, we describe isolation from S. pombe of an ELL-containing complex with features of a rudimentary SEC. This complex includes S. pombe Ell1, Eaf1, and a previously uncharacterized protein we designate Ell1 binding protein 1 (Ebp1), which is distantly related to metazoan AFF family members. Like the metazoan SEC, this S. pombe ELL complex appears to function broadly in Pol II transcription. Interestingly, it appears to have a particularly important role in regulating genes involved in cell separation.
Collapse
Affiliation(s)
- Sneha Gopalan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,The Open University, Milton Keynes, UK
| | - Dana M Gibbon
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Charles As Banks
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Pathology and Laboratory Med icine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Preeti Dabas
- University School of Biotechnology, G.G.S.Indraprastha University, New Delhi 110078, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S.Indraprastha University, New Delhi 110078, India
| | | | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Noe Gonzalez M, Sato S, Tomomori-Sato C, Conaway JW, Conaway RC. CTD-dependent and -independent mechanisms govern co-transcriptional capping of Pol II transcripts. Nat Commun 2018; 9:3392. [PMID: 30139934 PMCID: PMC6107522 DOI: 10.1038/s41467-018-05923-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/02/2018] [Indexed: 01/11/2023] Open
Abstract
Co-transcriptional capping of RNA polymerase II (Pol II) transcripts by capping enzyme proceeds orders of magnitude more efficiently than capping of free RNA. Previous studies brought to light a role for the phosphorylated Pol II carboxyl-terminal domain (CTD) in activation of co-transcriptional capping; however, CTD phosphorylation alone could not account for the observed magnitude of activation. Here, we exploit a defined Pol II transcription system that supports both CTD phosphorylation and robust activation of capping to dissect the mechanism of co-transcriptional capping. Taken together, our findings identify a CTD-independent, but Pol II-mediated, mechanism that functions in parallel with CTD-dependent processes to ensure optimal capping, and they support a “tethering” model for the mechanism of activation. The co-transcriptional capping of transcripts synthesized by RNA Pol II is substantially more efficient than capping of free RNA, a process that has been shown to depend on CTD phosphorylation. Here the authors demonstrate that a CTD-independent mechanism functions in parallel with CTD-dependent processes to ensure efficient capping.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA.,Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Sweta K, Dabas P, Jain K, Sharma N. The amino-terminal domain of ELL transcription elongation factor is essential for ELL function in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2017; 163:1641-1653. [PMID: 29043956 DOI: 10.1099/mic.0.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional elongation is a critical step for regulating expression of protein-coding genes. Multiple transcription elongation factors have been identified in vitro, but the physiological roles of many of them are still not clearly understood. The ELL (Eleven nineteen Lysine rich Leukemia) family of transcription elongation factors are conserved from fission yeast to humans. Schizosaccharomyces pombe contains a single ELL homolog (SpELL) that is not essential for its survival. Therefore to gain insights into the in vivo cellular functions of SpELL, we identified phenotypes associated with deletion of ell1 in S. pombe. Our results demonstrate that SpELL is required for normal growth of S. pombe cells. Furthermore, cells lacking ell1+ exhibit a decrease in survival when exposed to DNA-damaging conditions, but their growth is not affected under environmental stress conditions. ELL orthologs in different organisms contain three conserved domains, an amino-terminal domain, a middle domain and a carboxyl-terminal domain. We also carried out an in vivo functional mapping of these conserved domains within S. pombe ELL and uncovered a critical role for its amino-terminus in regulating all its cellular functions, including growth under different conditions, transcriptional elongation potential and interaction with S. pombe EAF. Taken together our results suggest that the domain organization of ELL proteins is conserved across species, but the in vivo functions as well as the relationship between the various domains and roles of ELL show species-specific differences.
Collapse
Affiliation(s)
- Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Kamal Jain
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| |
Collapse
|
10
|
Dabas P, Sweta K, Ekka M, Sharma N. Structure function characterization of the ELL Associated Factor (EAF) from Schizosaccharomyces pombe. Gene 2017; 641:117-128. [PMID: 29032152 DOI: 10.1016/j.gene.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023]
Abstract
EAF (ELL Associated Factor) proteins interact with the transcription elongation factor, ELL (Eleven nineteen Lysine rich Leukemia) and enhance its ability to stimulate RNA polymerase II-mediated transcriptional elongation in vitro. Schizosaccharomyces pombe contains a single homolog of EAF (SpEAF), which is not essential for survival of S. pombe in contrast to its essential higher eukaryotic homologs. The physiological role of SpEAF is not well understood. In this study, we show that S. pombe EAF is important in regulating growth of S. pombe cells during normal growth conditions. Moreover, SpEAF is also essential for survival under conditions of DNA damage, while its deletion does not affect growth under environmental stress conditions. Our in vivo structure-function studies further demonstrate that while both the amino and carboxyl terminal domains of SpEAF possess the potential to activate transcription, only the amino terminal domain of SpEAF is involved in interaction with the S. pombe ELL protein. The carboxyl-terminus of SpEAF is required for rescue of the growth defect under normal and DNA damaging conditions that is associated with the absence of SpEAF. Using bioinformatics and circular dichroism spectroscopy, we show that the carboxyl-terminus of SpEAF has a disordered conformation. Furthermore, addition of trifluoroethanol triggered its transition from a disordered to α-helical conformation. Taken together, the results presented here identify novel structural and functional features of SpEAF protein, providing insights into how EAF proteins may enforce transcriptional control of gene expression.
Collapse
Affiliation(s)
- Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Mary Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Opp. Sukhdev Vihar Bus Depot, New Delhi, Delhi 110025, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India.
| |
Collapse
|
11
|
Sharma N. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease. IUBMB Life 2016; 68:709-16. [DOI: 10.1002/iub.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University; Dwarka New Delhi 110078 India
| |
Collapse
|
12
|
Knutson BA, Smith ML, Walker-Kopp N, Xu X. Super elongation complex contains a TFIIF-related subcomplex. Transcription 2016; 7:133-40. [PMID: 27223670 DOI: 10.1080/21541264.2016.1194027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Super elongation complex (SEC) belongs to a family of RNA polymerase II (Pol II) elongation factors that has similar properties as TFIIF, a general transcription factor that increases the transcription elongation rate by reducing pausing. Although SEC has TFIIF-like functional properties, it apparently lacks sequence and structural homology. Using HHpred, we find that SEC contains an evolutionarily related TFIIF-like subcomplex. We show that the SEC subunit ELL interacts with the Pol II Rbp2 subunit, as expected for a TFIIF-like factor. These findings suggest a new model for how SEC functions as a Pol II elongation factor and how it suppresses Pol II pausing.
Collapse
Affiliation(s)
- Bruce A Knutson
- a Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University , Syracuse , NY , USA
| | - Marissa L Smith
- a Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University , Syracuse , NY , USA
| | - Nancy Walker-Kopp
- a Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University , Syracuse , NY , USA
| | - Xia Xu
- a Department of Biochemistry and Molecular Biology , SUNY Upstate Medical University , Syracuse , NY , USA
| |
Collapse
|
13
|
Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH. Global regulation of heterochromatin spreading by Leo1. Open Biol 2016; 5:rsob.150045. [PMID: 25972440 PMCID: PMC4450266 DOI: 10.1098/rsob.150045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterochromatin plays important roles in eukaryotic genome regulation. However, the repressive nature of heterochromatin combined with its propensity to self-propagate necessitates robust mechanisms to contain heterochromatin within defined boundaries and thus prevent silencing of expressed genes. Here we show that loss of the PAF complex (PAFc) component Leo1 compromises chromatin boundaries, resulting in invasion of heterochromatin into flanking euchromatin domains. Similar effects are seen upon deletion of other PAFc components, but not other factors with related functions in transcription-associated chromatin modification, indicating a specific role for PAFc in heterochromatin regulation. Loss of Leo1 results in reduced levels of H4K16 acetylation at boundary regions, while tethering of the H4K16 acetyltransferase Mst1 to boundary chromatin suppresses heterochromatin spreading in leo1Δ cells, suggesting that Leo1 antagonises heterochromatin spreading by promoting H4K16 acetylation. Our findings reveal a previously undescribed role for PAFc in regulating global heterochromatin distribution.
Collapse
Affiliation(s)
- Laure Verrier
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Ramon R Barrales
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sigurd Braun
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
14
|
Zhou H, Liu Q, Shi T, Yu Y, Lu H. Genome-wide screen of fission yeast mutants for sensitivity to 6-azauracil, an inhibitor of transcriptional elongation. Yeast 2015; 32:643-55. [DOI: 10.1002/yea.3085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Qi Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Tianfang Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
15
|
Wong WC, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation. BMC Bioinformatics 2014; 15:166. [PMID: 24890864 PMCID: PMC4061105 DOI: 10.1186/1471-2105-15-166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/27/2014] [Indexed: 02/01/2023] Open
Abstract
Background Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. Results The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt. Conclusions Sequence similarity core dissection with regard to fold-critical and other contributions systematically suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between aquaporins and formate/nitrite transporters that, so far, was only supported by structure comparison.
Collapse
Affiliation(s)
- Wing-Cheong Wong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| | | | | | | |
Collapse
|
16
|
Banks CA, Kong SE, Washburn MP. Affinity purification of protein complexes for analysis by multidimensional protein identification technology. Protein Expr Purif 2012; 86:105-19. [DOI: 10.1016/j.pep.2012.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/10/2012] [Accepted: 09/17/2012] [Indexed: 12/23/2022]
|
17
|
Cai L, Phong BL, Fisher AL, Wang Z. Regulation of fertility, survival, and cuticle collagen function by the Caenorhabditis elegans eaf-1 and ell-1 genes. J Biol Chem 2011; 286:35915-35921. [PMID: 21880729 DOI: 10.1074/jbc.m111.270454] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
EAF2, an androgen-regulated protein, interacts with members of the ELL (eleven-nineteen lysine-rich leukemia) transcription factor family and also acts as a tumor suppressor. Although these proteins control transcriptional elongation and perhaps modulate the effects of other transcription factors, the mechanisms of their actions remain largely unknown. To gain new insights into the biology of the EAF2 and ELL family proteins, we used Caenorhabditis elegans as a model to explore the in vivo roles of their worm orthologs. Through the use of transgenic worms, RNAi, and an eaf-1 mutant, we found that both genes are expressed in multiple cell types throughout the worm life cycle and that they play important roles in fertility, survival, and body size regulation. ELL-1 and EAF-1 likely contribute to these activities in part through modulating cuticle synthesis, given that we observed a disrupted cuticle structure in ell-1 RNAi-treated or eaf-1 mutant worms. Consistent with disruption of cuticle structure, loss of either ELL-1 or EAF-1 suppressed the rol phenotype of specific collagen mutants, possibly through the control of dpy-3, dpy-13, and sqt-3 collagen gene expression. Furthermore, we also noted the regulation of collagen expression by ELL overexpression in PC3 human prostate cancer cells. Together, these results reveal important roles for the eaf-1 and ell-1 genes in the regulation of extracellular matrix components.
Collapse
Affiliation(s)
- Liquan Cai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| | - Binh L Phong
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| | - Alfred L Fisher
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| | - Zhou Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania 15232.
| |
Collapse
|
18
|
Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CAS, Kong SE, Szutorisz H, Swanson SK, Martin-Brown S, Washburn MP, Florens L, Seidel CW, Lin C, Smith ER, Shilatifard A, Conaway RC, Conaway JW. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 2011; 146:92-104. [PMID: 21729782 DOI: 10.1016/j.cell.2011.06.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/15/2011] [Accepted: 06/03/2011] [Indexed: 01/13/2023]
Abstract
Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.
Collapse
|
19
|
Spåhr H, Calero G, Bushnell DA, Kornberg RD. Schizosacharomyces pombe RNA polymerase II at 3.6-A resolution. Proc Natl Acad Sci U S A 2009; 106:9185-90. [PMID: 19458260 PMCID: PMC2684843 DOI: 10.1073/pnas.0903361106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Indexed: 01/22/2023] Open
Abstract
The second structure of a eukaryotic RNA polymerase II so far determined, that of the enzyme from the fission yeast Schizosaccharomyces pombe, is reported here. Comparison with the previous structure of the enzyme from the budding yeast Saccharomyces cerevisiae reveals differences in regions implicated in start site selection and transcription factor interaction. These aspects of the transcription mechanism differ between S. pombe and S. cerevisiae, but are conserved between S. pombe and humans. Amino acid changes apparently responsible for the structural differences are also conserved between S. pombe and humans, suggesting that the S. pombe structure may be a good surrogate for that of the human enzyme.
Collapse
Affiliation(s)
- Henrik Spåhr
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Guillermo Calero
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - David A. Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Roger D. Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
20
|
Mosley AL, Pattenden SG, Carey M, Venkatesh S, Gilmore JM, Florens L, Workman JL, Washburn MP. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 2009; 34:168-78. [PMID: 19394294 PMCID: PMC2996052 DOI: 10.1016/j.molcel.2009.02.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 02/03/2009] [Accepted: 02/23/2009] [Indexed: 11/16/2022]
Abstract
Messenger RNA processing is coupled to RNA polymerase II (RNAPII) transcription through coordinated recruitment of accessory proteins to the Rpb1 C-terminal domain (CTD). Dynamic changes in CTD phosphorylation during transcription elongation are responsible for their recruitment, with serine 5 phosphorylation (S5-P) occurring toward the 5' end of genes and serine 2 phosphorylation (S2-P) occurring toward the 3' end. The proteins responsible for regulation of the transition state between S5-P and S2-P CTD remain elusive. We show that a conserved protein of unknown function, Rtr1, localizes within coding regions, with maximum levels of enrichment occurring between the peaks of S5-P and S2-P RNAPII. Upon deletion of Rtr1, the S5-P form of RNAPII accumulates in both whole-cell extracts and throughout coding regions; additionally, RNAPII transcription is decreased, and termination defects are observed. Functional characterization of Rtr1 reveals its role as a CTD phosphatase essential for the S5-to-S2-P transition.
Collapse
Affiliation(s)
- Amber L. Mosley
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
| | | | - Michael Carey
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA 10833 LeConte Ave Los Angeles, CA 90095 U.S.A
| | | | | | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A
| | | |
Collapse
|
21
|
Regulation of the transcriptional activity of poised RNA polymerase II by the elongation factor ELL. Proc Natl Acad Sci U S A 2008; 105:8575-9. [PMID: 18562276 DOI: 10.1073/pnas.0804379105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many developmentally regulated genes contain a poised RNA polymerase II (Pol II) at their promoters under conditions where full-length transcripts are undetectable. It has been proposed that the transcriptional activity of such promoters is regulated at the elongation stage of Pol II transcription. In Drosophila, the heat-shock loci expressing the Hsp70 genes have been used as a model for the regulation of the transcriptional activity of poised Pol II. Drosophila ELL (dELL) is a Pol II elongation factor capable of stimulating the rate of transcription both in vivo and in vitro. Although ELL and the elongation factor Elongin A have indistinguishable effects on RNA polymerase in vitro, the loss-of-function studies indicate that these proteins are not redundant in vivo. In this article, we use RNAi to investigate the physiological properties of dELL and a dELL-associated factor (dEaf) in a living organism. Both ELL and Eaf are essential for fly development. dELL is recruited to heat shock loci upon induction, and its presence with Pol II at such loci is required for proper heat-shock gene expression. Consistent with a role in elongation, dELL knockdown reduces the levels of phosphorylated Pol II at heat-shock loci. This study implicates dELL in the expression of loci regulated by Pol II elongation.
Collapse
|
22
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|