1
|
Gross M, Romi H, Gilimovich Y, Drori E, Pinhasov A. Placental glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 recruitment indicates impact of prenatal adversity upon postnatal development in mice. Stress 2018; 21:474-483. [PMID: 29648494 DOI: 10.1080/10253890.2018.1460660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prenatal stress may increase concentrations of maternal glucocorticoids, which restrict fetal growth, with variable impact upon postnatal development. Among key regulators of stress hormone effects are the glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase-2 (11βHSD2), the enzyme that inactivates glucocorticoid. This study utilized mice selectively bred for social dominance (Dom) or submissiveness (Sub), respectively exhibiting resilience or sensitivity to stress, to test whether stress-induced alterations in placental GR and 11βHSD2 protein expression may mediate divergent effects of prenatal adversity upon postnatal development. Pregnant Dom and Sub dams underwent prenatal restraint stress (PRS) for 45 min on gestational days (GD) 15-17. PRS induced a similar spike in serum corticosterone concentrations of dams from each strain on GD15 (p < .001, n = 8), and impaired fetal growth (p < .01, n = 5 litters), although Dom placentae were larger than Sub placentae (p < .01). Among placentae from Dom dams, PRS elevated protein contents of both GR (p < .05, n = 5 litters) and 11βHSD2 (p < .01) on GD19. In contrast, GR contents were reduced among placentae from PRS-exposed Sub mice (p < .01), without changes in 11βHSD2 content. Correspondingly, Dom PRS pup growth recovered by PND14, yet Sub PRS pups remained underweight into adolescence (p < .0001, n = 40 pups). Thus, prenatal stress more strongly increased placental GR and 11βHSD2 levels among Dom mice than in Subs. Increased GR may improve placental function and up-regulate 11βHSD2 expression, protecting fetuses from effects of prenatal stress upon postnatal development. Placental recruitment of GR and 11βHSD2 are potential markers of stress-induced developmental disorders, in accordance with maternal resilience or sensitivity to stress.
Collapse
Affiliation(s)
- Moshe Gross
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Hava Romi
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Elyashiv Drori
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, Israel
- Agriculture and Oenology Research Department, Eastern R&D center, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Abstract
Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. The degree to which the arrangement of motif sites within regulatory elements determines their function remains unclear. Here, we show that the positional distribution of TF motif sites within nucleosome-depleted regions of DNA fall into six distinct classes. These patterns are highly consistent across cell types and bring together factors that have similar functional and binding properties. Furthermore, the position of motif sites appears to be related to their known functions. Our results suggest that TFs play distinct roles in forming a functional enhancer, facilitated by their position within a regulatory sequence. Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers.
Collapse
|
3
|
Kreimer A, Zeng H, Edwards MD, Guo Y, Tian K, Shin S, Welch R, Wainberg M, Mohan R, Sinnott-Armstrong NA, Li Y, Eraslan G, AMIN TB, Goke J, Mueller NS, Kellis M, Kundaje A, Beer MA, Keles S, Gifford DK, Yosef N. Predicting gene expression in massively parallel reporter assays: A comparative study. Hum Mutat 2017; 38:1240-1250. [PMID: 28220625 PMCID: PMC5560998 DOI: 10.1002/humu.23197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/19/2017] [Accepted: 02/12/2017] [Indexed: 02/03/2023]
Abstract
In many human diseases, associated genetic changes tend to occur within noncoding regions, whose effect might be related to transcriptional control. A central goal in human genetics is to understand the function of such noncoding regions: given a region that is statistically associated with changes in gene expression (expression quantitative trait locus [eQTL]), does it in fact play a regulatory role? And if so, how is this role "coded" in its sequence? These questions were the subject of the Critical Assessment of Genome Interpretation eQTL challenge. Participants were given a set of sequences that flank eQTLs in humans and were asked to predict whether these are capable of regulating transcription (as evaluated by massively parallel reporter assays), and whether this capability changes between alternative alleles. Here, we report lessons learned from this community effort. By inspecting predictive properties in isolation, and conducting meta-analysis over the competing methods, we find that using chromatin accessibility and transcription factor binding as features in an ensemble of classifiers or regression models leads to the most accurate results. We then characterize the loci that are harder to predict, putting the spotlight on areas of weakness, which we expect to be the subject of future studies.
Collapse
Affiliation(s)
- Anat Kreimer
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Haoyang Zeng
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Matthew D. Edwards
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kevin Tian
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sunyoung Shin
- Department of Statistics, Department of Biostatistics and Medical Informatics University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rene Welch
- Department of Statistics, Department of Biostatistics and Medical Informatics University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Wainberg
- Department of Genetics, Stanford University School of Medicine, Department of Computer Science, Stanford, California 94305, USA
| | - Rahul Mohan
- Department of Genetics, Stanford University School of Medicine, Department of Computer Science, Stanford, California 94305, USA
| | - Nicholas A. Sinnott-Armstrong
- Department of Genetics, Stanford University School of Medicine, Department of Computer Science, Stanford, California 94305, USA
| | - Yue Li
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA
| | - Gökcen Eraslan
- Computational Cell Maps, Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1 85764 Neuherberg, Germany
| | - Talal Bin AMIN
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Jonathan Goke
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Nikola S. Mueller
- Computational Cell Maps, Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1 85764 Neuherberg, Germany
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Department of Computer Science, Stanford, California 94305, USA
| | - Michael A Beer
- McKusick-Nathans Institute of Genetic Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sunduz Keles
- Department of Statistics, Department of Biostatistics and Medical Informatics University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, 02139
| |
Collapse
|
4
|
Pooley JR, Flynn BP, Grøntved L, Baek S, Guertin MJ, Kershaw YM, Birnie MT, Pellatt A, Rivers CA, Schiltz RL, Hager GL, Lightman SL, Conway-Campbell BL. Genome-Wide Identification of Basic Helix-Loop-Helix and NF-1 Motifs Underlying GR Binding Sites in Male Rat Hippocampus. Endocrinology 2017; 158:1486-1501. [PMID: 28200020 PMCID: PMC5460825 DOI: 10.1210/en.2016-1929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
Glucocorticoids regulate hippocampal function in part by modulating gene expression through the glucocorticoid receptor (GR). GR binding is highly cell type specific, directed to accessible chromatin regions established during tissue differentiation. Distinct classes of GR binding sites are dependent on the activity of additional signal-activated transcription factors that prime chromatin toward context-specific organization. We hypothesized a stress context dependency for GR binding in hippocampus as a consequence of rapidly induced stress mediators priming chromatin accessibility. Using chromatin immunoprecipitation sequencing to interrogate GR binding, we found no effect of restraint stress context on GR binding, although analysis of sequences underlying GR binding sites revealed mechanistic detail for hippocampal GR function. We note enrichment of GR binding sites proximal to genes linked to structural and organizational roles, an absence of major tethering partners for GRs, and little or no evidence for binding at negative glucocorticoid response elements. A basic helix-loop-helix motif closely resembling a NeuroD1 or Olig2 binding site was found underlying a subset of GR binding sites and is proposed as a candidate lineage-determining transcription factor directing hippocampal chromatin access for GRs. Of our GR binding sites, 54% additionally contained half-sites for nuclear factor (NF)-1 that we propose as a collaborative or general transcription factor involved in hippocampal GR function. Our findings imply a dose-dependent and context-independent action of GRs in the hippocampus. Alterations in the expression or activity of NF-1/basic helix-loop-helix factors may play an as yet undetermined role in glucocorticoid-related disease susceptibility and outcome by altering GR access to hippocampal binding sites.
Collapse
Affiliation(s)
- John R. Pooley
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Ben P. Flynn
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Songjoon Baek
- Laboratory for Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael J. Guertin
- University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Matthew T. Birnie
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Annie Pellatt
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Caroline A. Rivers
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - R. Louis Schiltz
- Laboratory for Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Gordon L. Hager
- Laboratory for Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Becky L. Conway-Campbell
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| |
Collapse
|
5
|
Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, Ahituv N, Shendure J. A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Res 2016; 27:38-52. [PMID: 27831498 PMCID: PMC5204343 DOI: 10.1101/gr.212092.116] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
Abstract
Candidate enhancers can be identified on the basis of chromatin modifications, the binding of chromatin modifiers and transcription factors and cofactors, or chromatin accessibility. However, validating such candidates as bona fide enhancers requires functional characterization, typically achieved through reporter assays that test whether a sequence can increase expression of a transcriptional reporter via a minimal promoter. A longstanding concern is that reporter assays are mainly implemented on episomes, which are thought to lack physiological chromatin. However, the magnitude and determinants of differences in cis-regulation for regulatory sequences residing in episomes versus chromosomes remain almost completely unknown. To address this systematically, we developed and applied a novel lentivirus-based massively parallel reporter assay (lentiMPRA) to directly compare the functional activities of 2236 candidate liver enhancers in an episomal versus a chromosomally integrated context. We find that the activities of chromosomally integrated sequences are substantially different from the activities of the identical sequences assayed on episomes, and furthermore are correlated with different subsets of ENCODE annotations. The results of chromosomally based reporter assays are also more reproducible and more strongly predictable by both ENCODE annotations and sequence-based models. With a linear model that combines chromatin annotations and sequence information, we achieve a Pearson's R2 of 0.362 for predicting the results of chromosomally integrated reporter assays. This level of prediction is better than with either chromatin annotations or sequence information alone and also outperforms predictive models of episomal assays. Our results have broad implications for how cis-regulatory elements are identified, prioritized and functionally validated.
Collapse
Affiliation(s)
- Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela M Witten
- Departments of Statistics and Biostatistics, University of Washington, Seattle, Washington 98195, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, California 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| |
Collapse
|
6
|
Singhal H, Greene ME, Tarulli G, Zarnke AL, Bourgo RJ, Laine M, Chang YF, Ma S, Dembo AG, Raj GV, Hickey TE, Tilley WD, Greene GL. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer. SCIENCE ADVANCES 2016; 2:e1501924. [PMID: 27386569 PMCID: PMC4928895 DOI: 10.1126/sciadv.1501924] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/31/2016] [Indexed: 05/17/2023]
Abstract
The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored.
Collapse
Affiliation(s)
- Hari Singhal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Marianne E. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Gerard Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Allison L. Zarnke
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ryan J. Bourgo
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Muriel Laine
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ya-Fang Chang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Shihong Ma
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75080, USA
| | - Anna G. Dembo
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ganesh V. Raj
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75080, USA
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Singh P, Brock CO, Volden PA, Hernandez K, Skor M, Kocherginsky M, Park JE, Brady MJ, Conzen SD. Glucocorticoid receptor ChIP-sequencing of subcutaneous fat reveals modulation of inflammatory pathways. Obesity (Silver Spring) 2015; 23:2286-93. [PMID: 26408078 PMCID: PMC4818951 DOI: 10.1002/oby.21251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To identify glucocorticoid receptor (GR)-associated chromatin sequences and target genes in primary human abdominal subcutaneous fat. METHODS GR chromatin immunoprecipitation (ChIP)-sequencing (seq) methodology in subcutaneous human adipocytes treated ex vivo with dexamethasone (dex) was optimized to identify genome-wide dex-dependent GR-binding regions (GBRs). Gene expression analyses were performed in parallel ± dex treatment. RESULTS Fat was obtained from four female surgical patients without obesity with a median age of 50.5 years. ChIP-seq analysis revealed 219 dex-associated GBRs. Of these, 136 GBRs were located within 100 kb of the transcriptional start site and associated with 123 genes. Combining these data with dex-induced gene expression, 70 of the 123 putative direct target genes were significantly up- or downregulated following 4 hours of dex treatment. Gene expression analysis demonstrated that the top 10 pathways reflected regulation of cellular metabolism and inflammation. DEPTOR, an inhibitor of mTOR, was identified as a potential direct GR target gene. CONCLUSIONS This is the first report of genome-wide GR ChIP-seq and gene expression analysis in human fat. The results implicate regulation of key GR target genes that are involved in dampening inflammation and promoting cellular metabolism.
Collapse
Affiliation(s)
- Puneet Singh
- Department of Surgery, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Clifton O. Brock
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Paul A. Volden
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
| | - Kyle Hernandez
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Maxwell Skor
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Julie E. Park
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Matthew J. Brady
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- To whom correspondence should be addressed: Suzanne D. Conzen and/or, Mathew J. Brady, Department of Medicine, The University of Chicago, 900 East 59 Street, Chicago, IL 60637 USA, ,
| | - Suzanne D. Conzen
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
- To whom correspondence should be addressed: Suzanne D. Conzen and/or, Mathew J. Brady, Department of Medicine, The University of Chicago, 900 East 59 Street, Chicago, IL 60637 USA, ,
| |
Collapse
|
8
|
Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86. Mol Cell Biol 2015; 35:2799-817. [PMID: 26055322 DOI: 10.1128/mcb.00230-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIβ (TOP2β)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2β/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2β-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2β activity to enhance the transcriptional response to hormone stimulation.
Collapse
|
9
|
Bagamasbad PD, Bonett RM, Sachs L, Buisine N, Raj S, Knoedler JR, Kyono Y, Ruan Y, Ruan X, Denver RJ. Deciphering the regulatory logic of an ancient, ultraconserved nuclear receptor enhancer module. Mol Endocrinol 2015; 29:856-72. [PMID: 25866873 DOI: 10.1210/me.2014-1349] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5-6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection.
Collapse
Affiliation(s)
- Pia D Bagamasbad
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Ronald M Bonett
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Laurent Sachs
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Nicolas Buisine
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Joseph R Knoedler
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Yasuhiro Kyono
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Yijun Ruan
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Xiaoan Ruan
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
10
|
J. Grant D, A. Shakes L, M. Wolf H, C. Norford D, K. Chatterjee P. Exploring function of conserved non-coding DNA in its chromosomal context. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Romagnolo DF, Zempleni J, Selmin OI. Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention. Adv Nutr 2014; 5:373-85. [PMID: 25022987 PMCID: PMC4085186 DOI: 10.3945/an.114.005868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Posttranslational modifications of histones, alterations in the recruitment and functions of non-histone proteins, DNA methylation, and changes in expression of noncoding RNAs contribute to current models of epigenetic regulation. Nuclear receptors (NRs) are a group of transcription factors that, through ligand-binding, act as sensors to changes in nutritional, environmental, developmental, pathophysiologic, and endocrine conditions and drive adaptive responses via gene regulation. One mechanism through which NRs direct gene expression is the assembly of transcription complexes with cofactors and coregulators that possess chromatin-modifying properties. Chromatin modifications can be transient or become part of the cellular "memory" and contribute to genomic imprinting. Because many food components bind to NRs, they can ultimately influence transcription of genes associated with biologic processes, such as inflammation, proliferation, apoptosis, and hormonal response, and alter the susceptibility to chronic diseases (e.g., cancer, diabetes, obesity). The objective of this review is to highlight how NRs influence epigenetic regulation and the relevance of dietary compound-NR interactions in human nutrition and for disease prevention and treatment. Identifying gene targets of unliganded and bound NRs may assist in the development of epigenetic maps for food components and dietary patterns. Progress in these areas may lead to the formulation of disease-prevention models based on epigenetic control by individual or associations of food ligands of NRs.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, AZ; and
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ornella I Selmin
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, AZ; and
| |
Collapse
|
12
|
Burd CJ, Archer TK. Chromatin architecture defines the glucocorticoid response. Mol Cell Endocrinol 2013; 380:25-31. [PMID: 23545159 PMCID: PMC3762934 DOI: 10.1016/j.mce.2013.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 01/10/2023]
Abstract
The glucocorticoid receptor (GR) functions to regulate a wide group of physiological processes through hormone inducible interaction with genomic loci and subsequent manipulation of the transcriptional output of target genes. Despite expression in a wide variety of tissues, the GR has diverse roles that are regulated tightly in a cell type specific manner. With the advent of whole genome approaches, the details of that diversity and the mechanisms regulating them are beginning to be elucidated. This review aims describe the recent advances detailing the role chromatin structure plays in dictating GR specificity.
Collapse
Affiliation(s)
- Craig J Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States.
| | | |
Collapse
|
13
|
Chatterjee PK, Shakes LA, Wolf HM, Mujalled MA, Zhou C, Hatcher C, Norford DC. Identifying Distal cis-acting Gene-Regulatory Sequences by Expressing BACs Functionalized with loxP-Tn10 Transposons in Zebrafish. RSC Adv 2013; 3:8604-8617. [PMID: 24772295 DOI: 10.1039/c3ra40332g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial Artificial Chromosomes (BACs) are large pieces of DNA from the chromosomes of organisms propagated faithfully in bacteria as large extra-chromosomal plasmids. Expression of genes contained in BACs can be monitored after functionalizing the BAC DNA with reporter genes and other sequences that allow stable maintenance and propagation of the DNA in the new host organism. The DNA in BACs can be altered within its bacterial host in several ways. Here we discuss one such approach, using Tn10 mini-transposons, to introduce exogenous sequences into BACs for a variety of purposes. The largely random insertions of Tn10 transposons carrying lox sites have been used to position mammalian cell-selectable antibiotic resistance genes, enhancer-traps and inverted repeat ends of the vertebrate transposon Tol2 precisely at the ends of the genomic DNA insert in BACs. These modified BACs are suitable for expression in zebrafish or mouse, and have been used to functionally identify important long-range gene regulatory sequences in both species. Enhancer-trapping using BACs should prove uniquely useful in analyzing multiple discontinuous DNA domains that act in concert to regulate expression of a gene, and is not limited by genome accessibility issues of traditional enhancer-trapping methods.
Collapse
Affiliation(s)
- Pradeep K Chatterjee
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Leighcraft A Shakes
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Hope M Wolf
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Mohammad A Mujalled
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Constance Zhou
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Charles Hatcher
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Derek C Norford
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| |
Collapse
|
14
|
Pjanic M, Schmid CD, Gaussin A, Ambrosini G, Adamcik J, Pjanic P, Plasari G, Kerschgens J, Dietler G, Bucher P, Mermod N. Nuclear Factor I genomic binding associates with chromatin boundaries. BMC Genomics 2013; 14:99. [PMID: 23402308 PMCID: PMC3610271 DOI: 10.1186/1471-2164-14-99] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/26/2013] [Indexed: 12/20/2022] Open
Abstract
Background The Nuclear Factor I (NFI) family of DNA binding proteins (also called CCAAT box transcription factors or CTF) is involved in both DNA replication and gene expression regulation. Using chromatin immuno-precipitation and high throughput sequencing (ChIP-Seq), we performed a genome-wide mapping of NFI DNA binding sites in primary mouse embryonic fibroblasts. Results We found that in vivo and in vitro NFI DNA binding specificities are indistinguishable, as in vivo ChIP-Seq NFI binding sites matched predictions based on previously established position weight matrix models of its in vitro binding specificity. Combining ChIP-Seq with mRNA profiling data, we found that NFI preferentially associates with highly expressed genes that it up-regulates, while binding sites were under-represented at expressed but unregulated genes. Genomic binding also correlated with markers of transcribed genes such as histone modifications H3K4me3 and H3K36me3, even outside of annotated transcribed loci, implying NFI in the control of the deposition of these modifications. Positional correlation between + and - strand ChIP-Seq tags revealed that, in contrast to other transcription factors, NFI associates with a nucleosomal length of cleavage-resistant DNA, suggesting an interaction with positioned nucleosomes. In addition, NFI binding prominently occurred at boundaries displaying discontinuities in histone modifications specific of expressed and silent chromatin, such as loci submitted to parental allele-specific imprinted expression. Conclusions Our data thus suggest that NFI nucleosomal interaction may contribute to the partitioning of distinct chromatin domains and to epigenetic gene expression regulation. NFI ChIP-Seq and input control DNA data were deposited at Gene Expression Omnibus (GEO) repository under accession number GSE15844. Gene expression microarray data for mouse embryonic fibroblasts are on GEO accession number GSE15871.
Collapse
Affiliation(s)
- Milos Pjanic
- Institute of Biotechnology and Center for Biotecghnology UNIL-EPFL, University of Lausanne, 1015, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Steroid hormone receptors initiate a genetic program tightly regulated by the chromatin environment of the responsive regions. Using the glucocorticoid receptor (GR) as a model factor for transcriptional initiation, we classified chromatin structure through formaldehyde-assisted isolation of regulatory elements (FAIRE). We looked at dynamic changes in FAIRE signals during GR activation specifically at regions of receptor interaction. We found a distribution of GR-responsive regions with diverse responses to activation and chromatin modulation. The majority of GR binding regions demonstrate increases in FAIRE signal in response to ligand. However, the majority GR-responsive regions shared a similar FAIRE signal in the basal chromatin state, suggesting a common chromatin structure for GR recruitment. Supporting this notion, global FAIRE sequencing (seq) data indicated an enrichment of signal surrounding the GR binding site prior to activation. Brg-1 knockdown showed response element-specific effects of ATPase-dependent chromatin remodeling. FAIRE induction was universally decreased by Brg-1 depletion, but to varying degrees in a target specific manner. Taken together, these data suggest classes of nuclear receptor response regions that react to activation through different chromatin regulatory events and identify a chromatin structure that classifies the majority of response elements tested.
Collapse
|
16
|
Hierarchical cooperativity mediated by chromatin remodeling; the model of the MMTV transcription regulation. J Theor Biol 2011; 287:74-81. [DOI: 10.1016/j.jtbi.2011.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 01/08/2023]
|
17
|
Pan D, Kocherginsky M, Conzen SD. Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 2011; 71:6360-70. [PMID: 21868756 DOI: 10.1158/0008-5472.can-11-0362] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen receptor-negative (ER(-)) breast cancers have limited treatment options and are associated with earlier relapses. Because glucocorticoid receptor (GR) signaling initiates antiapoptotic pathways in ER(-) breast cancer cells, we hypothesized that activation of these pathways might be associated with poor prognosis in ER(-) disease. Here we report findings from a genome-wide study of GR transcriptional targets in a premalignant ER(-) cell line model of early breast cancer (MCF10A-Myc) and in primary early-stage ER(-) human tumors. Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) coupled to time-course expression profiling led us to identify epithelial-to-mesenchymal transition (EMT) pathways as an important aspect associated with GR activation. We validated these findings by carrying out a meta-analysis of primary breast tumor gene expression from 1,378 early-stage breast cancer patients with long-term clinical follow-up, confirming that high levels of GR expression significantly correlated with shorter relapse-free survival in ER(-) patients who were treated or untreated with adjuvant chemotherapy. Notably, in ER(+) breast cancer patients, high levels of GR expression in tumors were significantly associated with better outcome relative to low levels of GR expression. Gene expression analysis revealed that ER(-) tumors expressing high GR levels exhibited differential activation of EMT, cell adhesion, and inflammation pathways. Our findings suggest a direct transcriptional role for GR in determining the outcome of poor-prognosis ER(-) breast cancers.
Collapse
Affiliation(s)
- Deng Pan
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
18
|
Pham CD, Sims HI, Archer TK, Schnitzler GR. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters. PLoS One 2011; 6:e23490. [PMID: 21853138 PMCID: PMC3154950 DOI: 10.1371/journal.pone.0023490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/18/2011] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes can block access to transcription factors. Thus the precise localization of nucleosomes relative to transcription start sites and other factor binding sites is expected to be a critical component of transcriptional regulation. Recently developed microarray approaches have allowed the rapid mapping of nucleosome positions over hundreds of kilobases (kb) of human genomic DNA, although these approaches have not yet been widely used to measure chromatin changes associated with changes in transcription. Here, we use custom tiling microarrays to reveal changes in nucleosome positions and abundance that occur when hormone-bound glucocorticoid receptor (GR) binds to sites near target gene promoters in human osteosarcoma cells. The most striking change is an increase in measured nucleosome occupancy at sites spanning ∼1 kb upstream and downstream of transcription start sites, which occurs one hour after addition of hormone, but is lost at 4 hours. Unexpectedly, this increase was seen both on GR-regulated and GR-non-regulated genes. In addition, the human SWI/SNF chromatin remodeling factor (a GR co-activator) was found to be important for increased occupancy upon hormone treatment and also for low nucleosome occupancy without hormone. Most surprisingly, similar increases in nucleosome occupancy were also seen on both regulated and non-regulated promoters during differentiation of human myeloid leukemia cells and upon activation of human CD4+ T-cells. These results indicate that dramatic changes in chromatin structure over ∼2 kb of human promoters may occur genomewide and in response to a variety of stimuli, and suggest novel models for transcriptional regulation.
Collapse
Affiliation(s)
- Chuong D. Pham
- AstraZeneca R&D Boston, Waltham, Massachusetts, United States of America
| | - Hillel I. Sims
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Trevor K. Archer
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Gavin R. Schnitzler
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Michel D. Basic statistical recipes for the emergence of biochemical discernment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:498-516. [PMID: 21839109 DOI: 10.1016/j.pbiomolbio.2011.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 01/09/2023]
Abstract
An essential step towards understanding life would be to identify the very basic mechanisms responsible for the discerning behaviour of living biochemical systems, absent from randomly reacting chemical soups. One intuitively feels that this question goes beyond the particular nature of the biological molecules and should relate to general physical principles. The pre-eminent physicist Ludwig Boltzmann early envisioned life as a struggle for entropy, in concordance with the subsequent principle of self-organization out of equilibrium. Re-examination of elementary steady state biochemical systems from a statistical perspective supports this view and shows that sigmoidal responses arising from microstates elimination, are sufficient to explain innermost characteristics of life, including its capacity to convert random molecular interactions into accurate biological reactions. A primary operating strategy to achieve this goal is the introduction of time-irreversible transitions in molecular state conversion cycles by injection of free energy, which confers decisional capacity to single macromolecules. Selected examples from various fields of molecular biology such as enzymology and gene expression, are provided to show that these non-equilibrium steady state mechanisms remain important in contemporary biochemical systems. But in addition, information archiving allowed the emergence of the time-reversible counterparts of these mechanisms, mediated by evolutionary pre-organized macromolecular complexes capable of generating discernment in a non-dissipative manner.
Collapse
Affiliation(s)
- Denis Michel
- Université de Rennes1, Molecular and Cellular Interactions UMR6026, Irset. IFR140GFAS, Bat. 13, Campus de Beaulieu, 35042 Rennes Cedex, France.
| |
Collapse
|
20
|
Hsu YC, Osinski J, Campbell CE, Litwack ED, Wang D, Liu S, Bachurski CJ, Gronostajski RM. Mesenchymal nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation. Dev Biol 2011; 354:242-52. [PMID: 21513708 DOI: 10.1016/j.ydbio.2011.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 01/01/2023]
Abstract
The Nuclear factor I (NFI) transcription factor family consists of four genes (Nfia, Nfib, Nfic and Nfix) that regulate the development of multiple organ systems in mice and humans. Nfib is expressed in both lung mesenchyme and epithelium and mice lacking Nfib have severe lung maturation defects and die at birth. Here we continue our analysis of the phenotype of Nfib⁻/⁻ lungs and show that Nfib specifically in lung mesenchyme controls late epithelial and mesenchymal cell proliferation and differentiation. There are more PCNA, BrdU, PHH3 and Ki67 positive cells in Nfib⁻/⁻ lungs than in wild type lungs at E18.5 and this increase in proliferation marker expression is seen in both epithelial and mesenchymal cells. The loss of Nfib in all lung cells decreases the expression of markers for alveolar epithelial cells (Aqp5 and Sftpc), Clara cells (Scgb1a1) and ciliated cells (Foxj1) in E18.5 lungs. To test for a specific role of Nfib in lung mesenchyme we generated and analyzed Nfib(flox/flox), Dermo1-Cre mice. Loss of Nfib only in mesenchyme results in decreased Aqp5, Sftpc and Foxj1 expression, increased cell proliferation, and a defect in sacculation similar to that seen in Nfib⁻/⁻ mice. In contrast, mesenchyme specific loss of Nfib had no effect on the expression of Scgb1a1 in the airway. Microarray and QPCR analyses indicate that the loss of Nfib in lung mesenchyme affects the expression of genes associated with extracellular matrix, cell adhesion and FGF signaling which could affect distal lung maturation. Our data indicate that mesenchymal Nfib regulates both mesenchymal and epithelial cell proliferation through multiple pathways and that mesenchymal NFI-B-mediated signals are essential for the maturation of distal lung epithelium.
Collapse
Affiliation(s)
- Yu-Chih Hsu
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Science, State University of New York at Buffalo, 701 Ellicott St. Buffalo, NY 14203, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li XY, Thomas S, Sabo PJ, Eisen MB, Stamatoyannopoulos JA, Biggin MD. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol 2011; 12:R34. [PMID: 21473766 PMCID: PMC3218860 DOI: 10.1186/gb-2011-12-4-r34] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 04/07/2011] [Indexed: 12/11/2022] Open
Abstract
Background In Drosophila embryos, many biochemically and functionally unrelated transcription factors bind quantitatively to highly overlapping sets of genomic regions, with much of the lowest levels of binding being incidental, non-functional interactions on DNA. The primary biochemical mechanisms that drive these genome-wide occupancy patterns have yet to be established. Results Here we use data resulting from the DNaseI digestion of isolated embryo nuclei to provide a biophysical measure of the degree to which proteins can access different regions of the genome. We show that the in vivo binding patterns of 21 developmental regulators are quantitatively correlated with DNA accessibility in chromatin. Furthermore, we find that levels of factor occupancy in vivo correlate much more with the degree of chromatin accessibility than with occupancy predicted from in vitro affinity measurements using purified protein and naked DNA. Within accessible regions, however, the intrinsic affinity of the factor for DNA does play a role in determining net occupancy, with even weak affinity recognition sites contributing. Finally, we show that programmed changes in chromatin accessibility between different developmental stages correlate with quantitative alterations in factor binding. Conclusions Based on these and other results, we propose a general mechanism to explain the widespread, overlapping DNA binding by animal transcription factors. In this view, transcription factors are expressed at sufficiently high concentrations in cells such that they can occupy their recognition sequences in highly accessible chromatin without the aid of physical cooperative interactions with other proteins, leading to highly overlapping, graded binding of unrelated factors.
Collapse
Affiliation(s)
- Xiao-Yong Li
- Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 84-171, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
22
|
Pjanic M, Pjanic P, Schmid C, Ambrosini G, Gaussin A, Plasari G, Mazza C, Bucher P, Mermod N. Nuclear factor I revealed as family of promoter binding transcription activators. BMC Genomics 2011; 12:181. [PMID: 21473784 PMCID: PMC3082249 DOI: 10.1186/1471-2164-12-181] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 04/07/2011] [Indexed: 12/11/2022] Open
Abstract
Background Multiplex experimental assays coupled to computational predictions are being increasingly employed for the simultaneous analysis of many specimens at the genome scale, which quickly generates very large amounts of data. However, inferring valuable biological information from the comparisons of very large genomic datasets still represents an enormous challenge. Results As a study model, we chose the NFI/CTF family of mammalian transcription factors and we compared the results obtained from a genome-wide study of its binding sites with chromatin structure assays, gene expression microarray data, and in silico binding site predictions. We found that NFI/CTF family members preferentially bind their DNA target sites when they are located around transcription start sites when compared to control datasets generated from the random subsampling of the complete set of NFI binding sites. NFI proteins preferably associate with the upstream regions of genes that are highly expressed and that are enriched in active chromatin modifications such as H3K4me3 and H3K36me3. We postulate that this is a causal association and that NFI proteins mainly act as activators of transcription. This was documented for one member of the family (NFI-C), which revealed as a more potent gene activator than repressor in global gene expression analysis. Interestingly, we also discovered the association of NFI with the tri-methylation of lysine 9 of histone H3, a chromatin marker previously associated with the protection against silencing of telomeric genes by NFI. Conclusion Taken together, we illustrate approaches that can be taken to analyze large genomic data, and provide evidence that NFI family members may act in conjunction with specific chromatin modifications to activate gene expression.
Collapse
Affiliation(s)
- Milos Pjanic
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Epigenetics and psychoneuroimmunology: mechanisms and models. Brain Behav Immun 2011; 25:25-39. [PMID: 20832468 PMCID: PMC2991515 DOI: 10.1016/j.bbi.2010.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/21/2010] [Accepted: 08/30/2010] [Indexed: 12/21/2022] Open
Abstract
In this Introduction to the Named Series "Epigenetics, Brain, Behavior, and Immunity" an overview of epigenetics is provided with a consideration of the nature of epigenetic regulation including DNA methylation, histone modification and chromatin re-modeling. Illustrative examples of recent scientific developments are highlighted to demonstrate the influence of epigenetics in areas of research relevant to those who investigate phenomena within the scientific discipline of psychoneuroimmunology. These examples are presented in order to provide a perspective on how epigenetic analysis will add insight into the molecular processes that connect the brain with behavior, neuroendocrine responsivity and immune outcome.
Collapse
|
24
|
Discovering cooperative relationships of chromatin modifications in human T cells based on a proposed closeness measure. PLoS One 2010; 5:e14219. [PMID: 21151929 PMCID: PMC2997069 DOI: 10.1371/journal.pone.0014219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/08/2010] [Indexed: 12/03/2022] Open
Abstract
Background Eukaryotic transcription is accompanied by combinatorial chromatin modifications that serve as functional epigenetic markers. Composition of chromatin modifications specifies histone codes that regulate the associated gene. Discovering novel chromatin regulatory relationships are of general interest. Methodology/Principal Findings Based on the premise that the interaction of chromatin modifications is hypothesized to influence CpG methylation, we present a closeness measure to characterize the regulatory interactions of epigenomic features. The closeness measure is applied to genome-wide CpG methylation and histone modification datasets in human CD4+T cells to select a subset of potential features. To uncover epigenomic and genomic patterns, CpG loci are clustered into nine modules associated with distinct chromatin and genomic signatures based on terms of biological function. We then performed Bayesian network inference to uncover inherent regulatory relationships from the feature selected closeness measure profile and all nine module-specific profiles respectively. The global and module-specific network exhibits topological proximity and modularity. We found that the regulatory patterns of chromatin modifications differ significantly across modules and that distinct patterns are related to specific transcriptional levels and biological function. DNA methylation and genomic features are found to have little regulatory function. The regulatory relationships were partly validated by literature reviews. We also used partial correlation analysis in other cells to verify novel regulatory relationships. Conclusions/Significance The interactions among chromatin modifications and genomic elements characterized by a closeness measure help elucidate cooperative patterns of chromatin modification in transcriptional regulation and help decipher complex histone codes.
Collapse
|
25
|
Teif VB, Rippe K. Statistical-mechanical lattice models for protein-DNA binding in chromatin. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:414105. [PMID: 21386588 DOI: 10.1088/0953-8984/22/41/414105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.
Collapse
Affiliation(s)
- Vladimir B Teif
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
26
|
Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F. cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. THE PLANT CELL 2010; 22:1425-40. [PMID: 20472817 PMCID: PMC2899882 DOI: 10.1105/tpc.110.074682] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/16/2010] [Accepted: 05/03/2010] [Indexed: 05/17/2023]
Abstract
Flowering time of summer annual Arabidopsis thaliana accessions is largely determined by the timing of FLOWERING LOCUS T (FT) expression in the leaf vasculature. To understand the complex interplay between activating and repressive inputs controlling flowering through FT, cis-regulatory sequences of FT were identified in this study. A proximal and an approximately 5-kb upstream promoter region containing highly conserved sequence blocks were found to be essential for FT activation by CONSTANS (CO). Chromatin-associated protein complexes add another layer to FT regulation. In plants constitutively overexpressing CO, changes in chromatin status, such as a decrease in binding of LIKE HETEROCHROMATIN PROTEIN1 (LHP1) and increased acetylation of H3K9 and K14, were observed throughout the FT locus, although these changes appear to be a consequence of FT upregulation and not a prerequisite for activation. Binding of LHP1 was required to repress enhancer elements located between the CO-controlled regions. By contrast, the distal and proximal promoter sequences required for FT activation coincide with locally LHP1 and H3K27me3 depleted chromatin, indicating that chromatin status facilitates the accessibility of transcription factors to FT. Therefore, distant regulatory regions are required for FT transcription, reflecting the complexity of its control and differences in chromatin status delimit functionally important cis-regulatory regions.
Collapse
|
27
|
Staab CA, Maser E. 11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. J Steroid Biochem Mol Biol 2010; 119:56-72. [PMID: 20045052 DOI: 10.1016/j.jsbmb.2009.12.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
Abstract
Systemic glucocorticoid excess, as exemplified by the Cushing syndrome, leads to obesity and all further symptoms of the metabolic syndrome. The current obesity epidemic, however, is not characterized by increased plasma cortisol concentrations, but instead comes along with chronic low-grade inflammation in adipose tissue and concomitant increased levels of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1, gene HSD11B1), a parameter known to cause obesity in a mouse model. 11beta-HSD1 represents an intracellular amplifier of active glucocorticoid, thus enhances the associated effects on the inflammatory response as well as on nutrient and energy metabolism, and may therefore cause and exacerbate obesity by local increase of glucocorticoid concentrations. Obtained by extensive literature and database searching, the present review includes comprehensive lists of primary glucocorticoid-sensitive genes and gene products as well as of the thus far known regulators of HSD11B1 expression with implication in inflammation and metabolic disease. Collectively, the data clearly show that, in addition to amplifying active glucocorticoid and thus profoundly modulating inflammation and nutrient metabolism, 11beta-HSD1 is subject to tight control of multiple additional immunomodulatory and metabolic regulators. Hence, 11beta-HSD1 acts at the interface of inflammation and obesity and represents an efficient integrator and effector of local inflammatory and metabolic state.
Collapse
Affiliation(s)
- Claudia A Staab
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | | |
Collapse
|
28
|
Bonnet M, Huang F, Benoukraf T, Cabaud O, Verthuy C, Boucher A, Jaeger S, Ferrier P, Spicuglia S. Duality of Enhancer Functioning Mode Revealed in a Reduced TCRβ Gene Enhancer Knockin Mouse Model. THE JOURNAL OF IMMUNOLOGY 2009; 183:7939-48. [DOI: 10.4049/jimmunol.0902179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Riffel AK, Schuenemann E, Vyhlidal CA. Regulation of the CYP3A4 and CYP3A7 promoters by members of the nuclear factor I transcription factor family. Mol Pharmacol 2009; 76:1104-14. [PMID: 19706729 DOI: 10.1124/mol.109.055699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the established interindividual variability and ontogeny of the CYP3A enzymes, the most abundant phase I drug-metabolizing enzymes in human liver and intestine, the mechanisms that regulate basal expression remain poorly understood. Electrophoretic mobility shift assays using nuclear proteins extracted from human prenatal and postnatal liver samples identified multiple, developmentally distinct nuclear factor I (NFI)-containing protein complexes from human liver bound to sequences from the CYP3A4 (-243/-220) and CYP3A7 (-242/-219) proximal promoters. In addition, a hepatocyte nuclear factor (HNF) 3gamma-containing complex from prenatal liver interacted with CYP3A7-242/-219 but not CYP3A4-243/-220. Cotransfection of HepG2 cells with a CYP3A4 proximal promoter construct and expression vectors for the NFI isoforms NFIA1.1, NFIB2, NFIC1, NFIC2, and NFIX1 enhanced the expression of luciferase activity. In contrast, cotransfection of NFIB2, NFIC1, NFIC2, NFIX1, and NFIX2 reduced the expression of luciferase under the control of the CYP3A7 gene promoter. Mutagenesis of the NFI/HNF3gamma binding sites in the CYP3A7 and CYP3A4 proximal promoters suggests that regulation of basal promoter activity by members of the NFI transcription factor family occur via multiple mechanisms. These results demonstrate that members of the NFI transcription factor family regulate CYP3A4 and CYP3A7 basal expression in an isoform- and promoter-specific manner.
Collapse
Affiliation(s)
- Amanda K Riffel
- Division of Pediatric Clinical Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
30
|
Yehuda R, Bierer LM, Sarapas C, Makotkine I, Andrew R, Seckl JR. Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. Psychoneuroendocrinology 2009; 34:1304-13. [PMID: 19411143 PMCID: PMC2785023 DOI: 10.1016/j.psyneuen.2009.03.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND A proportion of subjects with symptoms of posttraumatic stress disorder (PTSD) are unresponsive to specialized psychotherapy, but a biological basis for this has not been described. To observe whether differences in cortisol or its metabolites predict or correlate with response to therapy for PTSD symptoms, cortisol and its metabolites were measured from urine samples at pre-treatment, at the conclusion of psychotherapy, and at 3-month follow-up. METHODS 28 survivors of the World Trade Center attacks on September 11, 2001 seeking psychological treatment for PTSD symptoms received four sessions of either exposure therapy or supportive counseling, followed by up to 10 sessions of prolonged exposure in a specialized PTSD treatment program at a private hospital serving the New York City metropolitan area. 24-h mean integrated cortisol excretion was assessed by radioimmunoassay (RIA); urinary free cortisol and metabolites cortisone, 5alpha-tetrahydrocortisol (5alpha-THF), 5beta-tetrahydrocortisol, and tetrahydrocortisone were assessed by gas chromatography-mass spectrometry (GC-MS); and indices of enzyme activity for 5alpha- and 5beta-reductase and for the 11beta-hydroxysteroid dehydrogenases were derived from the metabolite and glucocorticoid measures. RESULTS 5alpha-Reductase activity was significantly lower at pre-treatment among non-responders, whereas there were no significant pre-treatment differences between responders and non-responders in any other hormone or metabolite level. In repeated measures analyses across the three time points, 5alpha-reductase activity, as well as 5alpha-THF and total glucocorticoids, significantly differed between responders and non-responders. For urinary cortisol measured by RIA, there was a significant groupxtime interaction indicating that, although not different at pre-treatment, urinary cortisol levels declined over time in the non-responder group, such that by follow-up, lowered cortisol significantly distinguished non-responders from responders. Indices of 5alpha-reductase activity, including 5alpha-THF and total glucocorticoids, were significantly negatively correlated with avoidance symptom severity at pre-treatment. At follow-up, indices of 5alpha-reductase activity were significantly negatively correlated with severity of all three PTSD symptom clusters and with total PTSD severity scores. CONCLUSION Lower 5alpha-reductase activity is associated with avoidance severity and predicts non-responsiveness to psychological treatment for PTSD symptomatology. Relatively diminished 5alpha-reductase activity may mark a state of primary vulnerability, perhaps via attenuated peripheral catabolism of cortisol resulting in the suppression of hypothalamic-pituitary-adrenal axis responsiveness. Lower cortisol levels appear later in the progression to chronic, treatment-resistant PTSD.
Collapse
Affiliation(s)
- Rachel Yehuda
- Traumatic Stress Studies Division, Mount Sinai School of Medicine and James J. Peters Veterans Affairs Medical Center, Psychiatry 116/A - OOMH, Bronx, NY 10468-3904, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Vicent GP, Zaurin R, Nacht AS, Li A, Font-Mateu J, Le Dily F, Vermeulen M, Mann M, Beato M. Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet 2009; 5:e1000567. [PMID: 19609353 PMCID: PMC2704372 DOI: 10.1371/journal.pgen.1000567] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 06/18/2009] [Indexed: 12/22/2022] Open
Abstract
Steroid hormones regulate gene expression by interaction of their receptors with hormone responsive elements (HREs) and recruitment of kinases, chromatin remodeling complexes, and coregulators to their target promoters. Here we show that in breast cancer cells the BAF, but not the closely related PBAF complex, is required for progesterone induction of several target genes including MMTV, where it catalyzes localized displacement of histones H2A and H2B and subsequent NF1 binding. PCAF is also needed for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark that interacts with the BAF subunits by anchoring the complex to chromatin. In the absence of PCAF, full loading of target promoters with hormone receptors and BAF is precluded, and induction is compromised. Thus, activation of hormone-responsive promoters requires cooperation of at least two chromatin remodeling activities, BAF and PCAF. In order to adapt its gene expression program to the needs of the environment, the cell must access the information stored in the DNA sequence that is tightly packaged into chromatin in the cell nucleus. How the cell manages to do it in a selective maner is still unclear. Here we show that, in breast cancer cells treated with the ovarian hormone progesterone, the hormone receptor recruits to the regulated genes two chromatin remodeling complexes that cooperate in opening the chromatin structure. One of the complexes puts a mark in a chromatin protein that anchors the other complex, enabling full gene activation. The present discovery highlights the importance of the concerted order of events for access to genomic information during activation of gene expression and reveals the intricacies of hormonal gene regulation.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Roser Zaurin
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - A. Silvina Nacht
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Ang Li
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Francois Le Dily
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Michiel Vermeulen
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
- Department of Physiological Chemistry and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
32
|
DNA-binding specificity and in vivo targets of Caenorhabditis elegans nuclear factor I. Proc Natl Acad Sci U S A 2009; 106:12049-54. [PMID: 19584245 DOI: 10.1073/pnas.0812894106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The conserved nuclear factor I (NFI) family of transcription factors is unique to animals and essential for mammalian development. The Caenorhabditis elegans genome encodes a single NFI family member, whereas vertebrate genomes encode 4 distinct NFI protein subtypes (A, B, C, and X). NFI-1-deficient worms exhibit abnormalities, including reduced lifespan, defects in movement and pharyngeal pumping, and delayed egg-laying. To explore the functional basis of these phenotypes, we sought to comprehensively identify NFI-1-bound loci in C. elegans. We first established NFI-1 DNA-binding specificity using an in vitro DNA-selection strategy. Analysis yielded a consensus motif of TTGGCA(N)(3)TGCCAA, which occurs 586 times in the genome, a 100-fold higher frequency than expected. We next asked which sites were occupied by NFI-1 in vivo by performing chromatin immunoprecipitation of NFI-1 followed by microarray hybridization. Only 55 genomic locations were identified, an unexpectedly small target set. In vivo NFI-1 binding sites tend to be upstream of genes involved in core cellular processes, such as chromatin remodeling, mRNA splicing, and translation. Remarkably, 59 out of 70 (84%) of the C. briggsae orthologs of the identified targets contain conserved NFI binding sites in their promoters. These experiments provide a foundation for understanding how NFI-1 is recruited to unexpectedly few in vivo sites to perform its developmental functions, despite a vast over-representation of its binding motif.
Collapse
|
33
|
Astrand C, Belikov S, Wrange O. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter. Exp Cell Res 2009; 315:2604-15. [PMID: 19463811 DOI: 10.1016/j.yexcr.2009.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/29/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.
Collapse
Affiliation(s)
- Carolina Astrand
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
34
|
Abstract
The glucocorticoid receptor regulates the expression of a large number of genes in mammalian cells. The interaction of this receptor with regulatory elements has been discovered to be highly dynamic, with occupancy states measured in seconds, rather than minutes or hours. This finding has led to a paradigm shift in our understanding of receptor function throughout the genome. The mechanisms involved in these rapid exchange events, as well as the implications for receptor function, are discussed.
Collapse
Affiliation(s)
- Simon C Biddie
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | |
Collapse
|
35
|
Vallejo M. PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol 2009; 39:90-100. [PMID: 19238593 DOI: 10.1007/s12035-009-8055-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/19/2009] [Indexed: 12/23/2022]
Abstract
Astrocytes constitute a very abundant cell type in the mammalian central nervous system and play critical roles in brain function. During development, astrocytes are generated from neural progenitor cells only after these cells have generated neurons. This so called gliogenic switch is tightly regulated by intrinsic factors that inhibit the generation of astrocytes during the neurogenic period. Once neural progenitors acquire gliogenic competence, they differentiate into astrocytes in response to specific extracellular signals. Some of these signals are delivered by neurotrophic cytokines via activation of the gp130-JAK-signal transducer and activator of transcription system, whereas others depend on the activity of pituitary adenylate cyclase-activating polypeptide (PACAP) on specific PAC1 receptors that stimulate the production of cAMP. This results in the activation of the small GTPases Rap1 and Ras, and in the cAMP-dependent entry of extracellular calcium into the cell. Calcium, in turn, stimulates the transcription factor downstream regulatory element antagonist modulator (DREAM), which is bound to specific sites of the promoter of the glial fibrillary acidic protein gene, stimulating its expression during astrocyte differentiation. Lack of DREAM in vivo results in alterations in the number of neurons and astrocytes generated during development. Thus, the PACAP-cAMP-Ca(2+)-DREAM signaling cascade constitutes an important pathway to activate glial-specific gene expression during astrocyte differentiation.
Collapse
Affiliation(s)
- Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
36
|
Burkhart BA, Ivey ML, Archer TK. Long-term low level glucocorticoid exposure induces persistent repression in chromatin. Mol Cell Endocrinol 2009; 298:66-75. [PMID: 19007849 PMCID: PMC2657048 DOI: 10.1016/j.mce.2008.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/07/2008] [Accepted: 10/13/2008] [Indexed: 12/31/2022]
Abstract
Environmental exposure to low concentration hormones can have permanent epigenetic effects in animals and humans. The consequence of long-term low concentration glucocorticoid exposure was investigated in cell culture using glucocorticoid responsive genes organized in alternative chromatin structures. The MMTV promoter is induced by short-term glucocorticoid exposure on either an integrated (normal chromatin) or transient (unstructured chromatin) promoter. Longer hormone treatment causes a transient refractory repression of only the integrated promoter. Exposure to low concentrations of hormone for several passages persistently represses the integrated MMTV and endogenous glucocorticoid responsive promoters. The glucocorticoid receptor cannot bind to persistently repressed promoters. Induction by androgens is also inhibited on the repressed MMTV promoter. Similarly, osmotic stress induction of the endogenous Sgk gene is repressed. Persistent repression by glucocorticoids targets glucocorticoid responsive genes using a chromatin-dependent mechanism that disrupts binding of both GR-dependent and GR-independent transcription complexes.
Collapse
Affiliation(s)
| | | | - Trevor K. Archer
- To whom correspondence should be addressed: Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, Phone (919) 316-4565, FAX (919) 316-4566,
| |
Collapse
|
37
|
Kinyamu HK, Collins JB, Grissom SF, Hebbar PB, Archer TK. Genome wide transcriptional profiling in breast cancer cells reveals distinct changes in hormone receptor target genes and chromatin modifying enzymes after proteasome inhibition. Mol Carcinog 2008; 47:845-85. [PMID: 18381591 DOI: 10.1002/mc.20440] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Steroid hormone receptors, like glucocorticoid (GR) and estrogen receptors (ER), are master regulators of genes that control many biological processes implicated in health and disease. Gene expression is dependent on receptor levels which are tightly regulated by the ubiquitin-proteasome system. Previous studies have shown that proteasome inhibition increases GR, but decreases ER-mediated gene expression. At the gene expression level this divergent role of the proteasome in receptor-dependent transcriptional regulation is not well understood. We have used a genomic approach to examine the impact of proteasome activity on GR- and ER-mediated gene expression in MCF-7 breast cancer cells treated with dexamethasone (DEX) or 17beta-estradiol (E2), the proteasome inhibitor MG132 (MG) or MG132 and either hormone (MD or ME2) for 24 h. Transcript profiling reveals that inhibiting proteasome activity modulates gene expression by GR and ER in a similar manner in that several GR and ER target genes are upregulated and downregulated after proteasome inhibition. In addition, proteasome inhibition modulates receptor-dependent genes involved in the etiology of a number of human pathological states, including multiple myeloma, leukemia, breast/prostate cancer, HIV/AIDS, and neurodegenerative disorders. Importantly, our analysis reveals that a number of transcripts encoding histone and DNA modifying enzymes, prominently histone/DNA methyltransferases and demethylases, are altered after proteasome inhibition. As proteasome inhibitors are currently in clinical trials as therapy for multiple myeloma, HIV/AIDS and leukemia, the possibility that some of the target molecules are hormone regulated and chromatin modifying enzymes is intriguing in this era of epigenetic therapy.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
38
|
Shakes LA, Malcolm TL, Allen KL, De S, Harewood KR, Chatterjee PK. Context dependent function of APPb enhancer identified using enhancer trap-containing BACs as transgenes in zebrafish. Nucleic Acids Res 2008; 36:6237-48. [PMID: 18832376 PMCID: PMC2577333 DOI: 10.1093/nar/gkn628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An enhancer within intron 1 of the amyloid precursor protein gene (APPb) of zebrafish is identified functionally using a novel approach. Bacterial artificial chromosomes (BACs) were retrofitted with enhancer traps, and expressed as transgenes in zebrafish. Expression from both transient assays and stable lines were used for analysis. Although the enhancer was active in specific nonneural cells of the notochord when placed with APPb gene promoter proximal elements its function was restricted to, and absolutely required for, specific expression in neurons when juxtaposed with additional far-upstream promoter elements of the gene. We demonstrate that expression of green fluorescent protein fluorescence resembling the tissue distribution of APPb mRNA requires both the intron 1 enhancer and approximately 28 kb of DNA upstream of the gene. The results indicate that tissue-specificity of an isolated enhancer may be quite different from that in the context of its own gene. Using this enhancer and upstream sequence, polymorphic variants of APPb can now more closely recapitulate the endogenous pattern and regulation of APPb expression in animal models for Alzheimer's disease. The methodology should help functionally map multiple noncontiguous regulatory elements in BACs with or without gene-coding sequences.
Collapse
Affiliation(s)
- Leighcraft A Shakes
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Chemistry, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chikhirzhina GI, Al-Shekhadat RI, Chikhirzhina EV. Transcription factors of the NF1 family: Role in chromatin remodeling. Mol Biol 2008. [DOI: 10.1134/s0026893308030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
O'Donnell A, Yang SH, Sharrocks AD. MAP kinase-mediated c-fos regulation relies on a histone acetylation relay switch. Mol Cell 2008; 29:780-5. [PMID: 18374651 PMCID: PMC3574235 DOI: 10.1016/j.molcel.2008.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/07/2007] [Accepted: 01/16/2008] [Indexed: 10/28/2022]
Abstract
Gene activation is often associated with high levels of histone acetylation. Enhanced acetylation levels can promote the recruitment of further chromatin modifying complexes or the basal transcription machinery. Here, we have studied MAP kinase-mediated upregulation of c-fos and uncover a role for histone acetylation in promoting the recruitment of a second transcription factor, NFI. MAP kinase signaling to Elk-1 enhances the net histone acetylase activity associated with the c-fos promoter, which leads to changes in the acetylation state and structure of a promoter-proximal nucleosome, which allows NFI binding. Binding of NFI provides a permissive state for the recruitment of basal machinery and subsequent promoter activation. Our results provide insights into how MAP kinase signaling promotes inducible gene expression; phosphorylation of recipient transcription factors (primary effectors) triggers a HAT relay switch, which facilitates the recruitment of additional transcription factors (secondary effectors) through alteration of the local nucleosomal structure.
Collapse
Affiliation(s)
- Amanda O'Donnell
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
41
|
Hebbar PB, Archer TK. Altered histone H1 stoichiometry and an absence of nucleosome positioning on transfected DNA. J Biol Chem 2008; 283:4595-601. [PMID: 18156629 PMCID: PMC3339569 DOI: 10.1074/jbc.m709121200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The packaging of DNA with histones to form chromatin represents an important and powerful mechanism to regulate gene expression. Critical aspects of chromatin-specific contributions to gene regulation have been revealed by the comparison of the activities from DNA regulatory elements examined both as transiently transfected reporters and stably integrated reporters organized as chromatin. Using the mouse mammary tumor virus (MMTV) promoter as a model, we probed the structural differences between transiently transfected and stably integrated DNA templates. We demonstrated that all four core histones and the linker histone (H1) are associated with the transient template. However, whereas the core histones were present at a similar stoichiometry between the transient and the stable templates, we found that linker histone H1 molecules are fewer on the transient template. By using supercoiling assay, we show that the transient template shows intermediate levels of nucleosomal assembly. Overexpression of H1 resulted in repression of MMTV transcriptional activity and reduced accessibility to restriction endonucleases on the transient MMTV promoter. However, the addition of exogenous H1 failed to impose a normal chromatin structure on the transient template as measured by micrococcal nuclease digestion pattern. Thus, our results suggest that while transiently transfected DNA acquires a full complement of core histones, the underrepresentation of H1 on the transient template is indicative of structural differences between the two templates that may underlie the differences in the mechanisms of activation of the two templates.
Collapse
Affiliation(s)
- Pratibha B Hebbar
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
42
|
GATA factors and androgen receptor collaborate to transcriptionally activate the Rhox5 homeobox gene in Sertoli cells. Mol Cell Biol 2008; 28:2138-53. [PMID: 18212046 DOI: 10.1128/mcb.01170-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
How Sertoli-specific expression is initiated is poorly understood. Here, we address this issue using the proximal promoter (Pp) from the Rhox5 homeobox gene. Its Sertoli cell-specific expression is achieved, in part, through a negative regulatory element that inhibits Pp transcription in non-Sertoli cell lines. Complementing this negative regulation is positive regulation conferred by four androgen-response elements (AREs) that interact with the androgen receptor (AR), a nuclear hormone receptor expressed at high levels in Sertoli cells. A third control mechanism is provided by a consensus GATA-binding site that is crucial for Pp transcription both in vitro and in vivo. Several lines of evidence suggested that GATA factors and AR act cooperatively to activate Pp transcription: (i) the GATA-binding site crucial for Pp transcription is in close proximity to two of the AREs, (ii) GATA and AR form a complex with the Pp in vitro, (iii) overexpression of GATA factors rescued expression from mutant Pp constructs harboring defective AREs, and (iv) incubation of a Sertoli cell line with testosterone triggered corecruitment of AR and GATA4 to the Pp. Collectively, our results suggest that the Rhox5 gene achieves Sertoli cell-specific transcription using a combinatorial strategy involving negative and cooperative positive regulation.
Collapse
|
43
|
Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. Curr Opin Immunol 2007; 19:694-700. [PMID: 17720468 DOI: 10.1016/j.coi.2007.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 12/29/2022]
Abstract
Diverse cellular functions including the regulation of inflammatory gene expression, DNA repair and cell proliferation are regulated by epigenetic changes. Transcriptional co-activators possess intrinsic histone acetyltransferase (HAT) activity, and histone acetylation plays a major role in inflammatory gene expression. Other marks such as histone methylation are also associated with gene induction and gene repression. Recent evidence implicates histone acetylation and methylation as being crucial for the development of tolerance in macrophages and CpG methylation for T regulatory cell development and function. The expression of the enzymes that lay down or remove these epigenetic marks have not been well studied in human airways disease, but reduced HDAC2 expression and activity is reported in lung macrophages, biopsies and blood cells from patients with COPD, severe asthma and smoking asthma. In vitro, inhibitors of histone deacetylases (HDAC) often lead to a further induction of inflammatory gene expression. This is not always the case, however, as HATs and HDACs also target non-histone proteins particularly transcription factors to alter their activity. Furthermore, trichostatin A, an HDAC inhibitor, can reduce inflammation in a murine model of allergic asthma. This effect of HDAC inhibitors may be due to their effects on cell death acting through acetylation of non-histone proteins. The role of epigenetic modifications in inflammatory gene expression and in the control of cell function in the airways is becoming clearer. Targeting specific enzymes involved in this process may lead to new therapeutic agents, in particular, in situations where current anti-inflammatory therapies are currently suboptimal.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.
| | | | | | | |
Collapse
|