1
|
Rani K, Gurnani B, Jain N. Probing a salt-induced conformational switch in β 2-microglobulin under low pH conditions. FEBS J 2025. [PMID: 40418633 DOI: 10.1111/febs.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/21/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Self-assembly of proteins and peptides into amyloid fibrils is an active field of research due to its connection with debilitating human ailments such as Parkinson's disease, dialysis-related amyloidosis (DRA), and type II diabetes. In most disease conditions, amyloid formation proceeds via distinct on-pathway conformers such as oligomers and protofibrils. However, the detailed mechanism by which monomers transform into different species and contribute to disease progression remains an area of intense research. Isolating and characterizing distinct conformers are pertinent to understanding disease initiation and progression. One such ailment is DRA, where an amyloidogenic protein, β2-microglobulin (β2m), undergoes a profound conformational switch to adopt an amyloid fold. β2m amyloids accumulate in tissues such as joints and kidneys, causing tissue damage and dysfunction. Soluble β2m oligomers are considered more toxic than amyloids due to impaired cellular processes, resulting in cell death. In the present study, we have identified and characterized three stages of β2m aggregation, namely, oligomers, protofibrils, and fibrils, while varying salt concentrations and agitation under low pH conditions. Our kinetic results indicate that β2m oligomers and protofibrils follow a nucleation-independent pathway, whereas amyloids are formed through the classical nucleation process. Further, we implemented microscopic techniques and biochemical assays to verify the formation and stability of distinct conformers. We believe these findings provide insights into the process of amyloid formation, which may help us to understand the initiation of the disease at an early stage.
Collapse
Affiliation(s)
- Khushboo Rani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, India
| | - Bharat Gurnani
- Centre of Excellence-AyurTech, Indian Institute of Technology Jodhpur, Karwar, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
2
|
Hazari MA, Kannan G, Dasgupta S, Pavan MK, Jha AK, Sultana F, Pujahari SR, Singh S, Dutta S, Pydi SP, Dutta S, Zafar H, Bhaumik P, Kumar A, Sen S. Faster Amylin Aggregation on Fibrillar Collagen I Hastens Diabetic Progression through β-Cell Death and Loss of Function. J Am Chem Soc 2025; 147:15985-16006. [PMID: 40300850 DOI: 10.1021/jacs.4c15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Amyloid deposition of the neuroendocrine peptide amylin in islet tissues is a hallmark of type 2 diabetes (T2DM), leading to β-cell toxicity through nutrient deprivation, membrane rupture, and apoptosis. Though accumulation of toxic amylin aggregates in islet matrices is well documented, the role of the islet extracellular matrix in mediating amylin aggregation and its pathological consequences remains elusive. Here, we address this question by probing amylin interaction with collagen I (Col)─whose expression in the islet tissue increases during diabetes progression. By combining multiple biophysical techniques, we show that hydrophobic, hydrophilic, and cation-π interactions regulate amylin binding to Col, with fibrillar Col driving faster amylin aggregation. Amylin-entangled Col matrices containing high amounts of amylin induce death and loss of function in INS1E β-cells. Together, our results illustrate how amylin incorporation in islet matrices through amylin-Col interactions drives T2DM progression by impacting β-cell viability and insulin secretion.
Collapse
Affiliation(s)
| | - Gautam Kannan
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Subrata Dasgupta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Musale Krushna Pavan
- Department of Computer Science and Engineering, IIT Kanpur, Kanpur 208016, India
| | - Akash Kumar Jha
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Farhin Sultana
- Department of Oncogene Regulation, CNCI, Kolkata 700026, India
| | | | - Simran Singh
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, IIT Kanpur, Kanpur 208016, India
| | - Sarbajeet Dutta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sai Prasad Pydi
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, IIT Kanpur, Kanpur 208016, India
| | | | - Hamim Zafar
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Department of Computer Science and Engineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, IIT Kanpur, Kanpur 208016, India
| | - Prasenjit Bhaumik
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Shamik Sen
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
3
|
Yamamoto S, Yamamoto K, Hirao Y, Yamaguchi K, Nakajima K, Sato M, Kawachi M, Domon M, Goto K, Omori K, Iino N, Shimada H, Aoyagi R, Ei I, Goto S, Goto Y, Gejyo F, Yamamoto T, Narita I. Mass spectrometry-based proteomic analysis of proteins adsorbed by hexadecyl-immobilized cellulose bead column for the treatment of dialysis-related amyloidosis. Amyloid 2024; 31:105-115. [PMID: 38343068 DOI: 10.1080/13506129.2024.2315148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Dialysis-related amyloidosis (DRA) is a severe complication in end-stage kidney disease (ESKD) patients undergoing long-term dialysis treatment, characterized by the deposition of β2-microglobulin-related amyloids (Aβ2M amyloid). To inhibit DRA progression, hexadecyl-immobilized cellulose bead (HICB) columns are employed to adsorb circulating β2-microglobulin (β2M). However, it is possible that the HICB also adsorbs other molecules involved in amyloidogenesis. METHODS We enrolled 14 ESKD patients using HICB columns for DRA treatment; proteins were extracted from HICBs following treatment and identified using liquid chromatography-linked mass spectrometry. We measured the removal rate of these proteins and examined the effect of those molecules on Aβ2M amyloid fibril formation in vitro. RESULTS We identified 200 proteins adsorbed by HICBs. Of these, 21 were also detected in the amyloid deposits in the carpal tunnels of patients with DRA. After passing through the HICB column and hemodialyzer, the serum levels of proteins such as β2M, lysozyme, angiogenin, complement factor D and matrix Gla protein were reduced. These proteins acted in the Aβ2M amyloid fibril formation. CONCLUSIONS HICBs adsorbed diverse proteins in ESKD patients with DRA, including those detected in amyloid lesions. Direct hemoperfusion utilizing HICBs may play a role in acting Aβ2M amyloidogenesis by reducing the amyloid-related proteins.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Niigata University, Niigata, Japan
| | - Yoshitoshi Hirao
- Instrumental Analysis Section, Okinawa Institute of Science and Technology, Onna, Japan
| | | | | | - Mami Sato
- Sakelogy Center, Niigata University, Niigata, Japan
| | - Miho Kawachi
- Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Mio Domon
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kei Goto
- Division of Nephrology, Agano Municipal Hospital, Niigata, Japan
| | | | - Noriaki Iino
- Division of Nephrology, Uonuma Kikan Hospital, Niigata, Japan
| | | | - Ryuzi Aoyagi
- Department of Nephrology, Tachikawa General Hospital, Niigata, Japan
| | - Isei Ei
- Santo-Second Clinic, Niigata, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuji Goto
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Fumitake Gejyo
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Niigata University, Niigata, Japan
- Department of Clinical Laboratory, Shinrakuen Hospital, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
4
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Mikhailova EV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Amyloid fibrils degradation: the pathway to recovery or aggravation of the disease? Front Mol Biosci 2023; 10:1208059. [PMID: 37377863 PMCID: PMC10291066 DOI: 10.3389/fmolb.2023.1208059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The most obvious manifestation of amyloidoses is the accumulation of amyloid fibrils as plaques in tissues and organs, which always leads to a noticeable deterioration in the patients' condition and is the main marker of the disease. For this reason, early diagnosis of amyloidosis is difficult, and inhibition of fibrillogenesis, when mature amyloids are already accumulated in large quantities, is ineffective. A new direction for amyloidosis treatment is the development of approaches aimed at the degradation of mature amyloid fibrils. In the present work, we investigated possible consequences of amyloid's degradation. Methods: We analyzed the size and morphology of amyloid degradation products by transmission and confocal laser scanning microscopy, their secondary structure and spectral properties of aromatic amino acids, intrinsic chromophore sfGFP, and fibril-bound amyloid-specific probe thioflavin T (ThT) by the absorption, fluorescence and circular dichroism spectroscopy, as well as the cytotoxicity of the formed protein aggregates by MTT-test and their resistance to ionic detergents and boiling by SDS-PAGE. Results: On the example of sfGFP fibrils (model fibrils, structural rearrangements of which can be detected by a specific change in the spectral properties of their chromophore), and pathological Aβ-peptide (Aβ42) fibrils, leading to neuronal death in Alzheimer's disease, the possible mechanisms of amyloids degradation after exposure to factors of different nature (proteins with chaperone and protease activity, denaturant, and ultrasound) was demonstrated. Our study shows that, regardless of the method of fibril degradation, the resulting species retain some amyloid's properties, including cytotoxicity, which may even be higher than that of intact amyloids. Conclusion: The results of our work indicate that the degradation of amyloid fibrils in vivo should be treated with caution since such an approach can lead not to recovery, but to aggravation of the disease.
Collapse
Affiliation(s)
- Maksim I. Sulatsky
- Laboratory of cell morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina V. Mikhailova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Garg DK, Bhat R. Modulation of assembly of TDP-43 low-complexity domain by heparin: From droplets to amyloid fibrils. Biophys J 2022; 121:2568-2582. [PMID: 35644946 PMCID: PMC9300664 DOI: 10.1016/j.bpj.2022.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/03/2021] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA-regulating protein that carries out many cellular functions through liquid-liquid phase separation (LLPS). The LLPS of TDP-43 is mediated by its C-terminal low-complexity domain (TDP43-LCD) corresponding to the region 267-414. In neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia, pathological inclusions of the TDP-43 are found that are rich in the C-terminal fragments of ∼25 and ∼35 kDa, of which TDP43-LCD is a part. Thus, understanding the assembly process of TDP43-LCD is essential, given its involvement in the formation of both functional liquid-like assemblies and solid- or gel-like pathological aggregates. Here, we show that the solution pH and salt modulate TDP43-LCD LLPS. A gradual reduction in the pH below its isoelectric point of 9.8 results in a monotonic decrease of TDP43-LCD LLPS due to charge-charge repulsion between monomers, while at pH 6 and below no LLPS was observed. The addition of heparin to TDP43-LCD solution at pH 6, at a 1:2 heparin-to-TDP43-LCD molar ratio, promotes TDP43-LCD LLPS, while at higher concentration, it disrupts LLPS through a reentrant phase transition. Upon incubation at pH 6, TDP43-LCD undergoes gelation without phase separation. However, in the reentrant regime in the presence of a high heparin concentration, it forms thick amyloid aggregates that are significantly more SDS resistant than the gel. The results indicate that the material nature of the TDP43-LCD assembly products can be modulated by heparin which is significant in the context of liquid-to-solid phase transition observed in TDP-43 proteinopathies. Our findings are also crucial in relation to similar transitions that could occur due to alteration in the molecular level interactions among various multivalent biomolecules involving other LCDs and RNAs.
Collapse
Affiliation(s)
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
6
|
Mehta D, Singh H, Haridas V, Chaudhuri TK. Molecular Insights into the Inhibition of Dialysis-Related β2m Amyloidosis Orchestrated by a Bispidine Peptidomimetic Analogue. Biochemistry 2022; 61:1473-1484. [PMID: 35749234 DOI: 10.1021/acs.biochem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic β2-microglobulin (β2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity. Through our in vitro and in cellulo studies, we introduce a peptidomimetic-based approach to help develop future therapeutics against DRA. Our study reports the ability of a nontoxic, core-modified, bispidine peptidomimetic analogue "B(LVI)2" to inhibit acid-induced amyloid fibrillation of β2m (Hβ2m). Using thioflavin-T, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis, we demonstrate that B(LVI)2 delays aggregation lag time of Hβ2m amyloid fibrillation and reduces the yield of Hβ2m amyloid fibrils in a dose-dependent manner. Our findings suggest a B(LVI)2-orchestrated alteration in the route of Hβ2m amyloid fibrillation resulting in the formation of noncytotoxic, morphologically distinct amyloid-like species. Circular dichroism data show gradual sequestration of Hβ2m species in a soluble nonamyloidogenic noncytotoxic conformation in the presence of B(LVI)2. Dynamic light scattering measurements indicate incompetence of Hβ2m species in the presence of B(LVI)2 to undergo amyloid-competent intermolecular associations. Overall, our study reports the antifibrillation property of a novel peptidomimetic with the potential to bring a paradigm shift in therapeutic approaches against DRA.
Collapse
Affiliation(s)
- Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
7
|
Tang H, Sun Y, Ding F. Hydrophobic/Hydrophilic Ratio of Amphiphilic Helix Mimetics Determines the Effects on Islet Amyloid Polypeptide Aggregation. J Chem Inf Model 2022; 62:1760-1770. [PMID: 35311274 PMCID: PMC9123946 DOI: 10.1021/acs.jcim.1c01566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid depositions of human islet amyloid polypeptides (hIAPP) are associated with type II diabetes (T2D) impacting millions of people globally. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Helix mimetics, which modulate the protein-protein interaction by mimicking the side chain residues of a natural α-helix, were found to be a promising strategy for inhibiting hIAPP aggregation. Here, we applied molecular dynamics simulations to investigate two helix mimetics reported to have opposite effects on hIAPP aggregation in solution, the oligopyridylamide-based scaffold 1e promoted, whereas naphthalimide-appended oligopyridylamide scaffold DM 1 inhibited the aggregation of hIAPP in solution. We found that 1e promoted hIAPP aggregation because of the recruiting effects through binding with the N-termini of hIAPP peptides. In contrast, DM 1 with a higher hydrophobic/hydrophilic ratio effectively inhibited hIAPP aggregation by strongly binding with the C-termini of hIAPP peptides, which competed for the interpeptide contacts between amyloidogenic regions in the C-termini and impaired the fibrillization of hIAPP. Structural analyses revealed that DM 1 formed the core of hIAPP-DM 1 complexes and stabilized the off-pathway oligomers, whereas 1e formed the corona outside the hIAPP-1e complexes and remained active in recruiting free hIAPP peptides. The distinct interaction mechanisms of DM 1 and 1e, together with other reported potent antagonists in the literature, emphasized the effective small molecule-based amyloid inhibitors by disrupting peptide interactions that should reach a balanced hydrophobic/hydrophilic ratio, providing a viable and generic strategy for the rational design of novel anti-amyloid nanomedicine.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Physics, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
8
|
Bulyáki É, Kun J, Molnár T, Papp A, Micsonai A, Vadászi H, Márialigeti B, Kovács AI, Gellén G, Yamaguchi K, Lin Y, So M, Józsi M, Schlosser G, Lee YH, Liliom K, Goto Y, Kardos J. Pathogenic D76N Variant of β 2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. BIOLOGY 2021; 10:biology10111197. [PMID: 34827190 PMCID: PMC8614874 DOI: 10.3390/biology10111197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Elevated β2-microglobulin (β2m) serum levels cause serious complications in patients on long-term kidney dialysis by depositing in the form of amyloid fibrils in the osteoarticular system. Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m mutant exhibiting normal serum levels and a distinct, visceral deposition pattern. D76N β2m showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Despite the extensive research, the molecular bases of the aberrant aggregation of β2m in vivo remains elusive. Here, using a variety of biophysical techniques, we investigated the role of the pathogenic D76N mutation in the amyloid formation of β2m by point mutations affecting the stabilizing ion-pairs of β2m. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular matrix proteins. Understanding the underlying molecular mechanisms might help to find target points for effective treatments against diseases associated with the deleterious aggregation of proteins. Abstract β2-microglobulin (β2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of β2m by point mutations affecting the Asp76-Lys41 ion-pair of WT β2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.
Collapse
Affiliation(s)
- Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Tamás Molnár
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Alexandra Papp
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Borbála Márialigeti
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Attila István Kovács
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Gabriella Gellén
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Korea
- Research Headquarters, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
- Correspondence:
| |
Collapse
|
9
|
Chen JB, Li LC, Lee WC, Moi SH, Yang CH. Effect of clinical factors on trajectory of functional performance in patients undergoing hemodialysis. Ren Fail 2021; 43:90-96. [PMID: 33349082 PMCID: PMC7758042 DOI: 10.1080/0886022x.2020.1852090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose This study aimed to investigate the association between clinical factors and temporary changes in functional performance in patients undergoing hemodialysis. Methods This was a retrospective, longitudinal observational study conducted from 2015 to 2017. Eight-two patients undergoing hemodialysis in the outpatient clinic were enrolled. Functional performance was measured using the Karnofsky Performance Status (KPS) scale. Collected data for analysis included demographics, laboratory parameters, and KPS scale scores. All participants were grouped into a high KPS cluster and a low KPS cluster based on dynamic changes in KPS scales from 2015 to 2017. Results Participants in the high KPS cluster demonstrated an approximate trend, and those in the low KPS cluster demonstrated a low pattern. By stepwise selection model analysis, age (OR 1.12, 95% CI 1.03–1.23, p = 0.011), serum BUN (OR 1.08, 95% CI 1.02–1.16, p = 0.015), calcium levels (OR 3.24, 95% CI 1.2–8.73, p = 0.02), and beta-2-microglobulin (OR > 1.0, CI >1.00-<1.01, p = 0.031) showed risk for the low KPS cluster. Male sex (OR 0.20, 95% CI 0.04–0.96, p = 0.045) and albumin level (OR 0.02, 95% CI 0–0.4, p = 0.009) showed a low risk for the low KPS cluster. Conclusions A different trajectory pattern was observed between the high and low KPS clusters in a 3-year period. Risk factors for the low KPS cluster were age, serum BUN, calcium, and beta-2-microglobulin levels. Male sex and serum albumin levels reduced the risk for the low KPS cluster.
Collapse
Affiliation(s)
- Jin-Bor Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Lung-Chih Li
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Najarzadeh Z, Zaman M, Sereikaite V, Strømgaard K, Andreasen M, Otzen DE. Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. J Biol Chem 2021; 297:100953. [PMID: 34270957 PMCID: PMC8363829 DOI: 10.1016/j.jbc.2021.100953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 10/26/2022] Open
Abstract
Phenol-soluble modulins (PSMs), such as α-PSMs, β-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits β-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than β-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Masihuz Zaman
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
11
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Trypsin Induced Degradation of Amyloid Fibrils. Int J Mol Sci 2021; 22:4828. [PMID: 34063223 PMCID: PMC8124345 DOI: 10.3390/ijms22094828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Proteolytic enzymes are known to be involved in the formation and degradation of various monomeric proteins, but the effect of proteases on the ordered protein aggregates, amyloid fibrils, which are considered to be extremely stable, remains poorly understood. In this work we study resistance to proteolytic degradation of lysozyme amyloid fibrils with two different types of morphology and beta-2-microglobulun amyloids. We showed that the proteolytic enzyme of the pancreas, trypsin, induced degradation of amyloid fibrils, and the mechanism of this process was qualitatively the same for all investigated amyloids. At the same time, we found a dependence of efficiency and rate of fibril degradation on the structure of the amyloid-forming protein as well as on the morphology and clustering of amyloid fibrils. It was assumed that the discovered relationship between fibrils structure and the efficiency of their degradation by trypsin can become the basis of a new express method for the analysis of amyloids polymorphism. Unexpectedly lower resistance of both types of lysozyme amyloids to trypsin exposure compared to the native monomeric protein (which is not susceptible to hydrolysis) was attributed to the higher availability of cleavage sites in studied fibrils. Another intriguing result of the work is that the cytotoxicity of amyloids treated with trypsin was not only failing to decline, but even increasing in the case of beta-2-microglobulin fibrils.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia;
| | - Ekaterina V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| |
Collapse
|
12
|
Quittot N, Fortier M, Babych M, Nguyen PT, Sebastiao M, Bourgault S. Cell surface glycosaminoglycans exacerbate plasma membrane perturbation induced by the islet amyloid polypeptide. FASEB J 2021; 35:e21306. [DOI: 10.1096/fj.202001845r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Noé Quittot
- Department of Chemistry Université du Québec à Montréal Montreal QC Canada
- Center of Excellence in Research on Orphan Diseases ‐ Courtois Foundation Montreal Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO Quebec City Canada
| | - Mathilde Fortier
- Department of Chemistry Université du Québec à Montréal Montreal QC Canada
- Center of Excellence in Research on Orphan Diseases ‐ Courtois Foundation Montreal Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO Quebec City Canada
| | - Margaryta Babych
- Department of Chemistry Université du Québec à Montréal Montreal QC Canada
- Center of Excellence in Research on Orphan Diseases ‐ Courtois Foundation Montreal Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO Quebec City Canada
| | - Phuong Trang Nguyen
- Department of Chemistry Université du Québec à Montréal Montreal QC Canada
- Center of Excellence in Research on Orphan Diseases ‐ Courtois Foundation Montreal Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO Quebec City Canada
| | - Mathew Sebastiao
- Department of Chemistry Université du Québec à Montréal Montreal QC Canada
- Center of Excellence in Research on Orphan Diseases ‐ Courtois Foundation Montreal Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO Quebec City Canada
| | - Steve Bourgault
- Department of Chemistry Université du Québec à Montréal Montreal QC Canada
- Center of Excellence in Research on Orphan Diseases ‐ Courtois Foundation Montreal Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO Quebec City Canada
| |
Collapse
|
13
|
Sharma K, Mehra S, Sawner AS, Markam PS, Panigrahi R, Navalkar A, Chatterjee D, Kumar R, Kadu P, Patel K, Ray S, Kumar A, Maji SK. Effect of Disease-Associated P123H and V70M Mutations on β-Synuclein Fibrillation. ACS Chem Neurosci 2020; 11:2836-2848. [PMID: 32833434 DOI: 10.1021/acschemneuro.0c00405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are a class of neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA). The common pathological hallmark of synucleinopathies is the filamentous α-synuclein (α-Syn) aggregates along with membrane components in cytoplasmic inclusions in the brain. β-Synuclein (β-Syn), an isoform of α-Syn, inhibits α-Syn aggregation and prevents its neurotoxicity, suggesting the neuroprotective nature of β-Syn. However, this notion changed with the discovery of disease-associated β-Syn mutations, V70M and P123H, in patients with DLB. It is still unclear how these missense mutations alter the structural and amyloidogenic properties of β-Syn, leading to neurodegeneration. Here, we characterized the biophysical properties and investigated the effect of mutations on β-Syn fibrillation under different conditions. V70M and P123H show high membrane binding affinity compared to wild-type β-Syn, suggesting their potential role in membrane interactions. β-Syn and its mutants do not aggregate under normal physiological conditions; however, the proteins undergo self-polymerization in a slightly acidic microenvironment and/or in the presence of an inducer, forming long unbranched amyloid fibrils similar to α-Syn. Strikingly, V70M and P123H mutants exhibit accelerated fibrillation compared to native β-Syn under these conditions. NMR study further revealed that these point mutations induce local perturbations at the site of mutation in β-Syn. Overall, our data provide insight into the biophysical properties of disease-associated β-Syn mutations and demonstrate that these mutants make the native protein more susceptible to aggregation in an altered microenvironment.
Collapse
Affiliation(s)
- Karan Sharma
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajay S. Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Pratap S. Markam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
14
|
Hoop CL, Zhu J, Bhattacharya S, Tobita CA, Radford SE, Baum J. Collagen I Weakly Interacts with the β-Sheets of β 2-Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. J Am Chem Soc 2020; 142:1321-1331. [PMID: 31875390 PMCID: PMC7135851 DOI: 10.1021/jacs.9b10421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Amyloidogenesis is
significant in both protein function and pathology.
Amyloid formation of folded, globular proteins is commonly initiated
by partial or complete unfolding. However, how this unfolding event
is triggered for proteins that are otherwise stable in their native
environments is not well understood. The accumulation of the immunoglobulin
protein β2-microglobulin (β2m) into
amyloid plaques in the joints of long-term hemodialysis patients is
the hallmark of dialysis-related amyloidosis (DRA). While β2m does not form amyloid unassisted near neutral pH in vitro, the localization of β2m deposits
to joint spaces suggests a role for the local extracellular matrix
(ECM) proteins, specifically collagens, in promoting amyloid formation.
Indeed, collagen and other ECM components have been observed to facilitate
β2m amyloid formation, but the large size and anisotropy
of the complex, combined with the low affinity of these interactions,
have limited atomic-level elucidation of the amyloid-promoting mechanism(s)
by these molecules. Using solution NMR approaches that uniquely probe
weak interactions in large molecular weight complexes, we are able
to map the binding interfaces on β2m for collagen
I and detect collagen I-induced μs–ms time-scale dynamics
in the β2m backbone. By combining solution NMR relaxation
methods and 15N-dark-state exchange saturation transfer
experiments, we propose a model in which weak, multimodal collagen
I−β2m interactions promote exchange with a
minor population of amyloid-competent species to induce fibrillogenesis.
The results portray the intimate role of the environment in switching
an innocuous protein into an amyloid-competent state, rationalizing
the localization of amyloid deposits in DRA.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Jie Zhu
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | | | - Caitlyn A Tobita
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Jean Baum
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
15
|
Muta H, So M, Sakurai K, Kardos J, Naiki H, Goto Y. Amyloid Formation under Complicated Conditions in Which β 2-Microglobulin Coexists with Its Proteolytic Fragments. Biochemistry 2019; 58:4925-4934. [PMID: 31724398 DOI: 10.1021/acs.biochem.9b00917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid formation in vivo occurs under complicated conditions in which various amyloidogenic and non-amyloidogenic components coexist, often under crowding. Controversy surrounds the role of additional components under complicated conditions. They have been suggested to accelerate amyloid formation because molecular crowding or interactions with additives increase effective concentrations and, thus, break the supersaturation of amyloidogenic proteins. On the other hand, cellular crowding conditions with various heterogeneous components may retard or prevent amyloid formation because they impede homologous amyloidogenic associations. To elucidate the roles of these additional components, we examined the amyloid formation of β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, with a simplified model system in which intact β2m and its proteolytic peptides coexist. Among the nine proteolytic peptides of β2m produced in vitro with lysyl endopeptidase, the 22-residue K3 peptide is highly amyloidogenic. The amyloid formation of the K3 peptide, which occurred with a lag time of 1 h at pH 2 and 37 °C, was significantly retarded by the coexistence of β2m or a mixture of the proteolytic digests. To identify the sites of inhibitory interactions, we performed paramagnetic relaxation enhancement measurements using spin-labeled K3 and uniformly 15N-labeled β2m with nuclear magnetic resonance detection. The results revealed that K3 interacted weakly with a broad cluster of the hydrophobic residues of β2m, which accommodated the residues located in some distant sequence, leading to competitive inhibition. The results showed that relatively weak and broad interactions formed a nonproductive complex, implying a role for heterogeneous interactions under complicated conditions.
Collapse
Affiliation(s)
- Hiroya Muta
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | - Masatomo So
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology , Kindai University , Wakayama 649-6493 , Japan
| | - Jozsef Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry , Eötvös Loránd University , Pázmány P. sétány 1/C , Budapest 1117 , Hungary
| | - Hironobu Naiki
- Faculty of Medical Sciences , University of Fukui , Fukui 910-1193 , Japan
| | - Yuji Goto
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
16
|
Noji M, Sasahara K, Yamaguchi K, So M, Sakurai K, Kardos J, Naiki H, Goto Y. Heating during agitation of β 2-microglobulin reveals that supersaturation breakdown is required for amyloid fibril formation at neutral pH. J Biol Chem 2019; 294:15826-15835. [PMID: 31495783 DOI: 10.1074/jbc.ra119.009971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Amyloidosis-associated amyloid fibrils are formed by denatured proteins when supersaturation of denatured proteins is broken. β2-Microglobulin (β2m) forms amyloid fibrils and causes dialysis-related amyloidosis in patients receiving long-term hemodialysis. Although amyloid fibrils of β2m in patients are observed at neutral pH, formation of β2m amyloids in vitro has been difficult to discern at neutral pH because of the amyloid-resistant native structure. Here, to further understand the mechanism underlying in vivo amyloid formation, we investigated the relationship between protein folding/unfolding and misfolding leading to amyloid formation. Using thioflavin T assays, CD spectroscopy, and transmission EM analyses, we found that β2m efficiently forms amyloid fibrils even at neutral pH by heating with agitation at high-salt conditions. We constructed temperature- and NaCl concentration-dependent conformational phase diagrams in the presence or absence of agitation, revealing how amyloid formation under neutral pH conditions is related to thermal unfolding and breakdown of supersaturation. Of note, after supersaturation breakdown and following the law of mass action, the β2m monomer equilibrium shifted to the unfolded state, destabilizing the native state and thereby enabling amyloid formation even under physiological conditions with a low amount of unfolded precursor. The amyloid fibrils depolymerized at both lower and higher temperatures, resembling cold- or heat-induced denaturation of globular proteins. Our results suggest an important role for heating in the onset of dialysis-related amyloidosis and related amyloidoses.
Collapse
Affiliation(s)
- Masahiro Noji
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, Wakayama 649-6493, Japan
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. Sétány 1/C, Budapest, 1117, Hungary
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
J S Loureiro R, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, F N Faísca P. The Early Phase of β2m Aggregation: An Integrative Computational Study Framed on the D76N Mutant and the ΔN6 Variant. Biomolecules 2019; 9:biom9080366. [PMID: 31416179 PMCID: PMC6722664 DOI: 10.3390/biom9080366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human β2-microglobulin (b2m) protein is classically associated with dialysis-related amyloidosis (DRA). Recently, the single point mutant D76N was identified as the causative agent of a hereditary systemic amyloidosis affecting visceral organs. To get insight into the early stage of the β2m aggregation mechanism, we used molecular simulations to perform an in depth comparative analysis of the dimerization phase of the D76N mutant and the ΔN6 variant, a cleaved form lacking the first six N-terminal residues, which is a major component of ex vivo amyloid plaques from DRA patients. We also provide first glimpses into the tetramerization phase of D76N at physiological pH. Results from extensive protein–protein docking simulations predict an essential role of the C- and N-terminal regions (both variants), as well as of the BC-loop (ΔN6 variant), DE-loop (both variants) and EF-loop (D76N mutant) in dimerization. The terminal regions are more relevant under acidic conditions while the BC-, DE- and EF-loops gain importance at physiological pH. Our results recapitulate experimental evidence according to which Tyr10 (A-strand), Phe30 and His31 (BC-loop), Trp60 and Phe62 (DE-loop) and Arg97 (C-terminus) act as dimerization hot-spots, and further predict the occurrence of novel residues with the ability to nucleate dimerization, namely Lys-75 (EF-loop) and Trp-95 (C-terminus). We propose that D76N tetramerization is mainly driven by the self-association of dimers via the N-terminus and DE-loop, and identify Arg3 (N-terminus), Tyr10, Phe56 (D-strand) and Trp60 as potential tetramerization hot-spots.
Collapse
Affiliation(s)
- Rui J S Loureiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Patrícia F N Faísca
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
18
|
Benseny-Cases N, Karamanos TK, Hoop CL, Baum J, Radford SE. Extracellular matrix components modulate different stages in β 2-microglobulin amyloid formation. J Biol Chem 2019; 294:9392-9401. [PMID: 30996004 PMCID: PMC6579475 DOI: 10.1074/jbc.ra119.008300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Indexed: 11/26/2022] Open
Abstract
Amyloid deposition of WT human β2-microglobulin (WT-hβ2m) in the joints of long-term hemodialysis patients is the hallmark of dialysis-related amyloidosis. In vitro, WT-hβ2m does not form amyloid fibrils at physiological pH and temperature unless co-solvents or other reagents are added. Therefore, understanding how fibril formation is initiated and maintained in the joint space is important for elucidating WT-hβ2m aggregation and dialysis-related amyloidosis onset. Here, we investigated the roles of collagen I and the commonly administered anticoagulant, low-molecular-weight (LMW) heparin, in the initiation and subsequent aggregation phases of WT-hβ2m in physiologically relevant conditions. Using thioflavin T fluorescence to study the kinetics of amyloid formation, we analyzed how these two agents affect specific stages of WT-hβ2m assembly. Our results revealed that LMW-heparin strongly promotes WT-hβ2m fibrillogenesis during all stages of aggregation. However, collagen I affected WT-hβ2m amyloid formation in contrasting ways: decreasing the lag time of fibril formation in the presence of LMW-heparin and slowing the rate at higher concentrations. We found that in self-seeded reactions, interaction of collagen I with WT-hβ2m amyloid fibrils attenuates surface-mediated growth of WT-hβ2m fibrils, demonstrating a key role of secondary nucleation in WT-hβ2m amyloid formation. Interestingly, collagen I fibrils did not suppress surface-mediated assembly of WT-hβ2m monomers when cross-seeded with fibrils formed from the N-terminally truncated variant ΔN6-hβ2m. Together, these results provide detailed insights into how collagen I and LMW-heparin impact different stages in the aggregation of WT-hβ2m into amyloid, which lead to dramatic effects on the time course of assembly.
Collapse
Affiliation(s)
- Núria Benseny-Cases
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Theodoros K Karamanos
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Cody L Hoop
- the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Jean Baum
- the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
19
|
Possible mechanisms of polyphosphate-induced amyloid fibril formation of β 2-microglobulin. Proc Natl Acad Sci U S A 2019; 116:12833-12838. [PMID: 31182591 DOI: 10.1073/pnas.1819813116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate (polyP), which is found in various microorganisms and human cells, is an anionic biopolymer consisting of inorganic phosphates linked by high-energy phosphate bonds. Previous studies revealed that polyPs strongly promoted the amyloid formation of several amyloidogenic proteins; however, the mechanism of polyP-induced amyloid formation remains unclear. In the present study using β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, we investigated amyloid formation in the presence of various chain lengths of polyPs at different concentrations under both acidic (pH 2.0 to 2.5) and neutral pH (pH 7.0 to 7.5) conditions. We found that the amyloid formation of β2m at acidic pH was significantly accelerated by the addition of polyPs at an optimal polyP concentration, which decreased with an increase in chain length. The results obtained indicated that electrostatic interactions between positively charged β2m and negatively charged polyPs play a major role in amyloid formation. Under neutral pH conditions, long polyP with 60 to 70 phosphates induced the amyloid formation of β2m at several micromoles per liter, a similar concentration range to that in vivo. Since β2m with an isoelectric point of 6.4 has a slightly negative net charge at pH 7, polyPs were unlikely to interact with β2m electrostatically. PolyPs appear to dehydrate water molecules around β2m under the unfolded conformation, leading to the preferential stabilization of less water-exposed amyloid fibrils. These results not only revealed the pH-dependent mechanism of the amyloid formation of β2m but also suggested that polyPs play an important role in the development of dialysis-related amyloidosis.
Collapse
|
20
|
Olzscha H. Posttranslational modifications and proteinopathies: how guardians of the proteome are defeated. Biol Chem 2019; 400:895-915. [DOI: 10.1515/hsz-2018-0458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/13/2019] [Indexed: 01/15/2023]
Abstract
Abstract
Protein folding is one of the fundamental processes in life and therefore needs to be tightly regulated. Many cellular quality control systems are in place to ensure that proteostasis is optimally adjusted for a changing environment, facilitating protein folding, translocation and degradation. These systems include the molecular chaperones and the major protein degradation systems, namely the ubiquitin proteasome system and autophagy. However, the capacity of the quality control systems can be exhausted and protein misfolding and aggregation, including the formation of amyloids, can occur as a result of ageing, mutations or exogenous influences. There are many known diseases in which protein misfolding and aggregation can be the underlying cause of the pathological condition; these are referred to as proteinopathies. Over the last decade, it has become clear that posttranslational modifications can govern and modulate protein folding, and that aberrant posttranslational modifications can cause or contribute to proteinopathies. This review provides an overview of protein folding and misfolding and the role of the major protein quality control systems. It focusses on different posttranslational modifications and gives examples of how these posttranslational modifications can alter protein folding and cause or accompany proteinopathies.
Collapse
Affiliation(s)
- Heidi Olzscha
- Institut für Physiologische Chemie , Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg , Hollystr. 1 , D-06114 Halle/Saale , Germany
| |
Collapse
|
21
|
Bijari N, Balalaie S, Akbari V, Golmohammadi F, Moradi S, Adibi H, Khodarahmi R. Effective suppression of the modified PHF6 peptide/1N4R Tau amyloid aggregation by intact curcumin, not its degradation products: Another evidence for the pigment as preventive/therapeutic "functional food". Int J Biol Macromol 2018; 120:1009-1022. [PMID: 30172816 DOI: 10.1016/j.ijbiomac.2018.08.175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022]
Abstract
Curcumin is a natural product with multiple biological activities and numerous potential therapeutic applications. In present study, the influence of curcumin and its degradation products (DPs) on the amyloid aggregation of Tau protein and the related PHF6 peptide were investigated. We provided experimental/theoretical evidence for suppressing effects of the compounds on the amyloid formation using far-UV CD as well as AFM, XRD and docking techniques and showed that the parent curcumin displayed stronger inhibition effect against Tau fibril aggregation. The obtained results suggest that the curcumin/DPs binding sites on the Tau molecule are likely to be the same, and provide a good structural basis to explain the efficient aggregation suppressing behavior of the curcumin, compared to the DPs. So, developing more stable curcumin nanoparticle formulations with improved curcumin bioavailability are of great importance. Curcumin's multi-functionality is also highly significant for the therapeutic application of this natural compound against various human diseases.
Collapse
Affiliation(s)
- Nooshin Bijari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vali Akbari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Farhad Golmohammadi
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Sajad Moradi
- Nano Drug delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Iadanza MG, Silvers R, Boardman J, Smith HI, Karamanos TK, Debelouchina GT, Su Y, Griffin RG, Ranson NA, Radford SE. The structure of a β 2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nat Commun 2018; 9:4517. [PMID: 30375379 PMCID: PMC6207761 DOI: 10.1038/s41467-018-06761-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 11/08/2022] Open
Abstract
All amyloid fibrils contain a cross-β fold. How this structure differs in fibrils formed from proteins associated with different diseases remains unclear. Here, we combine cryo-EM and MAS-NMR to determine the structure of an amyloid fibril formed in vitro from β2-microglobulin (β2m), the culprit protein of dialysis-related amyloidosis. The fibril is composed of two identical protofilaments assembled from subunits that do not share β2m's native tertiary fold, but are formed from similar β-strands. The fibrils share motifs with other amyloid fibrils, but also contain unique features including π-stacking interactions perpendicular to the fibril axis and an intramolecular disulfide that stabilises the subunit fold. We also describe a structural model for a second fibril morphology and show that it is built from the same subunit fold. The results provide insights into the mechanisms of fibril formation and the commonalities and differences within the amyloid fold in different protein sequences.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way Rm. 118 DLC, Tallahassee, FL, 32306-4390, USA
| | - Joshua Boardman
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892-0510, USA
| | - Galia T Debelouchina
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yongchao Su
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
23
|
Heparan sulfate S-domains and extracellular sulfatases (Sulfs): their possible roles in protein aggregation diseases. Glycoconj J 2018; 35:387-396. [PMID: 30003471 DOI: 10.1007/s10719-018-9833-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Highly sulfated domains of heparan sulfate (HS), also known as HS S-domains, consist of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)-]. The expression of HS S-domains at the cell surface is determined by two mechanisms: tightly regulated biosynthetic machinery and enzymatic remodeling by extracellular endoglucosamine 6-sulfatases, Sulf-1 and Sulf-2. Intracellular or extracellular deposits of misfolded and aggregated proteins are characteristic of protein aggregation diseases. Although proteins can aggregate alone, deposits of protein aggregates in vivo contain a number of proteinaceous and non-protein components. HS S-domains are one non-protein component of these aggregated deposits. HS S-domains are considered to be critical for signal transduction of several growth factors and several disease conditions, such as tumor progression, but their roles in protein aggregation diseases are not yet fully understood. This review summarizes the current understanding of the possible roles of HS S-domains and Sulfs in the formation and cytotoxicity of protein aggregates.
Collapse
|
24
|
Jangholi A, Ashrafi-Kooshk MR, Arab SS, Karima S, Poorebrahim M, Ghadami SA, Moosavi-Movahedi AA, Khodarahmi R. Can any “non-specific charge modification within microtubule binding domains of Tau” be a prerequisite of the protein amyloid aggregation? An in vitro study on the 1N4R isoform. Int J Biol Macromol 2018; 109:188-204. [DOI: 10.1016/j.ijbiomac.2017.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023]
|
25
|
Affiliation(s)
- Jancy Nixon Abraham
- Polymer Science and Engineering Division; CSIR National Chemical Laboratory; Pune India
| | - Corinne Nardin
- Université de Pau et des Pays de l'Adour (UPPA), Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (IPREM); Equipe Physique et Chimie des Polymères (EPCP); Pau France
| |
Collapse
|
26
|
Quittot N, Sebastiao M, Bourgault S. Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance. Biochem Cell Biol 2017; 95:329-337. [DOI: 10.1139/bcb-2016-0236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtually always associated with GAGs. Amyloid fibrils are highly organized nanostructures that have been historically associated with pathological states, such as Alzheimer’s disease and systemic amyloidoses. However, recent studies have identified functional amyloids that accomplish crucial physiological roles in almost all living organisms, from bacteria to insects and mammals. Over the last 2 decades, numerous reports have revealed that sulfated GAGs accelerate and (or) promote the self-assembly of a large diversity of proteins, both inherently amyloidogenic and non-aggregation prone. Despite the fact that many studies have investigated the molecular mechanism(s) by which GAGs induce amyloid assembly, the mechanistic elucidation of GAG-mediated amyloidogenesis still remains the subject of active research. In this review, we expose the contribution of GAGs in amyloid assembly, and we discuss the pathophysiological and functional significance of GAG-mediated fibrillization. Finally, we propose mechanistic models of the unique and potent ability of sulfated GAGs to hasten amyloid fibril formation.
Collapse
Affiliation(s)
- Noé Quittot
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Mathew Sebastiao
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
27
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
28
|
So M, Hata Y, Naiki H, Goto Y. Heparin-induced amyloid fibrillation of β 2 -microglobulin explained by solubility and a supersaturation-dependent conformational phase diagram. Protein Sci 2017; 26:1024-1036. [PMID: 28249361 DOI: 10.1002/pro.3149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Amyloid fibrils are fibrillar deposits of denatured proteins associated with amyloidosis and are formed by a nucleation and growth mechanism. We revisited an alternative and classical view of amyloid fibrillation: amyloid fibrils are crystal-like precipitates of denatured proteins formed above solubility upon breaking supersaturation. Various additives accelerate and then inhibit amyloid fibrillation in a concentration-dependent manner, suggesting that the combined effects of stabilizing and destabilizing forces affect fibrillation. Heparin, a glycosaminoglycan and anticoagulant, is an accelerator of fibrillation for various amyloidogenic proteins. By using β2 -microglobulin, a protein responsible for dialysis-related amyloidosis, we herein examined the effects of various concentrations of heparin on fibrillation at pH 2. In contrast to previous studies that focused on accelerating effects, higher concentrations of heparin inhibited fibrillation, and this was accompanied by amorphous aggregation. The two-step effects of acceleration and inhibition were similar to those observed for various salts. The results indicate that the anion effects caused by sulfate groups are one of the dominant factors influencing heparin-dependent fibrillation, although the exact structures of fibrils and amorphous aggregates might differ between those formed by simple salts and matrix-forming heparin. We propose that a conformational phase diagram, accommodating crystal-like amyloid fibrils and glass-like amorphous aggregates, is important for understanding the effects of various additives.
Collapse
Affiliation(s)
- Masatomo So
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Yasuko Hata
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Bonomini F, Taurone S, Parnigotto P, Zamai L, Rodella LF, Artico M, Rezzani R. Role of parnaparin in atherosclerosis. Int J Exp Pathol 2017; 97:457-464. [PMID: 28205266 DOI: 10.1111/iep.12217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/05/2016] [Indexed: 01/14/2023] Open
Abstract
Atherosclerosis is characterized by a proliferation of vascular smooth muscle cells (VSMCs) and their migration to the intima, which induces thickening of the intima itself, but the mechanism remains poorly understood. Low molecular weight heparin (LMWH) inhibits the proliferation of VSMCs. Previous studies have shown that a LMWH, parnaparin (PNP), acts on the processes of atherogenesis and atheroprogression in experimental animal models. The aim of this study was to investigate the involvement of oxidative stress, inflammation and VSMCs in the regulation of vascular wall homeostasis. We also considered the possibility of restoring vascular pathological changes using PNP treatment. In order to evaluate vascular remodelling in this study we have analysed the morphological changes in aortas of an animal model of atherosclerosis, apolipoprotein E-deficient mice (ApoE-/-) fed with a normal or a western diet without treatment or treated with PNP. We also analysed, by immunohistochemistry, the expression of proteins linked to atherogenesis and atheroprogression - an enzyme involved in oxidative stress, iNOS, examples of inflammatory mediators, such as tumour necrosis factor alpha (TNF-α), interleukins 1 and 6 (IL-1 and IL-6), and markers of VSMC changes, in particular plasminogen activator inhibitor-1 and thrombospondin-1 (PAI-1 and TSP-1). Our results could suggest that PNP downregulates VSMC proliferation and migration, mediated by PAI-1 and TSP-1, and reduces inflammation and oxidative stress in vessels. These data suggested that LMWH, in particular PNP, could be a theoretically practical tool in the prevention of atherosclerotic vascular modification.
Collapse
Affiliation(s)
- Francesca Bonomini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Samanta Taurone
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signalling (TES), Onlus, Padua, Italy
| | - Loris Zamai
- Department of Earth, Life and Environment Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Luigi F Rodella
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
30
|
Jangholi A, Ashrafi-Kooshk MR, Arab SS, Riazi G, Mokhtari F, Poorebrahim M, Mahdiuni H, Kurganov BI, Moosavi-Movahedi AA, Khodarahmi R. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study. Arch Biochem Biophys 2016; 609:1-19. [DOI: 10.1016/j.abb.2016.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
31
|
Luo XD, Kong FL, Dang HB, Chen J, Liang Y. Macromolecular crowding favors the fibrillization of β2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1609-19. [DOI: 10.1016/j.bbapap.2016.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022]
|
32
|
Ami D, Lavatelli F, Rognoni P, Palladini G, Raimondi S, Giorgetti S, Monti L, Doglia SM, Natalello A, Merlini G. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 2016; 6:29096. [PMID: 27373200 PMCID: PMC4931462 DOI: 10.1038/srep29096] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
33
|
Kisilevsky R, Raimondi S, Bellotti V. Historical and Current Concepts of Fibrillogenesis and In vivo Amyloidogenesis: Implications of Amyloid Tissue Targeting. Front Mol Biosci 2016; 3:17. [PMID: 27243018 PMCID: PMC4860540 DOI: 10.3389/fmolb.2016.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
Historical and current concepts of in vitro fibrillogenesis are considered in the light of disorders in which amyloid is deposited at anatomic sites remote from the site of synthesis of the corresponding precursor protein. These clinical conditions set constraints on the interpretation of information derived from in vitro fibrillogenesis studies. They suggest that in addition to kinetic and thermodynamic factors identified in vitro, fibrillogenesis in vivo is determined by site specific factors most of which have yet to be identified.
Collapse
Affiliation(s)
- Robert Kisilevsky
- Department of Pathology and Molecular Medicine, Queen's University Kingston, ON, Canada
| | - Sara Raimondi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia Pavia, Italy
| | - Vittorio Bellotti
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy; Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College LondonLondon, UK
| |
Collapse
|
34
|
Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:215-73. [PMID: 27241222 DOI: 10.1016/bs.ircmb.2016.02.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) are ubiquitously expressed on cell surfaces and in the extracellular matrix of most animal tissues, having essential functions in development and homeostasis, as well as playing various roles in disease processes. The functions of HSPGs are mainly dependent on interactions between the HS-side chains with a variety of proteins including cytokines, growth factors, and their receptors. In a given HS polysaccharide, negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The mode of HS-protein interactions is assessed through binding experiments using saccharides of defined composition in vitro, signaling assays in cell models where HS structures are manipulated, and targeted disruption of genes for biosynthetic enzymes in animals (mouse, zebrafish, Drosophila, and Caenorhabditis elegans) followed by phenotype analysis. Whereas some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis and the potential for development of therapeutics targeting HS-protein interactions.
Collapse
Affiliation(s)
- J-P Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden; SciLifeLab, University of Uppsala, Uppsala, Sweden.
| | | |
Collapse
|
35
|
Naiki H, Okoshi T, Ozawa D, Yamaguchi I, Hasegawa K. Molecular pathogenesis of human amyloidosis: Lessons from β2 -microglobulin-related amyloidosis. Pathol Int 2016; 66:193-201. [PMID: 26969800 DOI: 10.1111/pin.12394] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/02/2023]
Abstract
Amyloidosis refers to a group of diseases with amyloid fibrils deposited in various organs and is classified into more than 30 diseases in humans based on the kind of amyloid protein. In order to elucidate the molecular pathogenesis of human amyloidosis, we studied the molecular mechanism of amyloid fibril formation in vitro. We first developed a novel fluorometric method to determine amyloid fibrils in vitro based on the unique characteristics of thioflavin T. We next proposed a nucleation-dependent polymerization model to explain the general mechanism of amyloid fibril formation in vitro. Based on this model, we characterized the biological molecular interactions that promote or inhibit amyloid fibril formation in vitro and developed models of pathological molecular environment for inducing human β2-microglobulin-related amyloidosis in long-term hemodialysis patients. We also proposed a novel and attractive cytotoxic mechanism of β2-microglobulin amyloid fibrils, that is, the disruption of endosomal/lysosomal membranes by endocytosed amyloid fibrils. These findings may be useful to elucidate the molecular pathogenesis of other kinds of human amyloidosis.
Collapse
Affiliation(s)
- Hironobu Naiki
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tadakazu Okoshi
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Daisaku Ozawa
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Itaru Yamaguchi
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuhiro Hasegawa
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
36
|
Pashley CL, Hewitt EW, Radford SE. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation. J Mol Biol 2016; 428:631-643. [PMID: 26780548 PMCID: PMC4773402 DOI: 10.1016/j.jmb.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 10/30/2022]
Abstract
The mouse and human β2-microglobulin protein orthologs are 70% identical in sequence and share 88% sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation.
Collapse
Affiliation(s)
- Clare L Pashley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
37
|
Carrillo-Parramon O, Brancolini G, Corni S. A dynamical coarse-grained model to disclose allosteric control of misfolding β2-microglobulin. RSC Adv 2016. [DOI: 10.1039/c6ra15491c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Development of a novel Coarse-Grained (CG) model to study β2-microglobulin dynamical features related to fibrillation: our one CG bead model is able to indicate propensities in the deformation behavior of the protein via investigation of the protein motion correlations.
Collapse
Affiliation(s)
| | | | - S. Corni
- CNR Institute of Nanoscience
- 41125 Modena
- Italy
| |
Collapse
|
38
|
Zhao G, Seng J, Beagle J, Syrkina O, Hales CA. Heparin reduces overcirculation-induced pulmonary artery remodeling through p38 MAPK in piglet. Ann Thorac Surg 2015; 99:1677-84. [PMID: 25818573 DOI: 10.1016/j.athoracsur.2014.12.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 10/23/2022]
Abstract
BACKGROUND Artery remodeling is the principal change of pulmonary artery hypertension. Heparin has been shown to inhibit vascular smooth muscle cell proliferation. We hypothesized that heparin may modulate vascular remodeling in pulmonary artery hypertension, and explored the mechanism. METHODS A localized overcirculation-induced artery remodeling was created in piglets by anastomosing the left lower lobe pulmonary artery (LLLPA) to the thoracic aortic artery. Piglets were treated with heparin or saline for 4 weeks. Hemodynamic data were collected, and histology of the lung was assessed. We investigated the expressions of several candidate genes in lung and further observed the involvement of P38 mitogen-activated protein kinases (MAPK). The effects of heparin on the growth of cultured pulmonary arterial vascular smooth muscle cell and P38 MAPK expression were further determined under various conditions. RESULTS Four weeks after the shunt setup, overcirculation caused significant LLLPA remodeling, pressure increase, and pulmonary vascular resistance increase, and LLLPA flow reduction compared with that immediately after the shunt setup. Heparin reduced the LLLPA remodeling, pressure, and pulmonary vascular resistance, and increased the LLLPA flow compared with that not heparin treated. Shunt and heparin treatment did not change the piglet's systemic hemodynamics. Shunt increased the expression of P38 MAPK and heparin decreased its expression in the shunted LLLPA. Both heparin and P38 MAPK inhibitor suppressed VSMC growth and P38 MAPK expression in the cultured VSMC, but they did not present additive effects when the two treatments were combined. CONCLUSIONS Heparin reduces overcirculation-induced pulmonary artery remodeling through a P38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Gaofeng Zhao
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Seng
- Department of Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John Beagle
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Olga Syrkina
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles A Hales
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
39
|
Brancolini G, Corazza A, Vuano M, Fogolari F, Mimmi MC, Bellotti V, Stoppini M, Corni S, Esposito G. Probing the influence of citrate-capped gold nanoparticles on an amyloidogenic protein. ACS NANO 2015; 9:2600-13. [PMID: 25695203 DOI: 10.1021/nn506161j] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticles (NPs) are known to exhibit distinct physical and chemical properties compared with the same materials in bulk form. NPs have been repeatedly reported to interact with proteins, and this interaction can be exploited to affect processes undergone by proteins, such as fibrillogenesis. Fibrillation is common to many proteins, and in living organisms, it causes tissue-specific or systemic amyloid diseases. The nature of NPs and their surface chemistry is crucial in assessing their affinity for proteins and their effects on them. Here we present the first detailed structural characterization and molecular mechanics model of the interaction between a fibrillogenic protein, β2-microglobulin, and a NP, 5 nm hydrophilic citrate-capped gold nanoparticles. NMR measurements and simulations at multiple levels (enhanced sampling molecular dynamics, Brownian dynamics, and Poisson-Boltzmann electrostatics) explain the origin of the observed protein perturbations mostly localized at the amino-terminal region. Experiments show that the protein-NP interaction is weak in the physiological-like, conditions and do not induce protein fibrillation. Simulations reproduce these findings and reveal instead the role of the citrate in destabilizing the lower pH protonated form of β2-microglobulin. The results offer possible strategies for controlling the desired effect of NPs on the conformational changes of the proteins, which have significant roles in the fibrillation process.
Collapse
Affiliation(s)
- Giorgia Brancolini
- †Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Alessandra Corazza
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
| | - Marco Vuano
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Federico Fogolari
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
| | - Maria Chiara Mimmi
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Vittorio Bellotti
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
- ⊥Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy
- ∥Division of Medicine, University College of London, London NW3 2PF, U.K
| | - Monica Stoppini
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
- ⊥Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Stefano Corni
- †Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Gennaro Esposito
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
- ¶Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
40
|
Wild type beta-2 microglobulin and DE loop mutants display a common fibrillar architecture. PLoS One 2015; 10:e0122449. [PMID: 25803608 PMCID: PMC4372401 DOI: 10.1371/journal.pone.0122449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/15/2015] [Indexed: 12/14/2022] Open
Abstract
Beta-2 microglobulin (β2m) is the protein responsible for a pathologic condition known as dialysis related amyloidosis. In recent years an important role has been assigned to the peptide loop linking strands D and E (DE loop) in determining β2m stability and amyloid propensity. Several mutants of the DE loop have been studied, showing a good correlation between DE loop geometrical strain, protein stability and aggregation propensity. However, it remains unclear whether the aggregates formed by wild type (wt) β2m and by the DE loop variants are of the same kind, or whether the mutations open new aggregation pathways. In order to address this question, fibrillar samples of wt and mutated β2m variants have been analysed by means of atomic force microscopy and infrared spectroscopy. The data here reported indicate that the DE loop mutants form aggregates with morphology and structural organisation very similar to the wt protein. Therefore, the main effect of β2m DE loop mutations is proposed to stem from the different stabilities of the native fold. Considerations on the structural role of the DE loop in the free monomeric β2m and as part of the Major Histocompatibility Complex are also presented.
Collapse
|
41
|
Abstract
β2-Microglobulin is responsible for systemic amyloidosis affecting patients undergoing long-term hemodialysis. Its genetic variant D76N causes a very rare form of familial systemic amyloidosis. These two types of amyloidoses differ significantly in terms of the tissue localization of deposits and for major pathological features. Considering how the amyloidogenesis of the β2-microglobulin mechanism has been scrutinized in depth for the last three decades, the comparative analysis of molecular and pathological properties of wild type β2-microglobulin and of the D76N variant offers a unique opportunity to critically reconsider the current understanding of the relation between the protein's structural properties and its pathologic behavior.
Collapse
Affiliation(s)
- Monica Stoppini
- From the Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Vittorio Bellotti
- From the Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy and the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
42
|
Iannuzzi C, Irace G, Sirangelo I. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity. Molecules 2015; 20:2510-28. [PMID: 25648594 PMCID: PMC6272481 DOI: 10.3390/molecules20022510] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023] Open
Abstract
Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs) are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| | - Gaetano Irace
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| | - Ivana Sirangelo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| |
Collapse
|
43
|
Murvai Ü, Somkuti J, Smeller L, Penke B, Kellermayer MSZ. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:327-32. [PMID: 25600136 DOI: 10.1016/j.bbapap.2015.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/28/2014] [Accepted: 01/11/2015] [Indexed: 11/30/2022]
Abstract
Aβ25-35, the fibril-forming, biologically active toxic fragment of the full-length amyloid β-peptide also forms fibrils on mica by an epitaxial assembly mechanism. Here we investigated, by using atomic force microscopy, nanomechanical manipulation and FTIR spectroscopy, whether the epitaxially grown fibrils display structural and mechanical features similar to the ones evolving under equilibrium conditions in bulk solution. Unlike epitaxially grown fibrils, solution-grown fibrils displayed a heterogeneous morphology and an apparently helical structure. While fibril assembly in solution occurred on a time scale of hours, it appeared within a few minutes on mica surface fibrils. Both types of fibrils showed a similar plateau-like nanomechanical response characterized by the appearance of force staircases. The IR spectra of both fibril types contained an intense peak between 1620 and 1640 cm(-1), indicating that β-sheets dominate their structure. A shift in the amide I band towards greater wave numbers in epitaxially assembled fibrils suggests that their structure is less compact than that of solution-grown fibrils. Thus, equilibrium conditions are required for a full structural compaction. Epitaxial Aβ25-35 fibril assembly, while significantly accelerated, may trap the fibrils in less compact configurations. Considering that under in vivo conditions the assembly of amyloid fibrils is influenced by the presence of extracellular matrix components, the ultimate fibril structure is likely to be influenced by the features of underlying matrix elements.
Collapse
Affiliation(s)
- Ünige Murvai
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary
| | - Botond Penke
- Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Dóm tér 8, Szeged, H-6720,Hungary
| | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094 Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest, Szeged, Dóm tér 81094 Hungary.
| |
Collapse
|
44
|
Nguyen PT, Andraka N, De Carufel CA, Bourgault S. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis. J Diabetes Res 2015; 2015:515307. [PMID: 26576436 PMCID: PMC4630397 DOI: 10.1155/2015/515307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/24/2023] Open
Abstract
Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Nagore Andraka
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Carole Anne De Carufel
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- *Steve Bourgault:
| |
Collapse
|
45
|
Zhao D, Zhang S, Meng Y, Xiongwei D, Zhang D, Liang Y, Wang L, Liu C. Polyanion binding accelerates the formation of stable and low-toxic aggregates of ALS-linked SOD1 mutant A4V. Proteins 2014; 82:3356-72. [PMID: 25220364 DOI: 10.1002/prot.24691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022]
Abstract
The toxic property thus far shared by both ALS-linked SOD1 variants and wild-type SOD1 is an increased propensity to aggregation. However, whether SOD1 oligomers or aggregates are toxic to cells remains to be well defined. Moreover, how the toxic SOD1 species are removed from intra- and extracellular environments also needs to be further explored. The DNA binding has been shown to be capable of accelerating the aggregatio\n of wild-type and oxidized SOD1 forms under acidic and neutral conditions. In this study, we explore the binding of DNA and heparin, two types of essential life polyanions, to A4V, an ALS-linked SOD1 mutant, under acidic conditions, and its consequences. The polyanion binding alters the A4V conformation, neutralizes its local positive charges, and increases its local concentrations along the polyanion chain, which are sufficient to lead to acceleration of the pH-dependent A4V aggregation. The accelerated aggregation, which is ascribed to the polyanion binding-mediated removal or shortening of the lag phase in aggregation, contributes to the formation of amorphous A4V nanoparticles. The prolonged incubation with polyanions not only results in the complete conversion of likely soluble toxic A4V oligomers into non- and low-toxic SDS-resistant aggregates, but also increases their stability. Although this is only an initial step toward reducing the toxicity of SOD1 mutants, the accelerating role of polyanions in protein aggregation might become one of the rapid pathways that remove toxic forms of SOD1 mutants from intra- and extracellular environments.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kumar S, Sharma P, Arora K, Raje M, Guptasarma P. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates. PLoS One 2014; 9:e95725. [PMID: 24755626 PMCID: PMC3995793 DOI: 10.1371/journal.pone.0095725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/30/2014] [Indexed: 11/17/2022] Open
Abstract
Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m) under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum) concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD) varieties. We establish (a) that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b) that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c) that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d) that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT), resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.
Collapse
Affiliation(s)
- Sukhdeep Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Prerna Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India; Council of Scientific and Industrial Research, Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Kanika Arora
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Manoj Raje
- Council of Scientific and Industrial Research, Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Purnananda Guptasarma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
47
|
Relini A, Marano N, Gliozzi A. Misfolding of amyloidogenic proteins and their interactions with membranes. Biomolecules 2013; 4:20-55. [PMID: 24970204 PMCID: PMC4030986 DOI: 10.3390/biom4010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023] Open
Abstract
In this paper, we discuss amyloidogenic proteins, their misfolding, resulting structures, and interactions with membranes, which lead to membrane damage and subsequent cell death. Many of these proteins are implicated in serious illnesses such as Alzheimer’s disease and Parkinson’s disease. Misfolding of amyloidogenic proteins leads to the formation of polymorphic oligomers and fibrils. Oligomeric aggregates are widely thought to be the toxic species, however, fibrils also play a role in membrane damage. We focus on the structure of these aggregates and their interactions with model membranes. Study of interactions of amlyoidogenic proteins with model and natural membranes has shown the importance of the lipid bilayer in protein misfolding and aggregation and has led to the development of several models for membrane permeabilization by the resulting amyloid aggregates. We discuss several of these models: formation of structured pores by misfolded amyloidogenic proteins, extraction of lipids, interactions with receptors in biological membranes, and membrane destabilization by amyloid aggregates perhaps analogous to that caused by antimicrobial peptides.
Collapse
Affiliation(s)
- Annalisa Relini
- Department of Physics, University of Genoa, Genoa 16146, Italy.
| | - Nadia Marano
- Department of Physics, University of Genoa, Genoa 16146, Italy.
| | | |
Collapse
|
48
|
Halabelian L, Ricagno S, Giorgetti S, Santambrogio C, Barbiroli A, Pellegrino S, Achour A, Grandori R, Marchese L, Raimondi S, Mangione PP, Esposito G, Al-Shawi R, Simons JP, Speck I, Stoppini M, Bolognesi M, Bellotti V. Class I major histocompatibility complex, the trojan horse for secretion of amyloidogenic β2-microglobulin. J Biol Chem 2013; 289:3318-27. [PMID: 24338476 PMCID: PMC3916536 DOI: 10.1074/jbc.m113.524157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To form extracellular aggregates, amyloidogenic proteins bypass the intracellular quality control, which normally targets unfolded/aggregated polypeptides. Human D76N β2-microglobulin (β2m) variant is the prototype of unstable and amyloidogenic protein that forms abundant extracellular fibrillar deposits. Here we focus on the role of the class I major histocompatibility complex (MHCI) in the intracellular stabilization of D76N β2m. Using biophysical and structural approaches, we show that the MHCI containing D76N β2m (MHCI76) displays stability, dissociation patterns, and crystal structure comparable with those of the MHCI with wild type β2m. Conversely, limited proteolysis experiments show a reduced protease susceptibility for D76N β2m within the MHCI76 as compared with the free variant, suggesting that the MHCI has a chaperone-like activity in preventing D76N β2m degradation within the cell. Accordingly, D76N β2m is normally assembled in the MHCI and circulates as free plasma species in a transgenic mouse model.
Collapse
Affiliation(s)
- Levon Halabelian
- From the Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hill SE, Donegan RK, Lieberman RL. The glaucoma-associated olfactomedin domain of myocilin forms polymorphic fibrils that are constrained by partial unfolding and peptide sequence. J Mol Biol 2013; 426:921-35. [PMID: 24333014 DOI: 10.1016/j.jmb.2013.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The glaucoma-associated olfactomedin domain of myocilin (myoc-OLF) is a recent addition to the growing list of disease-associated amyloidogenic proteins. Inherited, disease-causing myocilin variants aggregate intracellularly instead of being secreted to the trabecular meshwork, which is a scenario toxic to trabecular meshwork cells and leads to early onset of ocular hypertension, the major risk factor for glaucoma. Here we systematically structurally and biophysically dissected myoc-OLF to better understand its amyloidogenesis. Under mildly destabilizing conditions, wild-type myoc-OLF adopts non-native structures that readily fibrillize when incubated at a temperature just below the transition for tertiary unfolding. With buffers at physiological pH, two main endpoint fibril morphologies are observed: (a) straight fibrils common to many amyloids and (b) unique micron-length, ~300 nm or larger diameter, species that lasso oligomers, which also exhibit classical spectroscopic amyloid signatures. Three disease-causing variants investigated herein exhibit non-native tertiary structures under physiological conditions, leading to a variety of growth rates and a fibril morphologies. In particular, the well-documented D380A variant, which lacks calcium, forms large circular fibrils. Two amyloid-forming peptide stretches have been identified, one for each of the main fibril morphologies observed. Our study places myoc-OLF within the larger landscape of the amylome and provides insight into the diversity of myoc-OLF aggregation that plays a role in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Shannon E Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive Northwest, Atlanta, GA 30332-0400, USA
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive Northwest, Atlanta, GA 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive Northwest, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
50
|
De Carufel CA, Nguyen PT, Sahnouni S, Bourgault S. New insights into the roles of sulfated glycosaminoglycans in islet amyloid polypeptide amyloidogenesis and cytotoxicity. Biopolymers 2013; 100:645-55. [DOI: 10.1002/bip.22243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 01/16/2023]
Affiliation(s)
| | - Phuong Trang Nguyen
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| | - Sabrina Sahnouni
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| | - Steve Bourgault
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| |
Collapse
|