1
|
Ren B, Kong P, Hedar F, Brouwers JF, Gupta N. Phosphatidylinositol synthesis, its selective salvage, and inter-regulation of anionic phospholipids in Toxoplasma gondii. Commun Biol 2020; 3:750. [PMID: 33303967 PMCID: PMC7728818 DOI: 10.1038/s42003-020-01480-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol (PtdIns) serves as an integral component of eukaryotic membranes; however, its biosynthesis in apicomplexan parasites remains poorly understood. Here we show that Toxoplasma gondii-a common intracellular pathogen of humans and animals-can import and co-utilize myo-inositol with the endogenous CDP-diacylglycerol to synthesize PtdIns. Equally, the parasite harbors a functional PtdIns synthase (PIS) containing a catalytically-vital CDP-diacylglycerol phosphotransferase motif in the Golgi apparatus. Auxin-induced depletion of PIS abrogated the lytic cycle of T. gondii in human cells due to defects in cell division, gliding motility, invasion, and egress. Isotope labeling of the PIS mutant in conjunction with lipidomics demonstrated de novo synthesis of specific PtdIns species, while revealing the salvage of other lipid species from the host cell. Not least, the mutant showed decline in phosphatidylthreonine, and elevation of selected phosphatidylserine and phosphatidylglycerol species, indicating a rerouting of CDP-diacylglycerol and homeostatic inter-regulation of anionic phospholipids upon knockdown of PIS. In conclusion, strategic allocation of own and host-derived PtdIns species to gratify its metabolic demand features as a notable adaptive trait of T. gondii. Conceivably, the dependence of T. gondii on de novo lipid synthesis and scavenging can be exploited to develop new anti-infectives.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Pengfei Kong
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Fatima Hedar
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Jos F Brouwers
- Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India.
| |
Collapse
|
2
|
Morotti ALM, Martins-Teixeira MB, Carvalho I. Protozoan Parasites Glycosylphosphatidylinositol Anchors: Structures, Functions and Trends for Drug Discovery. Curr Med Chem 2019; 26:4301-4322. [PMID: 28748758 DOI: 10.2174/0929867324666170727110801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) anchors are molecules located on cell membranes of all eukaryotic organisms. Proteins, enzymes, and other macromolecules which are anchored by GPIs are essential elements for interaction between cells, and are widely used by protozoan parasites when compared to higher eukaryotes. METHODS More than one hundred references were collected to obtain broad information about mammalian and protozoan parasites' GPI structures, biosynthetic pathways, functions and attempts to use these molecules as drug targets against parasitic diseases. Differences between GPI among species were compared and highlighted. Strategies for drug discovery and development against protozoan GPI anchors were discussed based on what has been reported on literature. RESULTS There are many evidences that GPI anchors are crucial for parasite's survival and interaction with hosts' cells. Despite all GPI anchors contain a conserved glycan core, they present variations regarding structural features and biosynthetic pathways between organisms, which could offer adequate selectivity to validate GPI anchors as drug targets. Discussion was developed with focus on the following parasites: Trypanosoma brucei, Trypanosoma cruzi, Leishmania, Plasmodium falciparum and Toxoplasma gondii, causative agents of tropical neglected diseases. CONCLUSION This review debates the main variances between parasitic and mammalian GPI anchor biosynthesis and structures, as well as clues for strategic development for new anti-parasitic therapies based on GPI anchors.
Collapse
Affiliation(s)
- Ana Luísa Malaco Morotti
- School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto - University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Debierre-Grockiego F, Smith TK, Delbecq S, Ducournau C, Lantier L, Schmidt J, Brès V, Dimier-Poisson I, Schwarz RT, Cornillot E. Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2-biased cytokine profiles in antigen presenting cells. Biochimie 2019; 167:135-144. [PMID: 31585151 PMCID: PMC7079338 DOI: 10.1016/j.biochi.2019.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are glycolipids described as toxins of protozoan parasites due to their inflammatory properties in mammalian hosts characterized by the production of interleukin (IL)-1, IL-12 and tumor necrosis factor (TNF)-α. In the present work, we studied the cytokines produced by antigen presenting cells in response to ten different GPI species extracted from Babesia divergens, responsible for babesiosis. Interestingly, B. divergens GPIs induced the production of anti-inflammatory cytokines (IL-2, IL-5) and of the regulatory cytokine IL-10 by macrophages and dendritic cells. In contrast to all protozoan GPIs studied until now, GPIs from B. divergens did not stimulate the production of TNF-α and IL-12, leading to a unique Th1/Th2 profile. Analysis of the carbohydrate composition of the B. divergens GPIs indicated that the di-mannose structure was different from the evolutionary conserved tri-mannose structure, which might explain the particular cytokine profile they induce. Expression of major histocompatibility complex (MHC) molecules on dendritic cells and apoptosis of mouse peritoneal cells were also analysed. B. divergens GPIs did not change expression of MHC class I, but decreased expression of MHC class II at the cell surface, while GPIs slightly increased the percentages of apoptotic cells. During pathogenesis of babesiosis, the inflammation-coagulation auto-amplification loop can lead to thrombosis and the effect of GPIs on coagulation parameters was investigated. Incubation of B. divergens GPIs with rat plasma ex vivo led to increase of fibrinogen levels and to prolonged activated partial thromboplastin time, suggesting a direct modulation of the extrinsic coagulation pathway by GPIs.
Collapse
Affiliation(s)
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, Scotland, KY16 9ST, UK
| | - Stéphane Delbecq
- Vaccination Antiparasitaire, Université de Montpellier, 34093, Montpellier, France
| | | | | | - Jörg Schmidt
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Virginie Brès
- Vaccination Antiparasitaire, Université de Montpellier, 34093, Montpellier, France
| | | | - Ralph T Schwarz
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043, Marburg, Germany; Univ. Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle, 34095, Montpellier, France; Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34095, Montpellier, France
| |
Collapse
|
4
|
Debierre-Grockiego F, Smith TK, Delbecq S, Ducournau C, Lantier L, Schmidt J, Brès V, Dimier-Poisson I, Schwarz RT, Cornillot E. WITHDRAWN: Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2-biased cytokine profiles in antigen presenting cells. BIOCHIMIE OPEN 2019. [DOI: 10.1016/j.biopen.2019.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Niehus S, Smith TK, Azzouz N, Campos MA, Dubremetz JF, Gazzinelli RT, Schwarz RT, Debierre-Grockiego F. Virulent and avirulent strains of Toxoplasma gondii which differ in their glycosylphosphatidylinositol content induce similar biological functions in macrophages. PLoS One 2014; 9:e85386. [PMID: 24489660 PMCID: PMC3904843 DOI: 10.1371/journal.pone.0085386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH). The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ∼34% of the protein-free GPIs as well as ∼70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages.
Collapse
Affiliation(s)
- Sebastian Niehus
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UPR 9022 CNRS, Institute of Molecular and Cellular Biology, Strasbourg, France
- * E-mail:
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Nahid Azzouz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
| | - Marco A. Campos
- Research Center René Rachou, Oswaldo Cruz Foundation, Laboratory of Immunopathology, Belo Horizonte, Brazil
| | | | - Ricardo T. Gazzinelli
- Research Center René Rachou, Oswaldo Cruz Foundation, Laboratory of Immunopathology, Belo Horizonte, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ralph T. Schwarz
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UMR 8576 CNRS, Unit of Structural and Functional Glycobiology, University of, Lille, France
| | - Françoise Debierre-Grockiego
- Institute for Virology, Laboratory of Parasitology, Philipps-University, Marburg, Germany
- UMR 1282 Infectiology and Public Health, University of Tours, Tours, France and INRA, Nouzilly, France
| |
Collapse
|
6
|
Metabolic reconstruction identifies strain‐specific regulation of virulence in
Toxoplasma gondii. Mol Syst Biol 2013; 9:708. [PMID: 24247825 PMCID: PMC4039375 DOI: 10.1038/msb.2013.62] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/10/2013] [Indexed: 12/27/2022] Open
|
7
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
8
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Niehus S, Elass E, Coddeville B, Guérardel Y, Schwarz RT, Debierre-Grockiego F. Glycosylphosphatidylinositols of Toxoplasma gondii induce matrix metalloproteinase-9 production and degradation of galectin-3. Immunobiology 2012; 217:61-4. [DOI: 10.1016/j.imbio.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/25/2022]
|
10
|
E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother 2011; 56:960-71. [PMID: 22143530 DOI: 10.1128/aac.00731-11] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Continued research toward the development of new antifungals that act via inhibition of glycosylphosphatidylinositol (GPI) biosynthesis led to the design of E1210. In this study, we assessed the selectivity of the inhibitory activity of E1210 against Candida albicans GWT1 (Orf19.6884) protein, Aspergillus fumigatus GWT1 (AFUA_1G14870) protein, and human PIG-W protein, which can catalyze the inositol acylation of GPI early in the GPI biosynthesis pathway, and then we assessed the effects of E1210 on key C. albicans virulence factors. E1210 inhibited the inositol acylation activity of C. albicans Gwt1p and A. fumigatus Gwt1p with 50% inhibitory concentrations (IC(50)s) of 0.3 to 0.6 μM but had no inhibitory activity against human Pig-Wp even at concentrations as high as 100 μM. To confirm the inhibition of fungal GPI biosynthesis, expression of ALS1 protein, a GPI-anchored protein, on the surfaces of C. albicans cells treated with E1210 was studied and shown to be significantly lower than that on untreated cells. However, the ALS1 protein levels in the crude extract and the RHO1 protein levels on the cell surface were found to be almost the same. Furthermore, E1210 inhibited germ tube formation, adherence to polystyrene surfaces, and biofilm formation of C. albicans at concentrations above its MIC. These results suggested that E1210 selectively inhibited inositol acylation of fungus-specific GPI which would be catalyzed by Gwt1p, leading to the inhibition of GPI-anchored protein maturation, and also that E1210 suppressed the expression of some important virulence factors of C. albicans, through its GPI biosynthesis inhibition.
Collapse
|
11
|
De Lederkremer RM, Agusti R, Docampo R. Inositolphosphoceramide metabolism in Trypanosoma cruzi as compared with other trypanosomatids. J Eukaryot Microbiol 2011; 58:79-87. [PMID: 21332877 DOI: 10.1111/j.1550-7408.2011.00533.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chagas disease is caused by Trypanosoma cruzi and is endemic to North, Central and South American countries. Current therapy against this disease is only partially effective and produces adverse side effects. Studies on the metabolic pathways of T. cruzi, in particular those with no equivalent in mammalian cells, might identify targets for the development of new drugs. Ceramide is metabolized to inositolphosphoceramide (IPC) in T. cruzi and other kinetoplastid protists whereas in mammals it is mainly incorporated into sphingomyelin. In T. cruzi, in contrast to Trypanosoma brucei and Leishmania spp., IPC functions as lipid anchor constituent of glycoproteins and free glycosylinositolphospholipids (GIPLs). Inhibition of IPC and GIPLs biosynthesis impairs differentiation of trypomastigotes into the intracellular amastigote forms. The gene encoding IPC synthase in T. cruzi has been identified and the enzyme has been expressed in a cell-free system. The enzyme involved in IPC degradation and the remodelases responsible for the incorporation of ceramide into free GIPLs or into the glycosylphosphatidylinositols anchoring glycoproteins, and in fatty acid modifications of these molecules of T. cruzi have been understudied. Inositolphosphoceramide metabolism and remodeling could be exploited as targets for Chagas disease chemotherapy.
Collapse
Affiliation(s)
- Rosa M De Lederkremer
- CHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
12
|
Greganova E, Bütikofer P, Acosta-Serrano A. The protease resistant surface (PRS) glycoconjugate from Trypanosoma congolense has an inositol-acylated glycosylphosphatidylinositol anchor, containing a significant proportion of myristate at the sn-2 position. Mol Biochem Parasitol 2010; 171:50-4. [DOI: 10.1016/j.molbiopara.2010.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 11/28/2022]
|
13
|
Debierre-Grockiego F, Schwarz RT. Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 2010; 20:801-11. [PMID: 20378610 DOI: 10.1093/glycob/cwq038] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apicomplexan protozoa are a phylum of parasites that includes pathogens such as Plasmodium, the causative agent of the most severe form of malaria responsible for almost 1 million deaths per year and Toxoplasma gondii causing toxoplasmosis, a disease leading to cerebral meningitis in immunocompromised individuals or to abortion in farm animals or in women that are infected for the first time during pregnancy. The initial immune reactions developed by the host are similar in response to an infection with Plasmodium and Toxoplasma in the sense that the same cells of the innate immune system are stimulated to produce inflammatory cytokines. The glycosylphosphatidylinositol (GPI) anchor is the major carbohydrate modification in parasite proteins and the GPIs are essential for parasite survival. Two immediate GPI precursors with the structures ethanolamine phosphate-6(Manalpha1-2)Manalpha1-2Manalpha1-6Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6Man-alpha1-4-GlcN-PI are synthesized by P. falciparum. Two main structures are synthesized by T. gondii: ethanolamine phosphate-6Manalpha1-2Manalpha1-6(GalNAcbeta1-4)Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6(Glcalpha1-4GalNAcbeta1-4)Manalpha1-4GlcN-PI. This review describes the biosynthesis of the apicomplexan GPIs and their role in the activation of the host immune system.
Collapse
Affiliation(s)
- Françoise Debierre-Grockiego
- UMR Université-INRA 0483, Immunologie Parasitaire Vaccinologie et Biothérapies anti-infectieuses, UFR Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France
| | | |
Collapse
|
14
|
Chapter 12 Inhibitors of GPI Biosynthesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Chapter 9 GPIs of Apicomplexan Protozoa. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 2008; 26:4541-8. [DOI: 10.1016/j.vaccine.2008.06.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/23/2022]
|