1
|
Cahoon EB, Kim P, Xie T, González Solis A, Han G, Gong X, Dunn TM. Sphingolipid homeostasis: How do cells know when enough is enough? Implications for plant pathogen responses. PLANT PHYSIOLOGY 2024; 197:kiae460. [PMID: 39222369 DOI: 10.1093/plphys/kiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipid homeostatic regulation is important for balancing plant life and death. Plant cells finely tune sphingolipid biosynthesis to ensure sufficient levels to support growth through their basal functions as major components of endomembranes and the plasma membrane. Conversely, accumulation of sphingolipid biosynthetic intermediates, long-chain bases (LCBs) and ceramides, is associated with programmed cell death. Limiting these apoptotic intermediates is important for cell viability, while overriding homeostatic regulation permits cells to generate elevated LCBs and ceramides to respond to pathogens to elicit the hypersensitive response in plant immunity. Key to sphingolipid homeostasis is serine palmitoyltransferase (SPT), an endoplasmic reticulum-associated, multi-subunit enzyme catalyzing the first step in the biosynthesis of LCBs, the defining feature of sphingolipids. Across eukaryotes, SPT interaction with its negative regulator Orosomucoid-like (ORM) is critical for sphingolipid biosynthetic homeostasis. The recent cryo-electron microscopy structure of the Arabidopsis SPT complex indicates that ceramides bind ORMs to competitively inhibit SPT activity. This system provides a sensor for intracellular ceramide concentrations for sphingolipid homeostatic regulation. Combining the newly elucidated Arabidopsis SPT structure and mutant characterization, we present a model for the role of the 2 functionally divergent Arabidopsis ceramide synthase classes to produce ceramides that form repressive (trihydroxy LCB-ceramides) or nonrepressive (dihydroxy LCB-ceramides) ORM interactions to influence SPT activity. We describe how sphingolipid biosynthesis is regulated by the interplay of ceramide synthases with ORM-SPT when "enough is enough" and override homeostatic suppression when "enough is not enough" to respond to environmental stimuli such as microbial pathogen attack.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Panya Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ariadna González Solis
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Osinuga A, González Solís A, Cahoon RE, Alsiyabi A, Cahoon EB, Saha R. Deciphering sphingolipid biosynthesis dynamics in Arabidopsis thaliana cell cultures: Quantitative analysis amid data variability. iScience 2024; 27:110675. [PMID: 39297170 PMCID: PMC11409011 DOI: 10.1016/j.isci.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we obtained data with notable variations and developed a regularized and constraint-based dynamic metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges posed by data variability, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna González Solís
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
3
|
Osinuga A, Solis AG, Cahoon RE, Al-Siyabi A, Cahoon EB, Saha R. Quantitative Dynamic Analysis of de novo Sphingolipid Biosynthesis in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570827. [PMID: 38105963 PMCID: PMC10723408 DOI: 10.1101/2023.12.08.570827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we developed a regularized and constraint-based Dynamic Metabolic Flux Analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Thus, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna Gonzalez Solis
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Al-Siyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
4
|
Li Y, Cao H, Dong T, Wang X, Ma L, Li K, Lou H, Song CP, Ren D. Phosphorylation of the LCB1 subunit of Arabidopsis serine palmitoyltransferase stimulates its activity and modulates sphingolipid biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738228 DOI: 10.1111/jipb.13461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 06/18/2023]
Abstract
Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes. Serine palmitoyltransferase (SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway. The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT (ssSPTs). However, whether LCB1 is modified and how such modification might regulate SPT activity have to date been unclear. Here, we show that activation of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 by upstream MKK9 and treatment with Flg22 (a pathogen-associated molecular pattern) increases SPT activity and induces the accumulation of sphingosine long-chain base t18:0 in Arabidopsis thaliana, with activated MPK3 and MPK6 phosphorylating AtLCB1. Phosphorylation of AtLCB1 strengthened its binding with AtLCB2b, promoted its binding with ssSPTs, and stimulated the formation of higher order oligomeric and active SPT complexes. Our findings therefore suggest a novel regulatory mechanism for SPT activity.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hanwei Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tingting Dong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoke Wang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kun Li
- Collaborative Innovation Center of Crop Stress Biology, Henan Province. Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province. Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Vaghela P, Das AK, Trivedi K, Anand KV, Shinde P, Ghosh A. Characterization and metabolomics profiling of Kappaphycus alvarezii seaweed extract. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Lambour B, Glenz R, Forner C, Krischke M, Mueller MJ, Fekete A, Waller F. Sphingolipid Long-Chain Base Phosphate Degradation Can Be a Rate-Limiting Step in Long-Chain Base Homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:911073. [PMID: 35783987 PMCID: PMC9240600 DOI: 10.3389/fpls.2022.911073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels.
Collapse
|
7
|
Haslam TM, Feussner I. Diversity in sphingolipid metabolism across land plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2785-2798. [PMID: 35560193 PMCID: PMC9113257 DOI: 10.1093/jxb/erab558] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids are essential metabolites found in all plant species. They are required for plasma membrane integrity, tolerance of and responses to biotic and abiotic stresses, and intracellular signalling. There is extensive diversity in the sphingolipid content of different plant species, and in the identities and roles of enzymes required for their processing. In this review, we survey results obtained from investigations of the classical genetic model Arabidopsis thaliana, from assorted dicots with less extensive genetic toolkits, from the model monocot Oryza sativa, and finally from the model bryophyte Physcomitrium patens. For each species or group, we first broadly summarize what is known about sphingolipid content. We then discuss the most insightful and puzzling features of modifications to the hydrophobic ceramides, and to the polar headgroups of complex sphingolipids. Altogether, these data can serve as a framework for our knowledge of sphingolipid metabolism across the plant kingdom. This chemical and metabolic heterogeneity underpins equally diverse functions. With greater availability of different tools for analytical measurements and genetic manipulation, our field is entering an exciting phase of expanding our knowledge of the biological functions of this persistently cryptic class of lipids.
Collapse
Affiliation(s)
- Tegan M Haslam
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany
| |
Collapse
|
8
|
Zeng HY, Bao HN, Chen YL, Chen DK, Zhang K, Liu SK, Yang L, Li YK, Yao N. The Two Classes of Ceramide Synthases Play Different Roles in Plant Immunity and Cell Death. FRONTIERS IN PLANT SCIENCE 2022; 13:824585. [PMID: 35463421 PMCID: PMC9021646 DOI: 10.3389/fpls.2022.824585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 05/12/2023]
Abstract
Ceramide synthases (CSs) produce ceramides from long-chain bases (LCBs). However, how CSs regulate immunity and cell death in Arabidopsis thaliana remains unclear. Here, we decipher the roles of two classes of CS, CSI (LAG1 HOMOLOG 2, LOH2) and CSII (LOH1/3), in these processes. The loh1-2 and loh1-1 loh3-1 mutants were resistant to the bacterial pathogen Pseudomonas syringae pv maculicola (Psm) DG3 and exhibited programmed cell death (PCD), along with increased LCBs and ceramides, at later stages. In loh1-2, the Psm resistance, PCD, and sphingolipid accumulation were mostly suppressed by inactivation of the lipase-like proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4), and partly suppressed by loss of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2). The LOH1 inhibitor fumonisin B1 (FB1) triggered EDS1/PAD4-independent LCB accumulation, and EDS1/PAD4-dependent cell death, resistance to Psm, and C16 Cer accumulation. Loss of LOH2 enhances FB1-, and sphinganine-induced PCD, indicating that CSI negatively regulates the signaling triggered by CSII inhibition. Like Cer, LCBs mediate cell death and immunity signaling, partly through the EDS1/PAD4 pathway. Our results show that the two classes of ceramide synthases differentially regulate EDS1/PAD4-dependent PCD and immunity via subtle control of LCBs and Cers in Arabidopsis.
Collapse
|
9
|
Zeng HY, Li CY, Yao N. Fumonisin B1: A Tool for Exploring the Multiple Functions of Sphingolipids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:600458. [PMID: 33193556 PMCID: PMC7652989 DOI: 10.3389/fpls.2020.600458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 05/25/2023]
Abstract
Fumonisin toxins are produced by Fusarium fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals. Although the physiological effects of FB1 in plants have yet to be investigated in detail, forward and reverse genetic approaches have revealed many genes involved in these processes. In this review, we discuss the intricate network of signaling pathways affected by FB1, including changes in sphingolipid metabolism and the effects of these changes, with a focus on our current understanding of the multiple effects of FB1 on plant cell death and plant growth. We analyze the major findings that highlight the connections between sphingolipid metabolism and FB1-induced signaling, and we point out where additional research is needed to fill the gaps in our understanding of FB1-induced signaling pathways in plants.
Collapse
Affiliation(s)
- Hong-Yun Zeng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Yu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Huby E, Napier JA, Baillieul F, Michaelson LV, Dhondt‐Cordelier S. Sphingolipids: towards an integrated view of metabolism during the plant stress response. THE NEW PHYTOLOGIST 2020; 225:659-670. [PMID: 31211869 PMCID: PMC6973233 DOI: 10.1111/nph.15997] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 05/18/2023]
Abstract
Plants exist in an environment of changing abiotic and biotic stresses. They have developed a complex set of strategies to respond to these stresses and over recent years it has become clear that sphingolipids are a key player in these responses. Sphingolipids are not universally present in all three domains of life. Many bacteria and archaea do not produce sphingolipids but they are ubiquitous in eukaryotes and have been intensively studied in yeast and mammals. During the last decade there has been a steadily increasing interest in plant sphingolipids. Plant sphingolipids exhibit structural differences when compared with their mammalian counterparts and it is now clear that they perform some unique functions. Sphingolipids are recognised as critical components of the plant plasma membrane and endomembrane system. Besides being important structural elements of plant membranes, their particular structure contributes to the fluidity and biophysical order. Sphingolipids are also involved in multiple cellular and regulatory processes including vesicle trafficking, plant development and defence. This review will focus on our current knowledge as to the function of sphingolipids during plant stress responses, not only as structural components of biological membranes, but also as signalling mediators.
Collapse
Affiliation(s)
- Eloïse Huby
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
- Laboratoire de Biophysique Moléculaire aux InterfacesGembloux Agro‐Bio TechUniversité de Liège2 Passage des DéportésB‐5030GemblouxBelgique
| | | | - Fabienne Baillieul
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| | | | - Sandrine Dhondt‐Cordelier
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| |
Collapse
|
11
|
Effects of Disruption of Five FUM Genes on Fumonisin Biosynthesis and Pathogenicity in Fusarium proliferatum. Toxins (Basel) 2019; 11:toxins11060327. [PMID: 31181598 PMCID: PMC6628412 DOI: 10.3390/toxins11060327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The mycotoxin fumonisin is known to be harmful to humans and animals, and thus it is desirable to reduce fumonisin content in crop products. We explored the functions of several genes that function in fumonisin biosynthesis (FUM1, FUM6, FUM8, FUM19, and FUM21) in Fusarium proliferatum and found that deletion of FUM1, FUM6, FUM8, or FUM21 results in a severe reduction in fumonisin biosynthesis, while loss of FUM19 does not. In addition, fumonisin-deficient strains display significantly decreased pathogenicity. Co-cultivation of the ΔFUM1, ΔFUM6, ΔFUM8, and ΔFUM19 mutants restores fumonisin synthesis. However, co-cultivation was unable to restore fumonisin synthesis in the ΔFUM21 strain. The relative expression levels of three key FUM genes (FUM1, FUM6, and FUM8) differed significantly in each mutant strain; notably, the expression levels of these three genes were significantly down-regulated in the ΔFUM21 strain. Taken together, our results demonstrate that FUM1, FUM6, FUM8, and FUM21 are essential for fumonisin synthesis, and FUM19 is non-essential. Partial mutants lost the ability to synthesize fumonisin, the co-culture of the mutants was able to restore fumonisin biosynthesis. While the pathogenicity of F. proliferatum is affected by many factors, inhibition of the synthesis of the mycotoxin fumonisin will weaken the pathogenicity of rice spikelet rot disease (RSRD).
Collapse
|
12
|
Glenz R, Schmalhaus D, Krischke M, Mueller MJ, Waller F. Elevated Levels of Phosphorylated Sphingobases Do Not Antagonize Sphingobase- or Fumonisin B1-Induced Plant Cell Death. PLANT & CELL PHYSIOLOGY 2019; 60:1109-1119. [PMID: 30796453 DOI: 10.1093/pcp/pcz033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/08/2019] [Indexed: 05/25/2023]
Abstract
Long-chain bases (LCBs), also termed sphingobases, are building blocks of sphingolipids, which make up a significant proportion of the cellular membrane system. They are also bioactive molecules regulating intracellular processes. Elevated levels of LCBs like phytosphingosine and dihydrosphingosine can induce cell death in plants and correlate with programmed cell death (PCD) reactions after pathogen recognition. We investigated the previously hypothesized antagonism between phosphorylated and nonphosphorylated LCBs with respect to cell death in Arabidopsis thaliana. Using HPLC-MS/MS, we determined levels of phosphorylated and nonphosphorylated LCBs after cell death induction by LCB application or by Fumonisin B1 (FB1) treatment. We show that previously reported antagonistic effects of phosphorylated LCBs after simultaneous application with nonphosphorylated LCBs are linked to reduced uptake of nonphosphorylated LCBs into the tissue. Furthermore, phosphorylated LCBs did not antagonize PCD induced by avirulence protein recognition. In a functional approach, we used Arabidopsis lines with perturbed levels of phosphorylated LCBs. In these plants, the degree of FB1-induced cell death did not consistently correlate negatively with levels of phosphorylated LCBs, but positively with levels of major nonphosphorylated LCBs phytosphingosine and dihydrosphingosine. As treatment with phosphorylated LCBs did not antagonize cell death, and elevated in vivo levels of these LCB species did not reduce FB1-induced cell death, we conclude that the hypothesized general cell death-antagonizing effect of phosphorylated LCBs in plant cell death reactions should be rejected. Instead, our time-course analysis of LCB levels during cell death reactions showed a positive correlation between levels of nonphosphorylated LCBs and cell death.
Collapse
Affiliation(s)
- Renï Glenz
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius-Maximilians-Universit�t W�rzburg, Julius-von-Sachs-Platz 2, D-97082 W�rzburg, Germany
| | - Dorette Schmalhaus
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius-Maximilians-Universit�t W�rzburg, Julius-von-Sachs-Platz 2, D-97082 W�rzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius-Maximilians-Universit�t W�rzburg, Julius-von-Sachs-Platz 2, D-97082 W�rzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius-Maximilians-Universit�t W�rzburg, Julius-von-Sachs-Platz 2, D-97082 W�rzburg, Germany
| | - Frank Waller
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius-Maximilians-Universit�t W�rzburg, Julius-von-Sachs-Platz 2, D-97082 W�rzburg, Germany
| |
Collapse
|
13
|
Corbacho J, Inês C, Paredes MA, Labrador J, Cordeiro AM, Gallardo M, Gomez-Jimenez MC. Modulation of sphingolipid long-chain base composition and gene expression during early olive-fruit development, and putative role of brassinosteroid. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:383-392. [PMID: 30390495 DOI: 10.1016/j.jplph.2018.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 05/21/2023]
Abstract
Sphingolipids are abundant membrane components and signalling molecules in various aspects of plant development. However, the role of sphingolipids in early fleshy-fruit growth has rarely been investigated. In this study, we first investigated the temporal changes in sphingolipid long-chain base (LCB) content, composition, and gene expression that occurred during flower opening and early fruit development in olive (Olea europaea L. cv Picual). Moreover, the interaction between sphingolipid and the plant hormone, brassinosteroid (BR), during the early fruit development was also explored. For this, BR levels were manipulated through the application of exogenous BRs (24-epibrassinolide, EBR) or a BR biosynthesis inhibitor (brassinazole, Brz) and their effects on early fruit development, sphingolipid LCB content, and gene expression were examined in olive fruit at 14 days post-anthesis (DPA). We here show that sphingolipid with C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation are quantitatively the most important sphingolipids in olive reproductive organs. In this work, the total LCB amount significantly decreased at the anthesis stage, but olive sphingosine-1-phosphate lyase (OeSPL) gene was expressed exclusively in flower and upregulated during the anthesis, revealing an association with the d18:1(8E) accumulation. However, the LCB content increased in parallel with the upregulation of the expression of genes for key sphingolipid biosynthetic and LCB modification enzymes during early fruit development in olive. Likewise, we found that EBR exogenously applied to olive trees significantly stimulated the fruit growth rate whereas Brz inhibited fruit growth rate after 7 and 14 days of treatment. In addition, this inhibitory effect could be counteracted by the application of EBR. The promotion of early fruit growth was accompanied by the down-regulation of sphingolipid LCB content and gene expression in olive fruit, whereas Brz application raised levels of sphingolipid LCB content and gene expression in olive fruit after 7 and 14 days of treatment. Thus, our data indicate that endogenous sphingolipid LCB and gene-expression levels are intricately controlled during early fruit development and also suggest a possible link between BR, the sphingolipid content/gene expression, and early fruit development in olive.
Collapse
Affiliation(s)
- Jorge Corbacho
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Carla Inês
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Miguel A Paredes
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Antonio M Cordeiro
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., UEIS Biotecnologia e Recursos Genéticos, Estrada de Gil Vaz, Apartado 6, 7351-901 Elvas, Portugal
| | - Mercedes Gallardo
- Department of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende, s/n, 36310 Vigo, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain.
| |
Collapse
|
14
|
Ali U, Li H, Wang X, Guo L. Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. MOLECULAR PLANT 2018; 11:1328-1343. [PMID: 30336328 DOI: 10.1016/j.molp.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 05/12/2023]
Abstract
Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses. However, the roles of sphingolipids in plant signal transduction in response to environmental cues are yet to be investigated in detail. In this review, we discuss the signaling roles of sphingolipid metabolites with a focus on plant sphingolipids. We also mention some microbial sphingolipids that initiate signals during their interaction with plants, because of the limited literatures on their plant analogs. The equilibrium of nonphosphorylated and phosphorylated sphingolipid species determine the destiny of plant cells, whereas molecular connections among the enzymes responsible for this equilibrium in a coordinated signaling network are poorly understood. A mechanistic link between the phytohormone-sphingolipid interplay has also not yet been fully understood and many key participants involved in this complex interaction operating under stress conditions await to be identified. Future research is needed to fill these gaps and to better understand the signal pathways of plant sphingolipids and their interplay with other signals in response to environmental stresses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hehuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Qin X, Zhang RX, Ge S, Zhou T, Liang YK. Sphingosine kinase AtSPHK1 functions in fumonisin B1-triggered cell death in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:70-80. [PMID: 28846870 DOI: 10.1016/j.plaphy.2017.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 05/12/2023]
Abstract
The fungal toxin Fumonisin B1 (FB1) is a strong inducer to trigger plant hypersensitive responses (HR) along with increased long chain bases (LCB) and long chain base phosphates (LCBP) contents, though the regulatory mechanism of FB1 action and how the LCB/LCBP signalling cassette functions during the process is still not fully understood. Here, we report sphingosine kinase 1 (SPHK1) as a key factor in FB1-induced HR by modulating the salicylic acid (SA) pathway and reactive oxygen species (ROS) accumulation in Arabidopsis thaliana. Overexpression of SPHK1 increases the FB1-induced accumulations of ROS and SA. The double mutant that simultaneously overexpresses SPHK1 and suppresses the SPPASE or DPL1, two enzymes are mainly responsible for Phyto-sphingosine-1-phosphate (Phyto-S1P) removal, showed enhanced susceptibility to FB1 killing and FB1-induced SA activation than the plants overexpress SPHK1 alone. Exogenous sphingosine-1-phosphate (S1P) can modulate the transcription of the SA-responsive marker gene PR1 in a concentration-dependent biphasic manner. Suppression of SPHK1 decreases SA production whereas promotes jasmonic acid (JA) biosynthesis in response to FB1 applications. Our findings indicate a role of SPHK1 in modulating FB1-triggered cell death via SA and JA pathway interactions.
Collapse
Affiliation(s)
- Xiaoya Qin
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Zhou
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Yanagawa D, Ishikawa T, Imai H. Synthesis and degradation of long-chain base phosphates affect fumonisin B 1-induced cell death in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2017; 130:571-585. [PMID: 28303405 DOI: 10.1007/s10265-017-0923-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/07/2016] [Indexed: 05/12/2023]
Abstract
Fumonisin B1 (FB1), an inducer of cell death, disrupts sphingolipid metabolism; large accumulations of de novo synthesized free long-chain bases (LCBs) are observed. However, it remains unclear whether tolerance to FB1 toxicity in plants is connected with preventing the accumulation of free LCBs through their phosphorylation. Here a workflow for the extraction, detection and quantification of LCB phosphates (LCBPs) in Arabidopsis thaliana was developed. We studied the effect of expression of genes for three enzymes involved in the synthesis and degradation of LCBPs, LCB kinase (LCBK1), LCBP phosphatase (SPP1) and lyase (DPL1) on FB1-induced cell death. As expected, large accumulations of saturated free LCBs, dihydrosphingosine and phytosphingosine, were observed in the FB1-treated leaves. On the other hand, a high level of sphingenine phosphate was found in the FB1-treated leaves even though free sphingenine was found in low amounts in these leaves. In comparison of WT and spp1 plants, the LCBP/LCB ratio is likely to be correlated with the degree of FB1-induced cell death determined by trypan blue staining. The FB1-treated leaves in dpl1 plants showed severe cell death and the elevation of free LCBs and LCBPs. LCBK1-OX and -KD plants showed resistance and sensitivity to FB1, respectively, whereas free LCB and LCBP levels in FB1-treated LCBK1-OX and -KD plants were moderately different to those in FB1-treated WT plants. Overall, the findings described here suggest that LCBP/LCB homeostasis is an important topic that participates in the tolerance of plant cells to FB1.
Collapse
Affiliation(s)
- Daiki Yanagawa
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe, 658-8501, Japan
- The Institute for Integrative Neurobiology, Konan University, Kobe, 658-8501, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Hiroyuki Imai
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe, 658-8501, Japan.
- The Institute for Integrative Neurobiology, Konan University, Kobe, 658-8501, Japan.
| |
Collapse
|
17
|
Yunus IS, Liu YC, Nakamura Y. The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:559-569. [PMID: 27436233 DOI: 10.1111/tpj.13278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/12/2016] [Indexed: 05/25/2023]
Abstract
In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Ian Sofian Yunus
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Michaelson LV, Napier JA, Molino D, Faure JD. Plant sphingolipids: Their importance in cellular organization and adaption. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1329-1335. [PMID: 27086144 PMCID: PMC4970446 DOI: 10.1016/j.bbalip.2016.04.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Louise V Michaelson
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Johnathan A Napier
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Diana Molino
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, Paris, France.
| | - Jean-Denis Faure
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France; Agro Paris Tech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France.
| |
Collapse
|
19
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
20
|
Abstract
Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
21
|
Chauhan N, Han G, Somashekarappa N, Gable K, Dunn T, Kohlwein SD. Regulation of Sphingolipid Biosynthesis by the Morphogenesis Checkpoint Kinase Swe1. J Biol Chem 2015; 291:2524-34. [PMID: 26634277 PMCID: PMC4732232 DOI: 10.1074/jbc.m115.693200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid (SL) biosynthesis is negatively regulated by the highly conserved endoplasmic reticulum-localized Orm family proteins. Defective SL synthesis in Saccharomyces cerevisiae leads to increased phosphorylation and inhibition of Orm proteins by the kinase Ypk1. Here we present evidence that the yeast morphogenesis checkpoint kinase, Swe1, regulates SL biosynthesis independent of the Ypk1 pathway. Deletion of the Swe1 kinase renders mutant cells sensitive to serine palmitoyltransferase inhibition due to impaired sphingoid long-chain base synthesis. Based on these data and previous results, we suggest that Swe1 kinase perceives alterations in SL homeostasis, activates SL synthesis, and may thus represent the missing regulatory link that controls the SL rheostat during the cell cycle.
Collapse
Affiliation(s)
- Neha Chauhan
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| | - Gongshe Han
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | - Kenneth Gable
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Teresa Dunn
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| |
Collapse
|
22
|
Saucedo-García M, Gavilanes-Ruíz M, Arce-Cervantes O. Long-chain bases, phosphatidic acid, MAPKs, and reactive oxygen species as nodal signal transducers in stress responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:55. [PMID: 25763001 PMCID: PMC4327526 DOI: 10.3389/fpls.2015.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/21/2015] [Indexed: 05/03/2023]
Abstract
Due to their sessile condition, plants have developed sensitive, fast, and effective ways to contend with environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate, and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases and non-protein, smaller molecules, such as long-chain bases, phosphatidic acid, and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very diverse stimuli and evoke very different responses. These pleiotropic effects may be explained by the potentiality that every one of these four mediators can be expressed from different sources, cellular location, temporality, or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
- *Correspondence: Mariana Saucedo-García, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario S/N Km 1, Tulancingo, Hidalgo C.P. 43600, México e-mail:
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Oscar Arce-Cervantes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
| |
Collapse
|
23
|
Wu JX, Wu JL, Yin J, Zheng P, Yao N. Ethylene Modulates Sphingolipid Synthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:1122. [PMID: 26734030 PMCID: PMC4679861 DOI: 10.3389/fpls.2015.01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/26/2015] [Indexed: 05/20/2023]
Abstract
Sphingolipids have essential structural and bioactive functions in membranes and in signaling. However, how plants regulate sphingolipid biosynthesis in the response to stress remains unclear. Here, we reveal that the plant hormone ethylene can modulate sphingolipid synthesis. The fungal toxin Fumonisin B1 (FB1) inhibits the activity of ceramide synthases, perturbing sphingolipid homeostasis, and thus inducing cell death. We used FB1 to test the role of ethylene signaling in sphingolipid synthesis in Arabidopsis thaliana. The etr1-1 and ein2 mutants, which have disrupted ethylene signaling, exhibited hypersensitivity to FB1; by contrast, the eto1-1 and ctr1-1 mutants, which have enhanced ethylene signaling, exhibited increased tolerance to FB1. Gene expression analysis showed that during FB1 treatment, transcripts of genes involved in de novo sphingolipid biosynthesis were down-regulated in ctr1-1 mutants but up-regulated in ein2 mutants. Strikingly, under normal conditions, ctr1-1 mutants contained less ceramides and hydroxyceramides, compared with wild type. After FB1 treatment, ctr1-1 and ein2 mutants showed a significant improvement in sphingolipid contents, except the ctr1-1 mutants showed little change in hydroxyceramide levels. Treatment of wild-type seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid down-regulated genes involved in the sphingolipid de novo biosynthesis pathway, thus reducing sphingolipid contents and partially rescuing FB1-induced cell death. Taking these results together, we propose that ethylene modulates sphingolipids by regulating the expression of genes related to the de novo biosynthesis of sphingolipids.
Collapse
|
24
|
Gupta SD, Gable K, Alexaki A, Chandris P, Proia RL, Dunn TM, Harmon JM. Expression of the ORMDLS, modulators of serine palmitoyltransferase, is regulated by sphingolipids in mammalian cells. J Biol Chem 2014; 290:90-8. [PMID: 25395622 DOI: 10.1074/jbc.m114.588236] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relationship between serine palmitoyltransferase (SPT) activity and ORMDL regulation of sphingolipid biosynthesis was investigated in mammalian HEK293 cells. Each of the three human ORMDLs reduced the increase in long-chain base synthesis seen after overexpression of wild-type SPT or SPT containing the C133W mutation in hLCB1, which produces the non-catabolizable sphingoid base, 1-deoxySa. ORMDL-dependent repression of sphingoid base synthesis occurred whether SPT was expressed as individual subunits or as a heterotrimeric single-chain SPT fusion protein. Overexpression of the single-chain SPT fusion protein under the control of a tetracycline-inducible promoter in stably transfected cells resulted in increased endogenous ORMDL expression. This increase was not transcriptional; there was no significant increase in any of the ORMDL mRNAs. Increased ORMDL protein expression required SPT activity since overexpression of a catalytically inactive SPT with a mutation in hLCB2a had little effect. Significantly, increased ORMDL expression was also blocked by myriocin inhibition of SPT as well as fumonisin inhibition of the ceramide synthases, suggesting that increased expression is a response to a metabolic signal. Moreover, blocking ORMDL induction with fumonisin treatment resulted in significantly greater increases in in vivo SPT activity than was seen when ORMDLs were allowed to increase, demonstrating the physiological significance of this response.
Collapse
Affiliation(s)
- Sita D Gupta
- From the Departments of Biochemistry and Molecular Biology and
| | - Kenneth Gable
- From the Departments of Biochemistry and Molecular Biology and
| | - Aikaterini Alexaki
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Panagiotis Chandris
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L Proia
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa M Dunn
- From the Departments of Biochemistry and Molecular Biology and
| | - Jeffrey M Harmon
- Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799 and
| |
Collapse
|
25
|
Zhang H, Jin X, Huang L, Hong Y, Zhang Y, Ouyang Z, Li X, Song F, Li D. Molecular characterization of rice sphingosine-1-phosphate lyase gene OsSPL1 and functional analysis of its role in disease resistance response. PLANT CELL REPORTS 2014; 33:1745-56. [PMID: 25113543 DOI: 10.1007/s00299-014-1653-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/14/2014] [Accepted: 06/29/2014] [Indexed: 05/08/2023]
Abstract
Our results indicate that overexpression of OsSPL1 in transgenic tobacco plants attenuated disease resistance and facilitated programmed cell death. Long-chain base phosphates including sphingosine-1-phosphate have been shown to act as signaling mediators in regulating programmed cell death (PCD) and stress responses in mammals. In the present study, we characterized a rice gene OsSPL1, encoding a putative sphingosine-1-phosphate lyase that is involved in metabolism of sphingosine-1-phosphate. Expression of OsSPL1 was down-regulated in rice plants after treatments with salicylic acid, benzothiadiazole and 1-amino cyclopropane-1-carboxylic acid, but was induced by infection with a virulent strain of Magnaporthe oryzae, the causal agent of rice blast disease. Transgenic tobacco lines with overexpression of OsSPL1 were generated and analyzed for the possible role of OsSPL1 in disease resistance response and PCD. The OsSPL1-overexpressing tobacco plants displayed increased susceptibility to infection of Pseudomonas syringae pv. tabaci (Pst), the causal agent of wildfire disease, showing severity of disease symptom and bacterial titers in inoculated leaves, and attenuated pathogen-induced expression of PR genes after infection of Pst as compared to the wild-type and vector-transformed plants. Higher level of cell death, as revealed by dead cell staining, leakage of electrolyte and expression of hypersensitive response indicator genes, was observed in the OsSPL1-overexpressing plants after treatment with fumonisin B1, a fungal toxin that induces PCD in plants. Our results suggest that OsSPL1 has different functions in regulating disease resistance response and PCD in plants.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, Dupree P, Heazlewood JL, Cahoon EB, Scheller HV. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. THE PLANT CELL 2014; 26:3314-25. [PMID: 25122154 PMCID: PMC4371831 DOI: 10.1105/tpc.114.129171] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/20/2014] [Accepted: 07/22/2014] [Indexed: 05/20/2023]
Abstract
Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.
Collapse
Affiliation(s)
- Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Berit Ebert
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Godfrey P Miles
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Katy M Christiansen
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Solomon Stonebloom
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Hoda Khatab
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Bioengineering, University of California, Berkeley, California 94720
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Joshua L Heazlewood
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute, Emeryville, California 94608 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
27
|
Harmon JM, Bacikova D, Gable K, Gupta SD, Han G, Sengupta N, Somashekarappa N, Dunn TM. Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase. J Biol Chem 2013; 288:10144-10153. [PMID: 23426370 DOI: 10.1074/jbc.m113.451526] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met(25) in ssSPTa and Val(25) in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1(S331F)/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.
Collapse
Affiliation(s)
- Jeffrey M Harmon
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Dagmar Bacikova
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | - Nivedita Sengupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799.
| |
Collapse
|
28
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013; 11:e0161. [PMID: 23505340 PMCID: PMC3563272 DOI: 10.1199/tab.0161] [Citation(s) in RCA: 759] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
29
|
Gil-Amado JA, Gomez-Jimenez MC. Transcriptome Analysis of Mature Fruit Abscission Control in Olive. ACTA ACUST UNITED AC 2013; 54:244-69. [DOI: 10.1093/pcp/pcs179] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Francin-Allami M, Bouder A, Popineau Y. Comparative study of wheat low-molecular-weight glutenin and α-gliadin trafficking in tobacco cells. PLANT CELL REPORTS 2013; 32:89-101. [PMID: 23001535 DOI: 10.1007/s00299-012-1343-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Wheat low-molecular-weight-glutenin and α-gliadin were accumulated in the endoplasmic reticulum and formed protein body-like structures in tobacco cells, with the participation of BiP chaperone. Possible interactions between these prolamins were investigated. Wheat prolamins are the major proteins that accumulate in endosperm cells and are largely responsible for the unique biochemical properties of wheat products. They are accumulated in the endoplasmic reticulum (ER) where they form protein bodies (PBs) and are then transported to the storage vacuole where they form a protein matrix in the ripe seeds. Whereas previous studies have been carried out to determine the atypical trafficking pathway of prolamins, the mechanisms leading to ER retention and PB formation are still not clear. In this study, we examined the trafficking of a low-molecular-weight glutenin subunit (LMW-glutenin) and α-gliadin fused to fluorescent proteins expressed in tobacco cells. Through transient transformation in epidermal tobacco leaves, we demonstrated that both LMW-glutenin and α-gliadin were retained in the ER and formed mobile protein body-like structures (PBLS) that generally do not co-localise with Golgi bodies. An increased expression level of BiP in tobacco cells transformed with α-gliadin or LMW-glutenin was observed, suggesting the participation of this chaperone protein in the accumulation of wheat prolamins in tobacco cells. When stably expressed in BY-2 cells, LMW-glutenin fusion was retained longer in the ER before being exported to and degraded in the vacuole, compared with α-gliadin fusion, suggesting the involvement of intermolecular disulphide bonds in ER retention, but not in PBLS formation. Co-localisation experiments showed that gliadins and LMW-glutenin were found in the same PBLS with no particular distribution, which could be due to their ability to interact with each other as indicated by yeast two-hybrid assays.
Collapse
|
31
|
Zhang H, Li L, Yu Y, Mo J, Sun L, Liu B, Li D, Song F. Cloning and characterization of two rice long-chain base kinase genes and their function in disease resistance and cell death. Mol Biol Rep 2012; 40:117-27. [PMID: 23054004 DOI: 10.1007/s11033-012-2040-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Sphingolipid metabolites such as long-chain base 1-phosphates (LCBPs) have been shown to play an important role in plants; however, little is known about their function in plant disease resistance and programmed cell death (PCD). In the present study, we cloned and identified two rice long-chain base kinase (LCBK) genes (OsLCBK1 and OsLCBK2), which are involved in biosynthesis of LCBPs, and performed functional analysis in transgenic tobacco. Expression of OsLCBK1 and OsLCBK2 was induced in rice seedlings after treatments with defense signaling molecules and after infection by Magnaporthe grisea, the causal agent of blast disease. Transgenic tobacco plants overexpressing OsLCBK1 were generated and disease resistance assays indicate that the OsLCBK1-overexpressing plants showed enhanced disease resistance against Pseudmonas syringae pv. tabacci, the causal agent of wildfire disease, and tobacco mosaic virus. Expression levels of some defense-related genes were constitutively up-regulated and further induced after pathogen infection in the OsLCBK1-overexpressing plants. Treatment with fungal toxin fumonisin B1, an effective inducer of PCD in plants, resulted in reduced level of cell death in the OsLCBK1-overexpressing plants, as indicated by cell death staining, leakage of electrolyte and expression of hypersensitive response indicator genes. These data suggest that rice LCBKs, probably through regulation of endogenous LCBP level, play important roles in disease resistance response and PCD in plants.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang H, Zhai J, Mo J, Li D, Song F. Overexpression of rice sphingosine-1-phoshpate lyase gene OsSPL1 in transgenic tobacco reduces salt and oxidative stress tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:652-62. [PMID: 22889013 DOI: 10.1111/j.1744-7909.2012.01150.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sphingolipids, including sphingosine-1-phosphate (S1P), have been shown to function as signaling mediators to regulate diverse aspects of plant growth, development, and stress response. In this study, we performed functional analysis of a rice (Oryza sativa) S1P lyase gene OsSPL1 in transgenic tobacco plants and explored its possible involvement in abiotic stress response. Overexpression of OsSPL1 in transgenic tobacco resulted in enhanced sensitivity to exogenous abscisic acid (ABA), and decreased tolerance to salt and oxidative stress, when compared with the wild type. Furthermore, the expression levels of some selected stress-related genes in OsSPL1-overexpressing plants were reduced after application of salt or oxidative stress, indicating that the altered responsiveness of stress-related genes may be responsible for the reduced tolerance in OsSPL1-overexpressing tobacco plants under salt and oxidative stress. Our results suggest that rice OsSPL1 plays an important role in abiotic stress responses.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | |
Collapse
|
33
|
Nakagawa N, Kato M, Takahashi Y, Shimazaki KI, Tamura K, Tokuji Y, Kihara A, Imai H. Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. JOURNAL OF PLANT RESEARCH 2012; 125:439-49. [PMID: 21910031 DOI: 10.1007/s10265-011-0451-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/06/2011] [Indexed: 05/08/2023]
Abstract
Sphingolipid metabolites, long-chain base 1-phosphates (LCBPs), are involved in ABA signaling pathways. The LCBPs synthesized by long-chain base kinase are dephosphorylated by LCBP phosphatase or degraded by LCBP lyase. Here we show that the At3g58490 gene encodes AtSPP1, a functional LCBP phosphatase. Transient expression of green fluorescent protein fusion in suspension-cultured Arabidopsis cells showed that AtSPP1 is localized in the endoplasmic reticulum. The level of dihydrosphingosine 1-phosphate was increased in loss-of-function mutants (spp1) compared with wild-type (WT) plants, suggesting a role of AtSPP1 in regulating LCBP levels. The rate of decrease in fresh weight of detached aerial parts was significantly slower in spp1 mutants than in WT plants. A stomatal closure bioassay showed that the stomata of spp1 mutants were more sensitive than the WT to ABA, suggesting that AtSPP1 is involved in guard cell signaling. However, spp1 mutants showed decreased sensitivity to ABA with respect to primary root growth but not to seed germination. The response to fumonisin B(1) did not differ between the WT and spp1 mutant. A significant decrease in AtDPL1 (LCBP lyase) transcripts in spp1 mutants was observed. We conclude that AtSPP1 is a functional LCBP phosphatase that may play a role in stomatal responses through LCBP-mediated ABA signaling.
Collapse
Affiliation(s)
- Noriko Nakagawa
- Department of Biology, Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the "death" connection and beyond. FRONTIERS IN PLANT SCIENCE 2012; 3:68. [PMID: 22639658 PMCID: PMC3355615 DOI: 10.3389/fpls.2012.00068] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 05/19/2023]
Abstract
Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e., sphingobiology) at an average rate of ∼1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (∼6%) of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i) cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD) associated with plant defense or disease; (ii) highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii) discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv) where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Dipti Bendigeri
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| |
Collapse
|
35
|
Islam MN, Jacquemot MP, Coursol S, Ng CKY. Sphingosine in plants--more riddles from the Sphinx? THE NEW PHYTOLOGIST 2012; 193:51-57. [PMID: 22070536 DOI: 10.1111/j.1469-8137.2011.03963.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• Sphingolipids are emerging as important mediators of cellular and developmental processes in plants, and advances in lipidomics have yielded a wealth of information on the composition of plant sphingolipidomes. Studies using Arabidopsis thaliana showed that the dihydroxy long-chain base (LCB) is desaturated at carbon position 8 (d18:1(Δ8)). This raised important questions on the role(s) of sphingosine (d18:1(Δ4)) and sphingosine-1-phosphate (d18:1(Δ4)-P) in plants, as these LCBs appear to be absent in A. thaliana. • Here, we surveyed 21 species from various phylogenetic groups to ascertain the position of desaturation of the d18:1 LCB, in order to gain further insights into the prevalence of d18:1(Δ4) and d18:1(Δ8) in plants. • Our results showed that d18:1(Δ8) is common in gymnosperms, whereas d18:1(Δ4) is widespread within nonseed land plants and the Poales, suggesting that d18:1(Δ4) is evolutionarily more ancient than d18:1(Δ8) in Viridiplantae. Additionally, phylogenetic analysis indicated that the sphingolipid Δ4-desaturases from Viridiplantae form a monophyletic group, with Angiosperm sequences falling into two distinct clades, the Eudicots and the Poales. • We propose that efforts to elucidate the role(s) of d18:1(Δ4) and d18:1(Δ4)-P should focus on genetically tractable Viridiplantae species where the d18:1 LCB is desaturated at carbon position 4.
Collapse
Affiliation(s)
- M Nurul Islam
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Sylvie Coursol
- INRA, UMR 320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Carl K-Y Ng
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
36
|
Samarakoon T, Shiva S, Lowe K, Tamura P, Roth MR, Welti R. Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. Methods Mol Biol 2012; 918:179-268. [PMID: 22893293 DOI: 10.1007/978-1-61779-995-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, current approaches to electrospray ionization mass spectrometry-based analyses of membrane lipid molecular species found in Arabidopsis thaliana are summarized. Additionally, the identities of over 500 reported membrane lipid molecular species are assembled.
Collapse
Affiliation(s)
- Thilani Samarakoon
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
37
|
Saucedo-García M, Guevara-García A, González-Solís A, Cruz-García F, Vázquez-Santana S, Markham JE, Lozano-Rosas MG, Dietrich CR, Ramos-Vega M, Cahoon EB, Gavilanes-Ruíz M. MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. THE NEW PHYTOLOGIST 2011; 191:943-957. [PMID: 21534970 DOI: 10.1111/j.1469-8137.2011.03727.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Long chain bases (LCBs) are sphingolipid intermediates acting as second messengers in programmed cell death (PCD) in plants. Most of the molecular and cellular features of this signaling function remain unknown. We induced PCD conditions in Arabidopsis thaliana seedlings and analyzed LCB accumulation kinetics, cell ultrastructure and phenotypes in serine palmitoyltransferase (spt), mitogen-activated protein kinase (mpk), mitogen-activated protein phosphatase (mkp1) and lcb-hydroxylase (sbh) mutants. The lcb2a-1 mutant was unable to mount an effective PCD in response to fumonisin B1 (FB1), revealing that the LCB2a gene is essential for the induction of PCD. The accumulation kinetics of LCBs in wild-type (WT) and lcb2a-1 plants and reconstitution experiments with sphinganine indicated that this LCB was primarily responsible for PCD elicitation. The resistance of the null mpk6 mutant to manifest PCD on FB1 and sphinganine addition and the failure to show resistance on pathogen infection and MPK6 activation by FB1 and LCBs indicated that MPK6 mediates PCD downstream of LCBs. This work describes MPK6 as a novel transducer in the pathway leading to LCB-induced PCD in Arabidopsis, and reveals that sphinganine and the LCB2a gene are required in a PCD process that operates as one of the more effective strategies used as defense against pathogens in plants.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | - Arturo Guevara-García
- Dpto. de Biología Molecular de Plantas, Inst. de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62271, Morelos, México
| | - Ariadna González-Solís
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | - Felipe Cruz-García
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | - Sonia Vázquez-Santana
- Dpto. de Biología Comparada, Fac. de Ciencias, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | | | - M Guadalupe Lozano-Rosas
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | | | - Maricela Ramos-Vega
- Dpto. de Biología Molecular de Plantas, Inst. de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62271, Morelos, México
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| | - Marina Gavilanes-Ruíz
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| |
Collapse
|
38
|
Bi FC, Zhang QF, Liu Z, Fang C, Li J, Su JB, Greenberg JT, Wang HB, Yao N. A conserved cysteine motif is critical for rice ceramide kinase activity and function. PLoS One 2011; 6:e18079. [PMID: 21483860 PMCID: PMC3069040 DOI: 10.1371/journal.pone.0018079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/22/2011] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Ceramide kinase (CERK) is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare) and investigate the effects of ceramides on rice cell viability. PRINCIPAL FINDINGS OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing. CONCLUSIONS OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants.
Collapse
Affiliation(s)
- Fang-Cheng Bi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan-Fang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ce Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bin Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Lachaud C, Da Silva D, Amelot N, Béziat C, Brière C, Cotelle V, Graziana A, Grat S, Mazars C, Thuleau P. Dihydrosphingosine-induced programmed cell death in tobacco BY-2 cells is independent of H₂O₂ production. MOLECULAR PLANT 2011; 4:310-8. [PMID: 21199880 DOI: 10.1093/mp/ssq077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, has been recently shown to induce both cytosolic and nuclear calcium transient increases and a correlated Programmed Cell Death (PCD) in tobacco BY-2 cells. In this study, in order to get deeper insight into the LCB signaling pathway leading to cell death, the putative role of Reactive Oxygen Species (ROS) has been investigated. We show that DHS triggers a rapid dose-dependent production of H₂O₂ that is blocked by diphenyleniodonium (DPI), indicating the involvement of NADPH oxidase(s) in the process. In addition, while DPI does not block DHS-induced calcium increases, the ROS production is inhibited by the broad spectrum calcium channel blocker lanthanum (La³+). Therefore, ROS production occurs downstream of DHS-induced Ca²+ transients. Interestingly, DHS activates expression of defense-related genes that is inhibited by both La³+ and DPI. Since DPI does not prevent DHS-induced cell death, these results strongly indicate that DHS-induced H₂O₂ production is not implicated in PCD mechanisms but rather would be associated to basal cell defense mechanisms.
Collapse
Affiliation(s)
- Christophe Lachaud
- UPS, UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, Université de Toulouse, BP 42617, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Aubert A, Marion J, Boulogne C, Bourge M, Abreu S, Bellec Y, Faure JD, Satiat-Jeunemaitre B. Sphingolipids involvement in plant endomembrane differentiation: the BY2 case. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:958-71. [PMID: 21205030 DOI: 10.1111/j.1365-313x.2011.04481.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sphingolipids play an essential role in the functioning of the secretory pathway in eukaryotic organisms. Their importance in the functional organization of plant cells has not been studied in any detail before. The sphingolipid synthesis inhibitor fumonisin B1 (FB1), a mycotoxin acting as a specific inhibitor of ceramide synthase, was tested for its effects on cell growth, cell polarity, cell shape, cell cycle and on the ultrastructure of BY2 cells. We used cell lines expressing different GFP-tagged markers for plant cell compartments, as well as a Golgi marker fused to the photoconvertible protein Kaede. Light and electron microscopy, combined with flow cytometry, were applied to analyse the morphodynamics and architecture of compartments of the secretory pathway. The results indicate that FB1 treatment had severe effects on cell growth and cell shape, and induced a delay in cell division processes. The cell changes were accompanied by the formation of the endoplasmic reticulum (ER)-derived tubular aggregates (FB1-induced compartments), together with an inhibition of cargo transport from the ER to the Golgi apparatus. A change in polar localization of the auxin transporter PIN1 was also observed, but endocytic processes were little affected. Electron microscopy studies confirmed that molecular FB1 targets were distinct from brefeldin A (BFA) targets. We propose that the reported effects of inhibition of ceramide biosynthesis reflect the importance of sphingolipids during cell growth and establishment of cell polarity in higher plant cells, notably through their contribution to the functional organization of the ER or its differentiation into distinct compartments.
Collapse
Affiliation(s)
- Anne Aubert
- Laboratoire Dynamique de la Compartimentation Cellulaire, CNRS UPR2355/IFR87, Institut des Sciences du Végétal, Centre de Recherche de Gif (FRC3115), 91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bourquin F, Riezman H, Capitani G, Grütter MG. Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure 2010; 18:1054-65. [PMID: 20696404 DOI: 10.1016/j.str.2010.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/01/2010] [Accepted: 05/09/2010] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate lyase (SPL), a key enzyme of sphingolipid metabolism, catalyzes the irreversible degradation of sphingoid base phosphates. Its main substrate sphingosine-1-phosphate (S1P) acts both extracellularly, by binding G protein-coupled receptors of the lysophospholipid receptor family, and inside the cell, as a second messenger. There, S1P takes part in regulating various cellular processes and its levels are tightly regulated. SPL is a pivotal enzyme regulating S1P intracellular concentrations and a promising drug target for the design of immunosuppressants. We structurally and functionally characterized yeast SPL (Dpl1p) and its first prokaryotic homolog, from Symbiobacterium thermophilum. The Dpl1p structure served as a basis for a very reliable model of Homo sapiens SPL. The above results, together with in vitro and in vivo studies of SPL mutants, reveal which residues are involved in activity and substrate binding and pave the way to studies aimed at controlling the activity of this pivotal enzyme.
Collapse
Affiliation(s)
- Florence Bourquin
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
42
|
Sánchez-Rangel D, Plasencia J. The role of sphinganine analog mycotoxins on the virulence of plant pathogenic fungi. TOXIN REV 2010. [DOI: 10.3109/15569543.2010.515370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Zitomer NC, Jones S, Bacon C, Glenn AE, Baldwin T, Riley RT. Translocation of sphingoid bases and their 1-phosphates, but not fumonisins, from roots to aerial tissues of maize seedlings watered with fumonisins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7476-7481. [PMID: 20486705 DOI: 10.1021/jf100142d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In an earlier study using maize seedlings grown from kernels inoculated with Fusarium verticillioides, fumonisin B(1) (FB(1)) was preferentially accumulated in leaf tissue compared to FB(2) and FB(3). The present study tested whether maize seedlings preferentially translocate FB(1) when plants are watered with FB(1) and/or FB(2), without the fungus present. The results show that neither FB(1) nor FB(2) was translocated when administered in the watering solution, and although both FB(1) and FB(2) were taken up by the roots, the accumulation of FB(2) in roots was significantly less than expected, indicating that FB(1) was preferentially accumulated. In addition, there was clear evidence of ceramide synthase inhibition in the roots and sphingoid base and sphingoid base 1-phosphates accumulated in leaf tissue presumably due to translocation from the roots. These findings suggest that the fungus-plant interaction is necessary for FB(1) translocation in maize seedlings infected with F. verticillioides.
Collapse
Affiliation(s)
- Nicholas C Zitomer
- Toxicology and Mycotoxin Research Unit, R. B. Russell Research Center, USDA-ARS, Athens, Georgia 30604, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2010; 8:e0133. [PMID: 22303259 PMCID: PMC3244904 DOI: 10.1199/tab.0133] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
45
|
Gable K, Gupta SD, Han G, Niranjanakumari S, Harmon JM, Dunn TM. A disease-causing mutation in the active site of serine palmitoyltransferase causes catalytic promiscuity. J Biol Chem 2010; 285:22846-52. [PMID: 20504773 DOI: 10.1074/jbc.m110.122259] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The autosomal dominant peripheral sensory neuropathy HSAN1 results from mutations in the LCB1 subunit of serine palmitoyltransferase (SPT). Serum from patients and transgenic mice expressing a disease-causing mutation (C133W) contain elevated levels of 1-deoxysphinganine (1-deoxySa), which presumably arise from inappropriate condensation of alanine with palmitoyl-CoA. Mutant heterodimeric SPT is catalytically inactive. However, mutant heterotrimeric SPT has approximately 10-20% of wild-type activity and supports growth of yeast cells lacking endogenous SPT. In addition, long chain base profiling revealed the synthesis of significantly more 1-deoxySa in yeast and mammalian cells expressing the heterotrimeric mutant enzyme than in cells expressing wild-type enzyme. Wild-type and mutant enzymes had similar affinities for serine. Surprisingly, the enzymes also had similar affinities for alanine, indicating that the major affect of the C133W mutation is to enhance activation of alanine for condensation with the acyl-CoA substrate. In vivo synthesis of 1-deoxySa by the mutant enzyme was proportional to the ratio of alanine to serine in the growth media, suggesting that this ratio can be used to modulate the relative synthesis of sphinganine and 1-deoxySa. By expressing SPT as a single-chain fusion protein to ensure stoichiometric expression of all three subunits, we showed that GADD153, a marker for endoplasmic reticulum stress, was significantly elevated in cells expressing mutant heterotrimers. GADD153 was also elevated in cells treated with 1-deoxySa. Taken together, these data indicate that the HSAN1 mutations perturb the active site of SPT resulting in a gain of function that is responsible for the HSAN1 phenotype.
Collapse
Affiliation(s)
- Kenneth Gable
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20184-4799, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, which has led to a new field of research called 'sphingolipidomics'. There are at least 500 (and perhaps thousands of) different molecular species of sphingolipids in cells, and in Arabidopsis alone it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long-chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way in which sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology.
Collapse
Affiliation(s)
- Mickael O Pata
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR 441-2594 (INRA-CNRS), Chemin de Borde Rouge BP 52627, 31326 Castanet-Tolosan, France
| | | | | |
Collapse
|
47
|
Zäuner S, Ternes P, Warnecke D. Biosynthesis of Sphingolipids in Plants (and Some of Their Functions). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:249-63. [DOI: 10.1007/978-1-4419-6741-1_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Lachaud C, Da Silva D, Cotelle V, Thuleau P, Xiong TC, Jauneau A, Brière C, Graziana A, Bellec Y, Faure JD, Ranjeva R, Mazars C. Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells. Cell Calcium 2010; 47:92-100. [PMID: 20022633 DOI: 10.1016/j.ceca.2009.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 01/02/2023]
Abstract
Studies performed in animals have highlighted the major role of sphingolipids in regulating the balance between cell proliferation and cell death. Sphingolipids have also been shown to induce cell death in plants via calcium-based signalling pathways but the contribution of free cytosolic and/or nuclear calcium in the overall process has never been evaluated. Here, we show that increase in tobacco BY-2 cells of the endogenous content of Long Chain Bases (LCBs) caused by external application of d-erythro-sphinganine (DHS) is followed by immediate dose-dependent elevations of cellular free calcium concentration within the first minute in the cytosol and 10min later in the nucleus. Cells challenged with DHS enter a death process through apoptotic-like mechanisms. Lanthanum chloride, a general blocker of calcium entry, suppresses the cellular calcium variations and the PCD induced by DHS. Interestingly, dl-2-amino-5-phosphopentanoic acid (AP5) and [(+)-dizocilpine] (MK801), two inhibitors of animal and plant ionotropic glutamate receptors, suppress DHS-induced cell death symptoms by selectively inhibiting the variations of nuclear calcium concentration. The selective action of these compounds demonstrates the crucial role of nuclear calcium signature in controlling DHS-induced cell death in tobacco cells.
Collapse
Affiliation(s)
- Christophe Lachaud
- Université de Toulouse, UPS, UMR CNRS-UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, Auzeville, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Serra M, Saba JD. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. ACTA ACUST UNITED AC 2009; 50:349-62. [PMID: 19914275 DOI: 10.1016/j.advenzreg.2009.10.024] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Montserrat Serra
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA
| | | |
Collapse
|
50
|
Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci U S A 2009; 106:8186-91. [PMID: 19416851 DOI: 10.1073/pnas.0811269106] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first committed step in sphingolipid biosynthesis. In yeast, SPT is composed of a heterodimer of 2 highly-related subunits, Lcb1p and Lcb2p, and a third subunit, Tsc3p, which increases enzyme activity markedly and is required for growth at elevated temperatures. Higher eukaryotic orthologs of Lcb1p and Lcb2p have been identified, but SPT activity is not highly correlated with coexpression of these subunits and no ortholog of Tsc3p has been identified. Here, we report the discovery of 2 proteins, ssSPTa and ssSPTb, which despite sharing no homology with Tsc3p, each substantially enhance the activity of mammalian SPT expressed in either yeast or mammalian cells and therefore define an evolutionarily conserved family of low molecular weight proteins that confer full enzyme activity. The 2 ssSPT isoforms share a conserved hydrophobic central domain predicted to reside in the membrane, and each interacts with both hLCB1 and hLCB2 as assessed by positive split ubiquitin 2-hybrid analysis. The presence of these small subunits, along with 2 hLCB2 isofoms, suggests that there are 4 distinct human SPT isozymes. When each SPT isozyme was expressed in either yeast or CHO LyB cells lacking endogenous SPT activity, characterization of their in vitro enzymatic activities, and long-chain base (LCB) profiling revealed differences in acyl-CoA preference that offer a potential explanation for the observed diversity of LCB seen in mammalian cells.
Collapse
|