1
|
Zhao FY, Chen X, Wang JM, Yuan Y, Li C, Sun J, Wang HQ. O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency. Cell Oncol (Dordr) 2024; 47:1025-1041. [PMID: 38345749 DOI: 10.1007/s13402-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Xue Chen
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Ye Yuan
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Vatandaslar H, Garzia A, Meyer C, Godbersen S, Brandt LTL, Griesbach E, Chao JA, Tuschl T, Stoffel M. In vivo PAR-CLIP (viP-CLIP) of liver TIAL1 unveils targets regulating cholesterol synthesis and secretion. Nat Commun 2023; 14:3386. [PMID: 37296170 PMCID: PMC10256721 DOI: 10.1038/s41467-023-39135-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
System-wide cross-linking and immunoprecipitation (CLIP) approaches have unveiled regulatory mechanisms of RNA-binding proteins (RBPs) mainly in cultured cells due to limitations in the cross-linking efficiency of tissues. Here, we describe viP-CLIP (in vivo PAR-CLIP), a method capable of identifying RBP targets in mammalian tissues, thereby facilitating the functional analysis of RBP-regulatory networks in vivo. We applied viP-CLIP to mouse livers and identified Insig2 and ApoB as prominent TIAL1 target transcripts, indicating an important role of TIAL1 in cholesterol synthesis and secretion. The functional relevance of these targets was confirmed by showing that TIAL1 influences their translation in hepatocytes. Mutant Tial1 mice exhibit altered cholesterol synthesis, APOB secretion and plasma cholesterol levels. Our results demonstrate that viP-CLIP can identify physiologically relevant RBP targets by finding a factor implicated in the negative feedback regulation of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Laura T L Brandt
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland.
- Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
3
|
Construction of a Diagnostic m7G Regulator-Mediated Scoring Model for Identifying the Characteristics and Immune Landscapes of Osteoarthritis. Biomolecules 2023; 13:biom13030539. [PMID: 36979474 PMCID: PMC10046530 DOI: 10.3390/biom13030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
With the increasingly serious burden of osteoarthritis (OA) on modern society, it is urgent to propose novel diagnostic biomarkers and differentiation models for OA. 7-methylguanosine (m7G), as one of the most common base modification forms in post transcriptional regulation, through which the seventh position N of guanine (G) of messenger RNA is modified by methyl under the action of methyltransferase; it has been found that it plays a crucial role in different diseases. Therefore, we explored the relationship between OA and m7G. Based on the expression level of 18 m7G-related regulators, we identified nine significant regulators. Then, via a series of methods of machine learning, such as support vector machine recursive feature elimination, random forest and lasso-cox regression analysis, a total of four significant regulators were further identified (DCP2, EIF4E2, LARP1 and SNUPN). Additionally, according to the expression level of the above four regulators, two different m7G-related clusters were divided via consensus cluster analysis. Furthermore, via immune infiltration, differential expression analysis and enrichment analysis, we explored the characteristic of the above two different clusters. An m7G-related scoring model was constructed via the PCA algorithm. Meanwhile, there was a different immune status and correlation for immune checkpoint inhibitors between the above two clusters. The expression difference of the above four regulators was verified via real-time quantitative polymerase chain reaction. Overall, a total of four biomarkers were identified and two different m7G-related subsets of OA with different immune microenvironment were obtained. Meanwhile, the construction of m7G-related Scoring model may provide some new strategies and insights for the therapy and diagnosis of OA patients.
Collapse
|
4
|
Chen M, Wang L, Li M, Budai MM, Wang J. Mitochondrion-Mediated Cell Death through Erk1-Alox5 Independent of Caspase-9 Signaling. Cells 2022; 11:cells11193053. [PMID: 36231015 PMCID: PMC9564198 DOI: 10.3390/cells11193053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial disruption leads to the release of cytochrome c to activate caspase-9 and the downstream caspase cascade for the execution of apoptosis. However, cell death can proceed efficiently in the absence of caspase-9 following mitochondrial disruption, suggesting the existence of caspase-9-independent cell death mechanisms. Through a genome-wide siRNA library screening, we identified a network of genes that mediate caspase-9-independent cell death, through ROS production and Alox5-dependent membrane lipid peroxidation. Erk1-dependent phosphorylation of Alox5 is critical for targeting Alox5 to the nuclear membrane to mediate lipid peroxidation, resulting in nuclear translocation of cytolytic molecules to induce DNA damage and cell death. Consistently, double knockouts of caspase-9 and Alox5 in mice, but not deletion of either gene alone, led to significant T cell expansion with inhibited cell death, indicating that caspase-9- and Alox5-dependent pathways function in parallel to regulate T cell death in vivo. This unbiased whole-genome screening reveals an Erk1-Alox5-mediated pathway that promotes membrane lipid peroxidation and nuclear translocation of cytolytic molecules, leading to the execution of cell death in parallel to the caspase-9 signaling cascade.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (M.C.); (J.W.)
| | - Lei Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Correspondence: (M.C.); (J.W.)
| |
Collapse
|
5
|
Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol 2022; 23:193. [PMID: 36096941 PMCID: PMC9465963 DOI: 10.1186/s13059-022-02760-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Uwe Ohler
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, 10099, Berlin, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Fernández-Gómez A, Velasco BR, Izquierdo JM. Dynamics of T-Cell Intracellular Antigen 1-Dependent Stress Granules in Proteostasis and Welander Distal Myopathy under Oxidative Stress. Cells 2022; 11:cells11050884. [PMID: 35269506 PMCID: PMC8909843 DOI: 10.3390/cells11050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is primarily involved in the post-transcriptional regulation of cellular RNAs. Furthermore, it is a key component of stress granules (SGs), RNA, and protein aggregates that are formed in response to stressful stimuli to reduce cellular activity as a survival mechanism. TIA1 p.E384K mutation is the genetic cause of Welander distal myopathy (WDM), a late-onset muscular dystrophy whose pathogenesis has been related to modifying SG dynamics. In this study, we present the results obtained by analyzing two specific aspects: (i) SGs properties and dynamics depending on the amino acid at position 384 of TIA1; and (ii) the formation/disassembly time-course of TIA1WT/WDM-dependent SGs under oxidative stress. The generation of TIA1 variants—in which the amino acid mutated in WDM and the adjacent ones were replaced by lysines, glutamic acids, or alanines—allowed us to verify that the inclusion of a single lysine is necessary and sufficient to alter SGs dynamics. Moreover, time-lapse microscopy analysis allowed us to establish in vivo the dynamics of TIA1WT/WDM-dependent SG formation and disassembly, after the elimination of the oxidizing agent, for 1 and 3 h, respectively. Our observations show distinct dynamics between the formation and disassembly of TIA1WT/WDM-dependent SGs. Taken together, this study has allowed us to expand the existing knowledge on the role of TIA1 and the WDM mutation in SG formation.
Collapse
|
7
|
The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. Int J Mol Sci 2022; 23:ijms23031400. [PMID: 35163320 PMCID: PMC8836218 DOI: 10.3390/ijms23031400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is expressed in many tissues and in the vast majority of species, although it was first discovered as a component of human cytotoxic T lymphocytes. TIA1 has a dual localization in the nucleus and cytoplasm, where it plays an important role as a regulator of gene-expression flux. As a multifunctional master modulator, TIA1 controls biological processes relevant to the physiological functioning of the organism and the development and/or progression of several human pathologies. This review summarizes our current knowledge of the molecular aspects and cellular processes involving TIA1, with relevance for human pathophysiology.
Collapse
|
8
|
Carrascoso I, Velasco BR, Izquierdo JM. Deficiency of T-Cell Intracellular Antigen 1 in Murine Embryonic Fibroblasts Is Associated with Changes in Mitochondrial Morphology and Respiration. Int J Mol Sci 2021; 22:ijms222312775. [PMID: 34884582 PMCID: PMC8657690 DOI: 10.3390/ijms222312775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is a multifunctional RNA-binding protein involved in regulating gene expression and splicing during development and in response to environmental stress, to maintain cell homeostasis and promote survival. Herein, we used TIA1-deficient murine embryonic fibroblasts (MEFs) to study their role in mitochondria homeostasis. We found that the loss of TIA1 was associated with changes in mitochondrial morphology, promoting the appearance of elongated mitochondria with heterogeneous cristae density and size. The proteomic patterns of TIA1-deficient MEFs were consistent with expression changes in molecular components related to mitochondrial dynamics/organization and respiration. Bioenergetics analysis illustrated that TIA1 deficiency enhances mitochondrial respiration. Overall, our findings shed light on the role of TIA1 in mitochondrial dynamics and highlight a point of crosstalk between potential pro-survival and pro-senescence pathways.
Collapse
|
9
|
Freen-van Heeren JJ. Post-transcriptional control of T-cell cytokine production: Implications for cancer therapy. Immunology 2021; 164:57-72. [PMID: 33884612 DOI: 10.1111/imm.13339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
As part of the adaptive immune system, T cells are vital for the eradication of infected and malignantly transformed cells. To perform their protective function, T cells produce effector molecules that are either directly cytotoxic, such as granzymes, perforin, interferon-γ and tumour necrosis factor α, or attract and stimulate (immune) cells, such as interleukin-2. As these molecules can also induce immunopathology, tight control of their production is required. Indeed, inflammatory cytokine production is regulated on multiple levels. Firstly, locus accessibility and transcription factor availability and activity determine the amount of mRNA produced. Secondly, post-transcriptional mechanisms, influencing mRNA splicing/codon usage, stability, decay, localization and translation rate subsequently determine the amount of protein that is produced. In the immune suppressive environments of tumours, T cells gradually lose the capacity to produce effector molecules, resulting in tumour immune escape. Recently, the role of post-transcriptional regulation in fine-tuning T-cell effector function has become more appreciated. Furthermore, several groups have shown that exhausted or dysfunctional T cells from cancer patients or murine models possess mRNA for inflammatory mediators, but fail to produce effector molecules, hinting that post-transcriptional events also play a role in hampering tumour-infiltrating lymphocyte effector function. Here, the post-transcriptional regulatory events governing T-cell cytokine production are reviewed, with a specific focus on the importance of post-transcriptional regulation in anti-tumour responses. Furthermore, potential approaches to circumvent tumour-mediated dampening of T-cell effector function through the (dis)engagement of post-transcriptional events are explored, such as CRISPR/Cas9-mediated genome editing or chimeric antigen receptors.
Collapse
|
10
|
Zhu X, Zhang H, Mendell JT. Ribosome Recycling by ABCE1 Links Lysosomal Function and Iron Homeostasis to 3' UTR-Directed Regulation and Nonsense-Mediated Decay. Cell Rep 2021; 32:107895. [PMID: 32668236 PMCID: PMC7433747 DOI: 10.1016/j.celrep.2020.107895] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nonsense-mediated decay (NMD) is a pathway that degrades mRNAs containing premature termination codons. Here we describe a genome-wide screen for NMD factors that uncovers an unexpected mechanism that broadly governs 3' untranslated region (UTR)-directed regulation. The screen reveals that NMD requires lysosomal acidification, which allows transferrin-mediated iron uptake, which, in turn, is necessary for iron-sulfur (Fe-S) cluster biogenesis. This pathway maintains the activity of the Fe-S cluster-containing ribosome recycling factor ABCE1, whose impaired function results in movement of ribosomes into 3' UTRs, where they displace exon junction complexes, abrogating NMD. Importantly, these effects extend beyond NMD substrates, with ABCE1 activity required to maintain the accessibility of 3' UTRs to diverse regulators, including microRNAs and RNA binding proteins. Because of the sensitivity of the Fe-S cluster of ABCE1 to iron availability and reactive oxygen species, these findings reveal an unanticipated vulnerability of 3' UTR-directed regulation to lysosomal dysfunction, iron deficiency, and oxidative stress.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Hamada J, Shoda K, Masuda K, Fujita Y, Naruto T, Kohmoto T, Miyakami Y, Watanabe M, Kudo Y, Fujiwara H, Ichikawa D, Otsuji E, Imoto I. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma. Oncotarget 2017; 7:17111-28. [PMID: 26958940 PMCID: PMC4941375 DOI: 10.18632/oncotarget.7937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Junichi Hamada
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yuji Fujita
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takuya Naruto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Tomohiro Kohmoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, 770-8503, Japan
| | - Yuko Miyakami
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, 770-8503, Japan
| | - Miki Watanabe
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, 770-8503, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
12
|
Sharov AA. Evolutionary biosemiotics and multilevel construction networks. BIOSEMIOTICS 2016; 9:399-416. [PMID: 28163801 PMCID: PMC5283393 DOI: 10.1007/s12304-016-9269-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/08/2016] [Indexed: 05/23/2023]
Abstract
In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition. Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Laboratory of Genetics, 251 Bayview Blvd., Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-related/like protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as components of cytotoxic T lymphocyte granules. They act in the nucleus as regulators of transcription and pre-mRNA splicing. In the cytoplasm, TIA1 and TIAR regulate and/or modulate the location, stability and/or translation of mRNAs. As knowledge of the different genes regulated by these proteins and the cellular/biological programs in which they are involved increases, it is evident that these antigens are key players in human physiology and pathology. This review will discuss the latest developments in the field, with physiopathological relevance, that point to novel roles for these regulators in the molecular and cell biology of higher eukaryotes.
Collapse
Affiliation(s)
- Carmen Sánchez-Jiménez
- a Centro de Biología Molecular Severo Ochoa; Consejo Superior de Investigaciones Científicas; Universidad Autónoma de Madrid (CSIC/UAM); C/Nicolás Cabrera 1 ; Madrid , Spain
| | | |
Collapse
|
14
|
Papavasiliou FN, Chung YC, Gagnidze K, Hajdarovic KH, Cole DC, Bulloch K. Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS. Front Immunol 2016; 6:661. [PMID: 26834738 PMCID: PMC4713841 DOI: 10.3389/fimmu.2015.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/24/2015] [Indexed: 01/03/2023] Open
Abstract
Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in the populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain-resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease.
Collapse
Affiliation(s)
- F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University , New York, NY , USA
| | - Young Cheul Chung
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Khatuna Gagnidze
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Kaitlyn H Hajdarovic
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Dan C Cole
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Karen Bulloch
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Jevtov I, Zacharogianni M, van Oorschot MM, van Zadelhoff G, Aguilera-Gomez A, Vuillez I, Braakman I, Hafen E, Stocker H, Rabouille C. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules. J Cell Sci 2015; 128:2497-508. [PMID: 26054799 PMCID: PMC4510851 DOI: 10.1242/jcs.168724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022] Open
Abstract
The kinase TOR is found in two complexes, TORC1, which is involved in growth control, and TORC2, whose roles are less well defined. Here, we asked whether TORC2 has a role in sustaining cellular stress. We show that TORC2 inhibition in Drosophila melanogaster leads to a reduced tolerance to heat stress, whereas sensitivity to other stresses is not affected. Accordingly, we show that upon heat stress, both in the animal and Drosophila cultured S2 cells, TORC2 is activated and is required for maintaining the level of its known target, Akt1 (also known as PKB). We show that the phosphorylation of the stress-activated protein kinases is not modulated by TORC2 nor is the heat-induced upregulation of heat-shock proteins. Instead, we show, both in vivo and in cultured cells, that TORC2 is required for the assembly of heat-induced cytoprotective ribonucleoprotein particles, the pro-survival stress granules. These granules are formed in response to protein translation inhibition imposed by heat stress that appears to be less efficient in the absence of TORC2 function. We propose that TORC2 mediates heat resistance in Drosophila by promoting the cell autonomous formation of stress granules.
Collapse
Affiliation(s)
- Irena Jevtov
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | | | - Marinke M van Oorschot
- Hubrecht Institute of the KNAW and UMC Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Igor Vuillez
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Ineke Braakman
- Cellular Protein Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Ernst Hafen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW and UMC Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands Department of Cell Biology, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
16
|
Kotani E, Muto S, Ijiri H, Mori H. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection. J Gen Virol 2015; 96:1947-56. [PMID: 25834094 DOI: 10.1099/vir.0.000136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.
Collapse
Affiliation(s)
- Eiji Kotani
- 1Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan 2Insect Biomedical Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Sayaka Muto
- 1Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroshi Ijiri
- 2Insect Biomedical Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- 1Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan 2Insect Biomedical Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Cruz-Gallardo I, Del Conte R, Velázquez-Campoy A, García-Mauriño SM, Díaz-Moreno I. A Non-Invasive NMR Method Based on Histidine Imidazoles to Analyze the pH-Modulation of Protein-Nucleic Acid Interfaces. Chemistry 2015; 21:7588-95. [PMID: 25846236 DOI: 10.1002/chem.201405538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/19/2015] [Indexed: 12/20/2022]
Abstract
A useful (2) J(N-H) coupling-based NMR spectroscopic approach is proposed to unveil, at the molecular level, the contribution of the imidazole groups of histidines from RNA/DNA-binding proteins on the modulation of binding to nucleic acids by pH. Such protonation/deprotonation events have been monitored on the single His96 located at the second RNA/DNA recognition motif (RRM2) of T-cell intracellular antigen-1 (TIA-1) protein. The pKa values of the His96 ionizable groups were substantially higher in the complexes with short U-rich RNA and T-rich DNA oligonucleotides than those of the isolated TIA-1 RRM2. Herein, the methodology applied to determine changes in pKa of histidine side chains upon DNA/RNA binding, gives valuable information to understand the pH effect on multidomain DNA/RNA-binding proteins that shuttle among different cellular compartments.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Instituto de Bioquímica Vegetal y Fotosíntesis cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, 41092 Sevilla (Spain)
| | | | | | | | | |
Collapse
|
18
|
Sánchez-Jiménez C, Ludeña MD, Izquierdo JM. T-cell intracellular antigens function as tumor suppressor genes. Cell Death Dis 2015; 6:e1669. [PMID: 25741594 PMCID: PMC4385921 DOI: 10.1038/cddis.2015.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/16/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022]
Abstract
Knockdown of T-cell intracellular antigens TIA1 and TIAR in transformed cells triggers cell proliferation and tumor growth. Using a tetracycline-inducible system, we report here that an increased expression of TIA1 or TIAR in 293 cells results in reduced rates of cell proliferation. Ectopic expression of these proteins abolish endogenous TIA1 and TIAR levels via the regulation of splicing of their pre-mRNAs, and partially represses global translation in a phospho-eukaryotic initiation factor 2 alpha-dependent manner. This is accompanied by cell cycle arrest at G1/S and cell death through caspase-dependent apoptosis and autophagy. Genome-wide profiling illustrates a selective upregulation of p53 signaling pathway-related genes. Nude mice injected with doxycycline-inducible cells expressing TIA1 or TIAR retard, or even inhibit, growth of xenotumors. Remarkably, low expressions of TIA1 and TIAR correlate with poor prognosis in patients with lung squamous cell carcinoma. These findings strongly support the concept that TIA proteins act as tumor suppressor genes.
Collapse
Affiliation(s)
- C Sánchez-Jiménez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1, Madrid, Spain
| | - M D Ludeña
- Facultad de Medicina, Departamento de Biología Celular y Patología, Universidad de Salamanca-Hospital Universitario de Salamanca, C/ Paseo de San Vicente 58-182, Salamanca, Spain
| | - J M Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1, Madrid, Spain
| |
Collapse
|
19
|
Karalok HM, Aydin E, Saglam O, Torun A, Guzeloglu-Kayisli O, Lalioti MD, Kristiansson H, Duke CMP, Choe G, Flannery C, Kallen CB, Seli E. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium. J Clin Endocrinol Metab 2014; 99:E2610-9. [PMID: 25140393 PMCID: PMC4255110 DOI: 10.1210/jc.2013-3488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 08/13/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. OBJECTIVE The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. METHODS Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. RESULTS We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. CONCLUSIONS Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Hakan Mete Karalok
- Department of Obstetrics, Gynecology and Reproductive Sciences (H.M.K., E.A., A.T., O.G.-K., M.D.L., H.K., C.M.P.D., G.C., C.F., E.S.) and Department of Pathology (O.S.), Yale School of Medicine, New Haven, Connecticut 06520-8063; and Department of Obstetrics and Gynecology (C.B.K.), Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Núñez M, Sánchez-Jiménez C, Alcalde J, Izquierdo JM. Long-term reduction of T-cell intracellular antigens reveals a transcriptome associated with extracellular matrix and cell adhesion components. PLoS One 2014; 9:e113141. [PMID: 25405991 PMCID: PMC4236147 DOI: 10.1371/journal.pone.0113141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022] Open
Abstract
Knockdown of T-cell intracellular antigens TIA1 and TIAR contributes to a cellular phenotype characterised by uncontrolled proliferation and tumorigenesis. Massive-scale poly(A+) RNA sequencing of TIA1 or TIAR-knocked down HeLa cells reveals transcriptome signatures comprising genes and functional categories potentially able to modulate several aspects of membrane dynamics associated with extracellular matrix and focal/cell adhesion events. The transcriptomic heterogeneity is the result of differentially expressed genes and RNA isoforms generated by alternative splicing and/or promoter usage. These results suggest a role for TIA proteins in the regulation and/or modulation of cellular homeostasis related to focal/cell adhesion, extracellular matrix and membrane and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Mario Núñez
- Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Carmen Sánchez-Jiménez
- Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José Alcalde
- Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José M. Izquierdo
- Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Genome-wide profiling reveals a role for T-cell intracellular antigens TIA1 and TIAR in the control of translational specificity in HeLa cells. Biochem J 2014; 461:43-50. [PMID: 24927121 DOI: 10.1042/bj20140227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TIA (T-cell intracellular antigens)-knockdown HeLa cells show an increase in ribosomes and translational machinery components. This increase correlates with specific changes in translationally up-regulated mRNAs involved in cell-cycle progression and DNA repair, as shown in polysomal profiling analysis. Our data support the hypothesis that a concerted activation of both global and selective translational rates leads to the transition to a more proliferative status in TIA-knockdown HeLa cells.
Collapse
|
22
|
Edri S, Tuller T. Quantifying the effect of ribosomal density on mRNA stability. PLoS One 2014; 9:e102308. [PMID: 25020060 PMCID: PMC4096589 DOI: 10.1371/journal.pone.0102308] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Gene expression is a fundamental cellular process by which proteins are eventually synthesized based on the information coded in the genes. This process includes four major steps: transcription of the DNA segment corresponding to a gene to mRNA molecules, the degradation of the mRNA molecules, the translation of mRNA molecules to proteins by the ribosome and the degradation of the proteins. We present an innovative quantitative study of the interaction between the gene translation stage and the mRNA degradation stage using large scale genomic data of S. cerevisiae, which include measurements of mRNA levels, mRNA half-lives, ribosomal densities and protein abundances, for thousands of genes. The reported results support the conjecture that transcripts with higher ribosomal density, which is related to the translation stage, tend to have elevated half-lives, and we suggest a novel quantitative estimation of the strength of this relation. Specifically, we show that on average, an increase of 78% in ribosomal density yields an increase of 25% in mRNA half-life, and that this relation between ribosomal density and mRNA half-life is not function specific. In addition, our analyses demonstrate that ribosomal density along the entire ORF, and not in specific locations, has a significant effect on the transcript half-life. Finally, we show that the reported relation cannot be explained by different expression levels among genes. A plausible explanation for the reported results is that ribosomes tend to protect the mRNA molecules from the exosome complexes degrading them; however, additional non-mutually exclusive possible explanations for the reported relation and experiments for their verifications are discussed in the paper.
Collapse
Affiliation(s)
- Shlomit Edri
- The Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- The Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
23
|
Carrascoso I, Sánchez-Jiménez C, Izquierdo JM. Long-term reduction of T-cell intracellular antigens leads to increased beta-actin expression. Mol Cancer 2014; 13:90. [PMID: 24766723 PMCID: PMC4113145 DOI: 10.1186/1476-4598-13-90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The permanent down-regulated expression of T-cell intracellular antigen (TIA) proteins in HeLa cells improves cytoskeleton-mediated functions such as cell proliferation and tumor growth. METHODS Making use of human and mouse cells with knocked down/out expression of T-cell intracellular antigen 1 (TIA1) and/or TIA1 related/like (TIAR/TIAL1) proteins and classical RNA (e.g. reverse transcription-quantitative polymerase chain reaction, polysomal profiling analysis using sucrose gradients, immunoblotting, immunoprecipitation, electrophoretic mobility shift assays, ultraviolet light crosslinking and poly (A+) test analysis) and cellular (e.g. immunofluorescence microscopy and quimeric mRNA transfections) biology methods, we have analyzed the regulatory role of TIA proteins in the post-transcriptional modulation of beta-actin (ACTB) mRNA. RESULTS Our observations show that the acquisition of above cellular capacities is concomitant with increased expression levels of the actin beta subunit (ACTB) protein. Regulating TIA abundance does not modify ACTB mRNA levels, however, an increase of ACTB mRNA translation is observed. This regulatory capacity of TIA proteins is linked to the ACTB mRNA 3'-untranslated region (3'-UTR), where these proteins could function as RNA binding proteins. The expression of GFP from a chimeric reporter containing human ΑCΤΒ 3'-UTR recapitulates the translational control found by the endogenous ACTB mRNA in the absence of TIA proteins. Additionally, murine embryonic fibroblasts (MEF) knocked out for TIA1 rise mouse ACTB protein expression compared to the controls. Once again steady-state levels of mouse ACTB mRNA remained unchanged. CONCLUSIONS Collectively, these results suggest that TIA proteins can function as long-term regulators of the ACTB mRNA metabolism in mouse and human cells.
Collapse
Affiliation(s)
| | | | - José M Izquierdo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, DP 28049 Madrid, Spain.
| |
Collapse
|
24
|
Cruz-Gallardo I, Aroca Á, Gunzburg MJ, Sivakumaran A, Yoon JH, Angulo J, Persson C, Gorospe M, Karlsson BG, Wilce JA, Díaz-Moreno I. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain. RNA Biol 2014; 11:766-76. [PMID: 24824036 DOI: 10.4161/rna.28801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| | - Ángeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| | - Menachem J Gunzburg
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Andrew Sivakumaran
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Je-Hyun Yoon
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; NIH; Baltimore, MD USA
| | - Jesús Angulo
- Instituto de Investigaciones Químicas; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain; School of Pharmacy; University of East Anglia; Norwich Research Park; Norwich, UK
| | - Cecilia Persson
- Swedish NMR Centre; University of Gothenburg; Gothenburg, Sweden
| | - Myriam Gorospe
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; NIH; Baltimore, MD USA
| | - B Göran Karlsson
- Swedish NMR Centre; University of Gothenburg; Gothenburg, Sweden
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| |
Collapse
|
25
|
Gubin MM, Techasintana P, Magee JD, Dahm GM, Calaluce R, Martindale JL, Whitney MS, Franklin CL, Besch-Williford C, Hollingsworth JW, Abdelmohsen K, Gorospe M, Atasoy U. Conditional knockout of the RNA-binding protein HuR in CD4⁺ T cells reveals a gene dosage effect on cytokine production. Mol Med 2014; 20:93-108. [PMID: 24477678 DOI: 10.2119/molmed.2013.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/23/2014] [Indexed: 12/18/2022] Open
Abstract
The posttranscriptional mechanisms by which RNA binding proteins (RBPs) regulate T-cell differentiation and cytokine production in vivo remain unclear. The RBP HuR binds to labile mRNAs, usually leading to increases in mRNA stability and/or translation. Previous work demonstrated that HuR binds to the mRNAs encoding the Th2 transcription factor trans-acting T-cell-specific transcription factor (GATA-3) and Th2 cytokines interleukin (IL)-4 and IL-13, thereby regulating their expression. By using a novel conditional HuR knockout (KO) mouse in which HuR is deleted in activated T cells, we show that Th2-polarized cells from heterozygous HuR conditional (OX40-Cre HuR(fl/+)) KO mice had decreased steady-state levels of Gata3, Il4 and Il13 mRNAs with little changes at the protein level. Surprisingly, Th2-polarized cells from homozygous HuR conditional (OX40-Cre HuR(fl/fl)) KO mice showed increased Il2, Il4 and Il13 mRNA and protein via different mechanisms. Specifically, Il4 was transcriptionally upregulated in HuR KO T cells, whereas Il2 and Il13 mRNA stabilities increased. Additionally, when using the standard ovalbumin model of allergic airway inflammation, HuR conditional KO mice mounted a robust inflammatory response similar to mice with wild-type HuR levels. These results reveal a complex differential posttranscriptional regulation of cytokines by HuR in which gene dosage plays an important role. These findings may have significant implications in allergies and asthma, as well as autoimmune diseases and infection.
Collapse
Affiliation(s)
- Matthew M Gubin
- University of Missouri, Columbia, Missouri, United States of America
| | | | - Joseph D Magee
- University of Missouri, Columbia, Missouri, United States of America
| | - Garrett M Dahm
- University of Missouri, Columbia, Missouri, United States of America
| | - Robert Calaluce
- University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer L Martindale
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Maryln S Whitney
- University of Missouri, Columbia, Missouri, United States of America
| | - Craig L Franklin
- University of Missouri, Columbia, Missouri, United States of America
| | | | - John W Hollingsworth
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Kotb Abdelmohsen
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ulus Atasoy
- University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
26
|
Cirillo D, Marchese D, Agostini F, Livi CM, Botta-Orfila T, Tartaglia GG. Constitutive patterns of gene expression regulated by RNA-binding proteins. Genome Biol 2014; 15:R13. [PMID: 24401680 PMCID: PMC4054784 DOI: 10.1186/gb-2014-15-1-r13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/02/2014] [Indexed: 02/04/2023] Open
Abstract
Background RNA-binding proteins regulate a number of cellular processes, including synthesis, folding, translocation, assembly and clearance of RNAs. Recent studies have reported that an unexpectedly large number of proteins are able to interact with RNA, but the partners of many RNA-binding proteins are still uncharacterized. Results We combined prediction of ribonucleoprotein interactions, based on catRAPID calculations, with analysis of protein and RNA expression profiles from human tissues. We found strong interaction propensities for both positively and negatively correlated expression patterns. Our integration of in silico and ex vivo data unraveled two major types of protein–RNA interactions, with positively correlated patterns related to cell cycle control and negatively correlated patterns related to survival, growth and differentiation. To facilitate the investigation of protein–RNA interactions and expression networks, we developed the catRAPID express web server. Conclusions Our analysis sheds light on the role of RNA-binding proteins in regulating proliferation and differentiation processes, and we provide a data exploration tool to aid future experimental studies.
Collapse
|
27
|
Blackham SL, McGarvey MJ. A host cell RNA-binding protein, Staufen1, has a role in hepatitis C virus replication before virus assembly. J Gen Virol 2013; 94:2429-2436. [DOI: 10.1099/vir.0.051383-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Staufen1 is a dsRNA-binding protein involved in the regulation of translation and the trafficking and degradation of cellular RNAs. Staufen1 has also been shown to stimulate translation of human immunodeficiency virus type 1 (HIV-1) RNA, regulate HIV-1 and influenza A virus assembly, and there is also indication that it can interact with hepatitis C virus (HCV) RNA. To investigate the role of Staufen1 in the HCV replication cycle, the effects of small interfering RNA knockout of Staufen1 on HCV strain JFH-1 replication and the intracellular distribution of the Staufen1 protein during HCV infection were examined. Silencing Staufen1 in HCV-infected Huh7 cells reduced virus secretion by around 70 %, intracellular HCV RNA levels by around 40 %, and core and NS3 proteins by around 95 and 45 %, respectively. Staufen1 appeared to be predominantly localized in the endoplasmic reticulum at the nuclear periphery in both uninfected and HCV-infected Huh7 cells. However, Staufen1 showed significant co-localization with NS3 and dsRNA, indicating that it may bind to replicating HCV RNA that is associated with the non-structural proteins. Staufen1 and HCV core protein localized very closely to one another during infection, but did not appear to overlap, indicating that Staufen1 may not bind to core protein or localize to the core-coated lipid droplets, suggesting that it may not be directly involved in HCV virus assembly. These findings indicate that Staufen1 is an important factor in HCV replication and that it might play a role early in the HCV replication cycle, e.g. in translation, replication or trafficking of the HCV genome, rather than in virion morphogenesis.
Collapse
|
28
|
Yuan J, Muljo SA. Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 2013; 253:290-303. [PMID: 23550653 DOI: 10.1111/imr.12048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of microRNAs has renewed interest in posttranscriptional modes of regulation, fueling an emerging view of a rich RNA world within our cells that deserves further exploration. Much work has gone into elucidating genetic regulatory networks that orchestrate gene expression programs and direct cell fate decisions in the hematopoietic system. However, the focus has been to elucidate signaling pathways and transcriptional programs. To bring us one step closer to reverse engineering the molecular logic of cellular differentiation, it will be necessary to map posttranscriptional circuits as well and integrate them in the context of existing network models. In this regard, RNA-binding proteins (RBPs) may rival transcription factors as important regulators of cell fates and represent a tractable opportunity to connect the RNA world to the proteome. ChIP-seq has greatly facilitated genome-wide localization of DNA-binding proteins, helping us to understand genomic regulation at a systems level. Similarly, technological advances such as CLIP-seq allow transcriptome-wide mapping of RBP binding sites, aiding us to unravel posttranscriptional networks. Here, we review RBP-mediated posttranscriptional regulation, paying special attention to findings relevant to the immune system. As a prime example, we highlight the RBP Lin28B, which acts as a heterochronic switch between fetal and adult lymphopoiesis.
Collapse
Affiliation(s)
- Joan Yuan
- Integrative Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
29
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
30
|
Sánchez-Jiménez C, Izquierdo JM. T-cell intracellular antigen (TIA)-proteins deficiency in murine embryonic fibroblasts alters cell cycle progression and induces autophagy. PLoS One 2013; 8:e75127. [PMID: 24086455 PMCID: PMC3782481 DOI: 10.1371/journal.pone.0075127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/09/2013] [Indexed: 02/03/2023] Open
Abstract
Mice lacking either T-cell intracellular antigen 1 (TIA1) or TIA1 related/like protein (TIAR/TIAL1) show high rates of embryonic lethality, suggesting a relevant role for these proteins during embryonic development. However, intrinsic molecular and cellular consequences of either TIA1 or TIAR deficiency remain poorly defined. By using genome-wide expression profiling approach, we demonstrate that either TIA1 or TIAR inactivation broadly alter normal development-associated signalling pathways in murine embryonic fibroblasts (MEF). Indeed, these analyses highlighted alterations of cytokine-cytokine and ECM-receptor interactions and Wnt, MAPK, TGF-beta dependent signalling pathways. Consistent with these results, TIA1 and TIAR knockout (KO) MEF show reduced rates of cell proliferation, cell cycle progression delay and increased cell size. Furthermore, TIA-proteins deficiency also caused metabolic deficiencies, increased ROS levels and DNA damage, promoting a gentle rise of cell death. Concomitantly, high rates of autophagy were detected in both TIA1 and TIAR KO MEF with induction of the formation of autophagosomes, as evidenced by the up-regulation of the LC3B protein, and autolysosomes, measured by colocalization of LC3B and LAMP1, as a survival mechanism attempt. Taken together, these observations support that TIA proteins orchestrate a transcriptome programme to activate specific developmental decisions. This program is likely to contribute to mouse physiology starting at early stages of the embryonic development. TIA1/TIAR might function as cell sensors to maintain homeostasis and promote adaptation/survival responses to developmental stress.
Collapse
Affiliation(s)
- Carmen Sánchez-Jiménez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José M. Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| |
Collapse
|
31
|
Silva-García CG, Estela Navarro R. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis. Genesis 2013; 51:690-707. [PMID: 23913578 DOI: 10.1002/dvg.22418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 11/11/2022]
Abstract
In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México
| | | |
Collapse
|
32
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
33
|
Yang F, Miao L, Mei Y, Wu M. Retinoic acid-induced HOXA5 expression is co-regulated by HuR and miR-130a. Cell Signal 2013; 25:1476-85. [PMID: 23528537 DOI: 10.1016/j.cellsig.2013.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/16/2013] [Accepted: 03/16/2013] [Indexed: 02/03/2023]
Abstract
Retinoic acid (RA) has been used as a chemopreventive agent for breast cancer. It has been shown that HOXA5 is a critical mediator of RA-induced cell growth inhibition. However, the molecular mechanisms underlying RA-induced HOXA5 expression remain largely unknown. Here we report that in addition to transcriptional regulation, post-transcriptional regulation also contributes to RA-induced HOXA5 expression. miR-130a, a c-Myc responsive miRNA, represses HOXA5 cellular levels under unstressed condition. Upon RA treatment, c-Myc is quickly degraded via the proteasome-dependent pathway. This in turn decreases miR-130a levels and de-represses the translation of HOXA5. We also show that the de-repression of HOXA5 translation is dependent on the RNA-binding protein Human antigen R (HuR), which binds to 3'UTR of HOXA5 mRNA and increases its stability in response to RA treatment. Collectively, these results demonstrate that HuR and miR-130a dynamically regulate HOXA5 gene expression via modulating HOXA5 mRNA turnover and translation, respectively, thereby contributing to RA-induced growth inhibition.
Collapse
Affiliation(s)
- Fan Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | |
Collapse
|
34
|
Sánchez-Jiménez C, Carrascoso I, Barrero J, Izquierdo JM. Identification of a set of miRNAs differentially expressed in transiently TIA-depleted HeLa cells by genome-wide profiling. BMC Mol Biol 2013; 14:4. [PMID: 23387986 PMCID: PMC3600012 DOI: 10.1186/1471-2199-14-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis. These proteins control gene expression globally at multiple levels in response to dynamic regulatory changes and environmental stresses. Herein we identified a micro(mi)RNA signature associated to transiently TIA-depleted HeLa cells and analyzed the potential role of miRNAs combining genome-wide analysis data on mRNA and miRNA profiles. RESULTS Using high-throughput miRNA expression profiling, transient depletion of TIA-proteins in HeLa cells was observed to promote significant and reproducible changes affecting to a pool of up-regulated miRNAs involving miR-30b-3p, miR125a-3p, miR-193a-5p, miR-197-3p, miR-203a, miR-210, miR-371-5p, miR-373-5p, miR-483-5p, miR-492, miR-498, miR-503-5p, miR-572, miR-586, miR-612, miR-615-3p, miR-623, miR-625-5p, miR-629-5p, miR-638, miR-658, miR-663a, miR-671-5p, miR-769-3p and miR-744-5p. Some up-regulated and unchanged miRNAs were validated and previous results confirmed by reverse transcription and real time PCR. By target prediction of the miRNAs and combined analysis of the genome-wide expression profiles identified in TIA-depleted HeLa cells, we detected connections between up-regulated miRNAs and potential target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis suggest that target genes are related with biological processes associated to the regulation of DNA-dependent transcription, signal transduction and multicellular organismal development as well as with the enrichment of pathways involved in cancer, focal adhesion, regulation of actin cytoskeleton, endocytosis and MAPK and Wnt signaling pathways, respectively. When the collection of experimentally defined differentially expressed genes in TIA-depleted HeLa cells was intersected with potential target genes only 7 out of 68 (10%) up- and 71 out of 328 (22%) down-regulated genes were shared. GO and KEGG database analyses showed that the enrichment categories of biological processes and cellular pathways were related with innate immune response, signal transduction, response to interleukin-1, glomerular basement membrane development as well as neuroactive ligand-receptor interaction, endocytosis, lysosomes and apoptosis, respectively. CONCLUSION All this considered, these observations suggest that individual miRNAs could act as potential mediators of the epigenetic switch linking transcriptomic dynamics and cell phenotypes mediated by TIA proteins.
Collapse
Affiliation(s)
- Carmen Sánchez-Jiménez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
35
|
Damgaard CK, Lykke-Andersen J. Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer. Cancer Treat Res 2013; 158:153-80. [PMID: 24222358 DOI: 10.1007/978-3-642-31659-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3' UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly regulate their stability can therefore lead to uncontrolled expression of factors associated with cell proliferation and has been implicated in several human cancers. A number of transfactors that recognize AREs and regulate the translation and degradation of ARE-mRNAs have been identified. These transfactors are regulated by signal transduction pathways, which are often misregulated in cancers. This chapter focuses on the function of ARE-binding proteins with an emphasis on their regulation by signaling pathways and the implications for human cancer.
Collapse
|
36
|
Knockdown of T-cell intracellular antigens triggers cell proliferation, invasion and tumour growth. Biochem J 2011; 435:337-44. [PMID: 21284605 DOI: 10.1042/bj20101030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TIA (T-cell intracellular antigen) proteins function as DNA/RNA trans-acting regulators to expand transcriptome and proteome diversity in mammals. In the present paper we report that the stable silencing of TIA1 and/or TIAR/TIAL1 (TIA1-related/like protein 1) expression in HeLa cells enhances cell proliferation, anchorage-dependent and -independent growth and invasion. HeLa cells lacking TIA1 and/or TIAR generate larger and faster-growing epithelial tumours with high rates of proliferation and angiogenesis in nude mice xenografts. Protein array analysis of a collection of human tumours shows that TIA1 and TIAR protein expression is down-regulated in a subset of epithelial tumours relative to normal tissues. Our results suggest a link between the epigenetic control exerted by TIA proteins and the transcriptional and post-transcriptional regulation of a subset of specific genes involved in tumour progression. Taken together, these results are consistent with a role for TIA proteins as growth/tumour-suppressor genes.
Collapse
|
37
|
Aroca A, Díaz-Quintana A, Díaz-Moreno I. A structural insight into the C-terminal RNA recognition motifs of T-cell intracellular antigen-1 protein. FEBS Lett 2011; 585:2958-64. [PMID: 21846467 DOI: 10.1016/j.febslet.2011.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
T-cell intracellular antigen-1 (TIA-1) plays a pleiotropic role in cell homeostasis through the regulation of alternative pre-mRNA splicing and mRNA translation by recognising uridine-rich sequences of RNAs. TIA-1 contains three RNA recognition motifs (RRMs) and a glutamine-rich domain. Here, we characterise its C-terminal RRM2 and RRM3 domains. Notably, RRM3 contains an extra novel N-terminal α-helix (α(1)) which protects its single tryptophan from the solvent exposure, even in the two-domain RRM23 context. The α(1) hardly affects the thermal stability of RRM3. On the contrary, RRM2 destabilises RRM3, indicating that both modules are tumbling together, which may influence the RNA binding activity of TIA-1.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| | | | | |
Collapse
|
38
|
Park JY, Li W, Zheng D, Zhai P, Zhao Y, Matsuda T, Vatner SF, Sadoshima J, Tian B. Comparative analysis of mRNA isoform expression in cardiac hypertrophy and development reveals multiple post-transcriptional regulatory modules. PLoS One 2011; 6:e22391. [PMID: 21799842 PMCID: PMC3142162 DOI: 10.1371/journal.pone.0022391] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/20/2011] [Indexed: 01/01/2023] Open
Abstract
Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload.
Collapse
Affiliation(s)
- Ji Yeon Park
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- New Jersey Medical School and Graduate School of Biomedical Science, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Dinghai Zheng
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Yun Zhao
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Takahisa Matsuda
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- New Jersey Medical School and Graduate School of Biomedical Science, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
39
|
Zurla C, Lifland AW, Santangelo PJ. Characterizing mRNA interactions with RNA granules during translation initiation inhibition. PLoS One 2011; 6:e19727. [PMID: 21573130 PMCID: PMC3088712 DOI: 10.1371/journal.pone.0019727] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/07/2011] [Indexed: 01/27/2023] Open
Abstract
When cells experience environmental stresses, global translational arrest is
often accompanied by the formation of stress granules (SG) and an increase in
the number of p-bodies (PBs), which are thought to play a crucial role in the
regulation of eukaryotic gene expression through the control of mRNA translation
and degradation. SGs and PBs have been extensively studied from the perspective
of their protein content and dynamics but, to date, there have not been
systematic studies on how they interact with native mRNA granules. Here, we
demonstrate the use of live-cell hybridization assays with multiply-labeled
tetravalent RNA imaging probes (MTRIPs) combined with immunofluorescence, as a
tool to characterize the polyA+ and β-actin mRNA distributions within
the cytoplasm of epithelial cell lines, and the changes in their colocalization
with native RNA granules including SGs, PBs and the RNA exosome during the
inhibition of translational initiation. Translation initiation inhibition was
achieved via the induction of oxidative stress using sodium arsenite, as well as
through the use of Pateamine A, puromycin and cycloheximide. This methodology
represents a valuable tool for future studies of mRNA trafficking and regulation
within living cells.
Collapse
Affiliation(s)
- Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia, United States of
America
| | - Aaron W. Lifland
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia, United States of
America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia, United States of
America
- * E-mail:
| |
Collapse
|
40
|
Blanc V, Davidson NO. APOBEC-1-mediated RNA editing. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:594-602. [PMID: 20836050 DOI: 10.1002/wsbm.82] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA editing defines a molecular process by which a nucleotide sequence is modified in the RNA transcript and results in an amino acid change in the recoded message from that specified in the gene. We will restrict our attention to the type of RNA editing peculiar to mammals, i.e., nuclear C to U RNA editing. This category of RNA editing contrasts with RNA modifications described in plants, i.e., organellar RNA editing (reviewed in Ref 1). Mammalian RNA editing is genetically and biochemically classified into two groups, namely insertion-deletional and substitutional. Substitutional RNA editing is exclusive to mammals, again with two types reported, namely adenosine to inosine and cytosine to uracil (C to U). This review will examine mammalian C to U RNA editing of apolipoproteinB (apoB) RNA and the role of the catalytic deaminase Apobec-1. We will speculate on the functions of Apobec-1 beyond C to U RNA editing as implied from its ability to bind AU-rich RNAs and discuss evidence that dysregulation of Apobec-1 expression might be associated with carcinogenesis through aberrant RNA editing or altered RNA stability.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63105, USA
| |
Collapse
|
41
|
Khera TK, Dick AD, Nicholson LB. Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Prog Retin Eye Res 2010; 29:610-21. [DOI: 10.1016/j.preteyeres.2010.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
von Roretz C, Di Marco S, Mazroui R, Gallouzi IE. Turnover of AU-rich-containing mRNAs during stress: a matter of survival. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:336-47. [PMID: 21957021 DOI: 10.1002/wrna.55] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells undergo various adaptive measures in response to stress. Among these are specific changes in the posttranscriptional regulation of various genes. In particular, the turnover of mRNA is modified to either increase or decrease the abundance of certain target messages. Some of the best-studied mRNAs that are affected by stress are those that contain adenine/uridine-rich elements (AREs) in their 3'-untranslated regions. ARE-containing mRNAs are involved in many important cellular processes and are normally labile, but in response to stress they are differentially regulated through the concerted efforts of ARE-binding proteins (AUBPs) such as HuR, AUF1, tristetraprolin, BRF1, and KSRP, along with microRNA-mediated effects. Additionally, the fate of ARE-containing mRNAs is modified by inducing their localization to stress granules or mRNA processing bodies. Coordination of these various mechanisms controls the turnover of ARE-containing mRNAs, and thereby enables proper responses to cellular stress. In this review, we discuss how AUBPs regulate their target mRNAs in response to stress, along with the involvement of cytoplasmic granules in this process.
Collapse
|
43
|
Simarro M, Gimenez-Cassina A, Kedersha N, Lazaro JB, Adelmant GO, Marto JA, Rhee K, Tisdale S, Danial N, Benarafa C, Orduña A, Anderson P. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration. Biochem Biophys Res Commun 2010; 401:440-6. [PMID: 20869947 DOI: 10.1016/j.bbrc.2010.09.075] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 01/23/2023]
Abstract
Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.
Collapse
Affiliation(s)
- Maria Simarro
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dhamija S, Doerrie A, Winzen R, Dittrich-Breiholz O, Taghipour A, Kuehne N, Kracht M, Holtmann H. IL-1-induced post-transcriptional mechanisms target overlapping translational silencing and destabilizing elements in IκBζ mRNA. J Biol Chem 2010; 285:29165-78. [PMID: 20634286 PMCID: PMC2937947 DOI: 10.1074/jbc.m110.146365] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/12/2010] [Indexed: 01/10/2023] Open
Abstract
The inflammatory cytokine IL-1 induces profound changes in gene expression. This is contributed in part by activating translation of a distinct set of mRNAs, including IκBζ, as indicated by genome-wide analysis of changes in ribosomal occupancy in IL-1α-treated HeLa cells. Polysome profiling of IκBζ mRNA and reporter mRNAs carrying its 3' UTR indicated poor translation in unstimulated cells. 3' UTR-mediated translational silencing was confirmed by suppression of luciferase activity. Translational silencing was unaffected by replacing the poly(A) tail with a histone stem-loop, but lost under conditions of cap-independent internal initiation. IL-1 treatment of the cells caused profound shifts of endogenous and reporter mRNAs to polysome fractions and relieved suppression of luciferase activity. IL-1 also inhibited rapid mRNA degradation. Both translational activation and mRNA stabilization involved IRAK1 and -2 but occurred independently of the p38 MAPK pathway, which is known to target certain other post-transcriptional mechanisms. The translational silencing RNA element contains the destabilizing element but requires additional 5' sequences and is impaired by mutations that leave destabilization unaffected. These differences in function are associated with differential changes in protein binding in vitro. Thus, rapid degradation occurs independently of the translational silencing effect. The results provide evidence for a novel mode of post-transcriptional control by IL-1, which impinges on the time course and pattern of IL-1-induced gene expression.
Collapse
Affiliation(s)
- Sonam Dhamija
- From the Institute of Biochemistry, Medical School Hannover, D-30623 Hannover, Germany and
| | - Anneke Doerrie
- From the Institute of Biochemistry, Medical School Hannover, D-30623 Hannover, Germany and
| | - Reinhard Winzen
- From the Institute of Biochemistry, Medical School Hannover, D-30623 Hannover, Germany and
| | | | - Azadeh Taghipour
- From the Institute of Biochemistry, Medical School Hannover, D-30623 Hannover, Germany and
| | - Nancy Kuehne
- From the Institute of Biochemistry, Medical School Hannover, D-30623 Hannover, Germany and
| | - Michael Kracht
- the Rudolf-Buchheim-Institute of Pharmacology, University of Giessen, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | - Helmut Holtmann
- From the Institute of Biochemistry, Medical School Hannover, D-30623 Hannover, Germany and
| |
Collapse
|
45
|
Alcaraz-Estrada SL, Yocupicio-Monroy M, del Angel RM. Insights into dengue virus genome replication. Future Virol 2010. [DOI: 10.2217/fvl.10.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since many antiviral drugs are designed to interfere with viral genome replication, understanding this step in the viral replicative cycle has gained importance in recent years. Replication for many RNA viruses occurs in cellular compartments mainly originated from the production and reorganization of virus-induced membranes. Dengue virus translates, replicates and assembles new viral particles within virus-induced membranes from endoplasmic reticulum. In these compartments, all of the components required for replication are recruited, making the process efficient. In addition, membranes protect replication complexes from RNAases and proteases, and ultimately make them less visible to cellular defense sensors. Although several aspects in dengue virus replication are known, many others are yet to be understood. This article aims to summarize the advances in the understanding of dengue virus genome replication, highlighting the cis as well as trans elements that may have key roles in this process.
Collapse
Affiliation(s)
- Sofia Lizeth Alcaraz-Estrada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F. C.P. 07360
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México, D.F. México
| | | |
Collapse
|
46
|
Izquierdo JM. Heterogeneous ribonucleoprotein C displays a repressor activity mediated by T-cell intracellular antigen-1-related/like protein to modulate Fas exon 6 splicing through a mechanism involving Hu antigen R. Nucleic Acids Res 2010; 38:8001-14. [PMID: 20699271 PMCID: PMC3001070 DOI: 10.1093/nar/gkq698] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
T-cell intracellular antigen (TIA)-proteins are known regulators of alternative pre-mRNA splicing. In this study, pull-down experiments and mass spectrometry indicate that TIAR/TIAL1 and hnRNP C1/C2 are associated in HeLa nuclear extracts. Co-immunoprecipitation and GST-pull-down assays confirmed this interaction. Interestingly, binding requires the glutamine-rich (Q-rich) C-terminal domain of TIAR and the leucine-rich plus acidic residues-rich C-terminal domains of hnRNP C1/C2. This interaction also occurs in an RNA-dependent manner. Recombinant GFP-TIAR and RFP-hnRNP C1 proteins display partial nuclear co-localization when overexpressed in HeLa cells, and this requires the Q-rich domain of TIAR. hnRNP C1 overexpression in the presence of rate-limiting amounts of TIAR in HeLa and HEK293 cells affects alternative splicing of Fas and FGFR2 minigenes, promoting Fas exon 6 and FGFR2 exon K-SAM skipping, respectively. The repressor activity of hnRNP C1 on Fas exon 6 splicing is mediated by Hu antigen R (HuR). Experiments involving tethering approaches showed that the repressor capacity of hnRNP C1 is associated with an exonic splicing silencer in Fas exon 6. This effect was reversed by splice-site strengthening and is linked to its basic leucine zipper-like motif. These results suggest that hnRNP C1/C2 acts as a bridge between HuR and TIAR to modulate alternative Fas splicing.
Collapse
Affiliation(s)
- José M Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Lab-107, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
47
|
Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol Cell Biol 2010; 30:4308-23. [PMID: 20584987 DOI: 10.1128/mcb.00429-10] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In eukaryotic cells, degradation of many mRNAs is initiated by removal of the poly(A) tail followed by decapping and 5'-3' exonucleolytic decay. Although the order of these events is well established, we are still lacking a mechanistic understanding of how deadenylation and decapping are linked. In this report we identify human Pat1b as a protein that is tightly associated with the Ccr4-Caf1-Not deadenylation complex as well as with the Dcp1-Dcp2 decapping complex. In addition, the RNA helicase Rck and Lsm1 proteins interact with human Pat1b. These interactions are mediated via at least three independent domains within Pat1b, suggesting that Pat1b serves as a scaffold protein. By tethering Pat1b to a reporter mRNA, we further provide evidence that Pat1b is also functionally linked to both deadenylation and decapping. Finally, we report that Pat1b strongly induces the formation of processing (P) bodies, cytoplasmic foci that contain most enzymes of the RNA decay machinery. An amino-terminal region within Pat1b serves as an aggregation-prone domain that nucleates P bodies, whereas an acidic domain controls the size of P bodies. Taken together, these findings provide evidence that human Pat1b is a central component of the RNA decay machinery by physically connecting deadenylation with decapping.
Collapse
|
48
|
Nikpour P, Baygi ME, Steinhoff C, Hader C, Luca AC, Mowla SJ, Schulz WA. The RNA binding protein Musashi1 regulates apoptosis, gene expression and stress granule formation in urothelial carcinoma cells. J Cell Mol Med 2010; 15:1210-24. [PMID: 20477901 PMCID: PMC3822633 DOI: 10.1111/j.1582-4934.2010.01090.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RNA-binding protein Musashi1 (MSI1) is a marker of progenitor cells in the nervous system functioning as a translational repressor. We detected MSI1 mRNA in several bladder carcinoma cell lines, but not in cultured normal uroepithelial cells, whereas the paralogous MSI2 gene was broadly expressed. Knockdown of MSI1 expression by siRNA induced apoptosis and a severe decline in cell numbers in 5637 bladder carcinoma cells. Microarray analysis of gene expression changes after MSI1 knockdown significantly up-regulated 735 genes, but down-regulated only 31. Up-regulated mRNAs contained a highly significantly greater number and density of Musashi binding sites. Therefore, a much larger set of mRNAs may be regulated by Musashi1, which may affect not only their translation, but also their turnover. The study confirmed p21CIP1 and Numb proteins as targets of Musashi1, suggesting additionally p27KIP1 in cell-cycle regulation and Jagged-1 in Notch signalling. A significant number of up-regulated genes encoded components of stress granules (SGs), an organelle involved in translational regulation and mRNA turnover, and impacting on apoptosis. Accordingly, heat shock induced SG formation was augmented by Musashi1 down-regulation. Our data show that ectopic MSI1 expression may contribute to tumorigenesis in selected bladder cancers through multiple mechanisms and reveal a previously unrecognized function of Musashi1 in the regulation of SG formation.
Collapse
Affiliation(s)
- Parvaneh Nikpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
49
|
Simarro M, Giannattasio G, De la Fuente MA, Benarafa C, Subramanian KK, Ishizawar R, Balestrieri B, Andersson EM, Luo HR, Orduña A, Boyce J, Anderson P. Fas-activated serine/threonine phosphoprotein promotes immune-mediated pulmonary inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 184:5325-32. [PMID: 20363972 DOI: 10.4049/jimmunol.1000104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We generated Fas-activated serine threonine phosphoprotein (FAST)-deficient mice (FAST(-/-)) to study the in vivo role of FAST in immune system function. In a model of house dust mite-induced allergic pulmonary inflammation, wild type mice develop a mixed cellular infiltrate composed of eosinophils, lymphocytes, and neutrophils. FAST(-/-) mice develop airway inflammation that is distinguished by the near absence of neutrophils. Similarly, LPS-induced alveolar neutrophil recruitment is markedly reduced in FAST(-/-) mice compared with wild type controls. This is accompanied by reduced concentrations of cytokines (TNF-alpha and IL-6 and -23) and chemoattractants (MIP-2 and keratinocyte chemoattractant) in bronchoalveolar lavage fluids. Because FAST(-/-) neutrophils exhibit normal chemotaxis and survival, impaired neutrophil recruitment is likely to be due to reduced production of chemoattractants within the pulmonary parenchyma. Studies using bone marrow chimeras implicate lung resident hematopoietic cells (e.g., pulmonary dendritic cells and/or alveolar macrophages) in this process. In conclusion, our results introduce FAST as a proinflammatory factor that modulates the function of lung resident hematopoietic cells to promote neutrophil recruitment and pulmonary inflammation.
Collapse
Affiliation(s)
- Maria Simarro
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aparicio O, Carnero E, Abad X, Razquin N, Guruceaga E, Segura V, Fortes P. Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair. Nucleic Acids Res 2009; 38:750-63. [PMID: 19933264 PMCID: PMC2817457 DOI: 10.1093/nar/gkp1028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adenovirus virus-associated (VA) RNAs are processed to functional viral miRNAs or mivaRNAs. mivaRNAs are important for virus production, suggesting that they may target cellular or viral genes that affect the virus cell cycle. To look for cellular targets of mivaRNAs, we first identified genes downregulated in the presence of VA RNAs by microarray analysis. These genes were then screened for mivaRNA target sites using several bioinformatic tools. The combination of microarray analysis and bioinformatics allowed us to select the splicing and translation regulator TIA-1 as a putative mivaRNA target. We show that TIA-1 is downregulated at mRNA and protein levels in infected cells expressing functional mivaRNAs and in transfected cells that express mivaRNAI-138, one of the most abundant adenoviral miRNAs. Also, reporter assays show that TIA-1 is downregulated directly by mivaRNAI-138. To determine whether mivaRNAs could target other cellular genes we analyzed 50 additional putative targets. Thirty of them were downregulated in infected or transfected cells expressing mivaRNAs. Some of these genes are important for cell growth, transcription, RNA metabolism and DNA repair. We believe that a mivaRNA-mediated fine tune of the expression of some of these genes could be important in adenovirus cell cycle.
Collapse
Affiliation(s)
- Oscar Aparicio
- Digna Biotech and Bioinformatics Unit, CIMA, University of Navarra, Pio XII 55, 31008, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|