1
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Li M, Zheng J, Luo D, Xu K, Zhang X. Tiki proteins are substrates of membrane-type matrix metalloproteinases. FEBS Lett 2022; 596:1851-1859. [PMID: 35689492 DOI: 10.1002/1873-3468.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Tiki proteins represent a new family of Wnt-specific proteases that inhibit Wnt signalling by cleaving and inactivating Wnt proteins. Tiki proteins are glycosylphosphatidylinositol (GPI)-anchored proteases and function in both Wnt-producing and Wnt-responsive cells. However, how Tiki proteins are regulated remains elusive. In this study, we demonstrate that matrix metalloproteinase 15 (MMP15) interacts with TIKI2 and degrades TIKI2 on the cell surface. Functionally, MMP15 relieves the inhibitory effect of TIKI2 on Wnt signalling in Wnt-responsive cells. We further show that Tiki proteins are substrates of MMP14, MMP15 and MMP16 but not MMP3 or MMP13. Our study provides insights into the potential regulation of Tiki family proteins by other proteases.
Collapse
Affiliation(s)
- Mingyi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Noda N, Ozawa T. Castanospermine suppresses CD44 ectodomain cleavage as revealed by transmembrane bioluminescent sensors. J Cell Sci 2022; 135:274740. [PMID: 35194645 DOI: 10.1242/jcs.259314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/12/2022] [Indexed: 11/20/2022] Open
Abstract
Cluster of differentiation 44 (CD44) is a single-pass transmembrane glycoprotein that is a widely distributed cell-surface adhesion molecule. CD44 undergoes ectodomain cleavage by membrane-associated metalloproteinases in breast cancer cells. Cleavage plays a critical role in cancer cell migration by mediating the interaction between CD44 and the extracellular matrix. To explore inhibitors of CD44 ectodomain cleavage, we developed two bioluminescent sensors for the detection of CD44 ectodomain cleavage. The sensors were designed as two-transmembrane proteins with split-luciferase fragments, one of which was cyclized by protein trans-splicing of a DnaE intein. These two sensors emit light by the cyclization or the spontaneous complementation of the luciferase fragments. The luminescence intensities decreased by cleavage of the ectodomain in breast cancer cells. The sensors revealed that castanospermine, an α-glucosidase inhibitor, suppressed the ectodomain cleavage of endogenous CD44 in breast cancer cells. Castanospermine also inhibited breast cancer cell invasion. Thus, the sensors are beneficial tools for evaluating the effects of different inhibitors.
Collapse
Affiliation(s)
- Natsumi Noda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Pang Y, Su L, Fu Y, Jia F, Zhang C, Cao X, He W, Kong X, Xu J, Zhao J, Qin A. Inhibition of furin by bone targeting superparamagnetic iron oxide nanoparticles alleviated breast cancer bone metastasis. Bioact Mater 2021; 6:712-720. [PMID: 33005833 PMCID: PMC7516174 DOI: 10.1016/j.bioactmat.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer bone metastasis poses significant challenge for therapeutic strategies. Inside the metastatic environment, osteoclasts and tumor cells interact synergistically to promote cancer progression. In this study, the proprotein convertase furin is targeted due to its critical roles in both tumor cell invasion and osteoclast function. Importantly, the furin inhibitor is specifically delivered by bone targeting superparamagnetic iron oxide (SPIO) nanoparticles. Our in vitro and in vivo data demonstrate that this system can effectively inhibit both osteoclastic bone resorption and breast cancer invastion, leading to alleviated osteolysis. Therefore, the bone targeting & furin inhibition nanoparticle system is a promising therapeutic and diagnostic strategy for breast cancer bone metastasis.
Collapse
Affiliation(s)
- Yichuan Pang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Li Su
- Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, 201103, China
| | - Yao Fu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenxi Zhang
- Hongqiao International Institute of Medicine, Shanghai Jiaotong University School of Medicine, 201103, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xueqian Kong
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
5
|
Kallikrein-Related Peptidase 14 Activates Zymogens of Membrane Type Matrix Metalloproteinases (MT-MMPs)-A CleavEx Based Analysis. Int J Mol Sci 2020; 21:ijms21124383. [PMID: 32575583 PMCID: PMC7352328 DOI: 10.3390/ijms21124383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/02/2023] Open
Abstract
Kallikrein-related peptidases (KLKs) and matrix metalloproteinases (MMPs) are secretory proteinases known to proteolytically process components of the extracellular matrix, modulating the pericellular environment in physiology and in pathologies. The interconnection between these families remains elusive. To assess the cross-activation of these families, we developed a peptide, fusion protein-based exposition system (Cleavage of exposed amino acid sequences, CleavEx) aiming at investigating the potential of KLK14 to recognize and hydrolyze proMMP sequences. Initial assessment identified ten MMP activation domain sequences which were validated by Edman degradation. The analysis revealed that membrane-type MMPs (MT-MMPs) are targeted by KLK14 for activation. Correspondingly, proMMP14-17 were investigated in vitro and found to be effectively processed by KLK14. Again, the expected neo-N-termini of the activated MT-MMPs was confirmed by Edman degradation. The effectiveness of proMMP activation was analyzed by gelatin zymography, confirming the release of fully active, mature MT-MMPs upon KLK14 treatment. Lastly, MMP14 was shown to be processed on the cell surface by KLK14 using murine fibroblasts overexpressing human MMP14. Herein, we propose KLK14-mediated selective activation of cell-membrane located MT-MMPs as an additional layer of their regulation. As both, KLKs and MT-MMPs, are implicated in cancer, their cross-activation may constitute an important factor in tumor progression and metastasis.
Collapse
|
6
|
Abstract
Matrix metalloproteinases (MMPs) are structurally related endopeptidases. They are also known as metzincins due to their interaction with zinc ion of the conserved methionine (Met) at the active site. MMPs play an important role in physiological and signaling processes of wound healing, bone resorption and angiogenesis. The structure of MMPs consists of signal peptide, propeptide, catalytic domain, hinge region and hemopexin-like domain. MMP-9 shares high structural and functional similarities with MMP-2, therefore designing selective MMP-9 inhibitors (MMPIs) is challenging. The selectivity can be achieved by targeting S2 subsite of MMP-9 that is having difference with MMP-2. Further, targeting its exosite and protein disulfide isomerase may also provide selective MMPIs. The review highlights the molecular features and basis of MMP-9 enzyme action. The MMPIs reported in the recent years have also been included.
Collapse
|
7
|
Kumar S, Cieplak P. Role of N-glycosylation in activation of proMMP-9. A molecular dynamics simulations study. PLoS One 2018; 13:e0191157. [PMID: 29329315 PMCID: PMC5766141 DOI: 10.1371/journal.pone.0191157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/01/2018] [Indexed: 12/20/2022] Open
Abstract
Human matrix metalloproteinase proMMP-9 is secreted as latent zymogen, which requires two-steps proteolytic activation. The secreted proMMP-9 is glycosylated at two positions: Asn38 and Asn120 located in the prodomain and catalytic domain, respectively. It has been demonstrated that glycosylation at Asn120 is required for secretion of the enzyme, while the role of Asn38 glycosylation is not well understood, but is usually linked to the activation process. One hypothesis stated that the Asn38 glycosylation might protect against proteolytic activation. However, the activation process occurs with or without the presence of this glycosylation. We conducted molecular dynamics (MD) simulations on the glycosylated and non-glycosylated proMMP-9 to elucidate the effect of Asn38 glycosylation on this two-step activation process. The simulation results suggest that Asn38 glycosylation does not hinder the activation process directly, but induces conformational changes in the vicinity of the first proteolytic region in such a way that E59-M60 cleavage is processed before R106-F107. These results correlate with analysis provided by Boon et al. and experimental data from Ogata et al. who attempted to determine the order of events in activation of proMMP-9. Results from additional MD simulations for the model of glycosylated proMMP-9 bound to galectin-8 N-domain suggest that Gal-8 by interacting with Asn38 glycan might further facilitate processing of the first cleavage between E59-M60. Thus, our simulation results suggest that both Asn38 glycosylation and interaction with Gal-8N may be involved in facilitating and the temporal order of the activation process of pro-MMP9. The aim of this report is to provide an inspiration for future detailed experiments aimed at explaining the role of N-glycosylation in the activation process of prodomain of MMP-9.
Collapse
Affiliation(s)
- Sonu Kumar
- SBP Medical Discovery Institute, La Jolla, California, United States of America
| | - Piotr Cieplak
- SBP Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Majali-Martinez A, Velicky P, Pollheimer J, Knöfler M, Yung HW, Burton GJ, Tabrizi-Wizsy NG, Lang U, Hiden U, Desoye G, Dieber-Rotheneder M. Endothelin-1 down-regulates matrix metalloproteinase 14 and 15 expression in human first trimester trophoblasts via endothelin receptor type B. Hum Reprod 2016; 32:46-54. [PMID: 27864359 PMCID: PMC5165079 DOI: 10.1093/humrep/dew295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION Does endothelin-1 (ET-1) regulate matrix metalloproteinase (MMP) 14 and 15 production and invasion of human first trimester trophoblasts? SUMMARY ANSWER ET-1 in pathophysiological concentrations down-regulates MMP14 and MMP15 expression via endothelin receptor (ETR) type B and decreases trophoblast migration and invasion. WHAT IS KNOWN ALREADY MMP14 and MMP15 are involved in trophoblast invasion. Impairment of invasion has been linked to pregnancy complications such as pre-eclampsia (PE). ET-1 is up-regulated in PE. STUDY DESIGN, SIZE, DURATION In vitro study using primary human trophoblasts from 50 first trimester placentas (gestational week 7-12). PARTICIPANTS/MATERIALS, SETTING, METHODS Trophoblasts were cultured in the absence or presence of 10-100 nM ET-1. MMP14 and MMP15 mRNA and protein were quantified by RT-qPCR and Western blotting, respectively. Selective antagonists for ETRA (BQ-123) or ETRB (BQ-788) were used to identify ETR subtypes involved. Functional ET-1 effects were tested in first trimester chorionic villous explants and transwell invasion assays. The roles of tumor necrosis factor (TNF)-α (25 ng/ml) and oxygen (1%) in ET-1 regulation of MMP14 and 15 expression were assessed by Western blotting. MAIN RESULTS AND THE ROLE OF CHANCE ET-1 down-regulated MMP14 and MMP15 mRNA (-21% and -26%, respectively, P < 0.05) and protein levels (-18% and -22%, respectively, P < 0.05). This effect was mediated via ETRB. ET-1 decreased trophoblast outgrowth in placental explants (-24%, P < 0.05) and trophoblast invasion (-26%, P ≤ 0.01). TNF-α enhanced ET-1 mediated MMP15 down-regulation (by 10%, P < 0.05), whereas hypoxia abolished the effect of ET-1 on both MMPs. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Only primary trophoblasts were used in this study. Since trophoblast yield from first trimester placental material is limited, further aspects of MMP14 and 15 regulation could not be characterized. Other anti-invasive factors may be altered by ET-1 in trophoblasts and, thus, contribute to the reduced invasion, but have not been investigated. Oxygen levels similar to those found in the decidua (5-8% O2) were not analyzed in this study. WIDER IMPLICATIONS OF THE FINDINGS ET-1 modifies placental function already during the first trimester of pregnancy, the time-window when the placental changes implicated in PE occur. Thus, our results improve the understanding of the placental mechanisms underlying trophoblast invasion and PE. STUDY FUNDING/COMPETING INTERESTS The study was funded by the Oesterreichische Nationalbank (Anniversary Fund, project number: 14796) and the Herzfelder'sche Familienstiftung (to J.P.; number: 00685). AMM received funding from the Austrian Science Fund FWF (W1241) and the Medical University Graz through the PhD Program Molecular Fundamentals of Inflammation (DK-MOLIN). The authors have no conflict of interest.
Collapse
Affiliation(s)
- Alejandro Majali-Martinez
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Philipp Velicky
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3 EG, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3 EG, UK
| | - Nassim Ghaffari Tabrizi-Wizsy
- Institute of Pathophysiology and Immunology, SFL Chicken CAM Lab, Medical University of Graz, Heinrichstrasse 31a, Graz 8010, Austria
| | - Uwe Lang
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Martina Dieber-Rotheneder
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| |
Collapse
|
9
|
Majali-Martinez A, Hiden U, Ghaffari-Tabrizi-Wizsy N, Lang U, Desoye G, Dieber-Rotheneder M. Placental membrane-type metalloproteinases (MT-MMPs): Key players in pregnancy. Cell Adh Migr 2016; 10:136-46. [PMID: 26745344 DOI: 10.1080/19336918.2015.1110671] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are a sub-family of zinc-dependent endopeptidases involved in the degradation of the extracellular matrix. Although MT-MMPs have been mainly characterized in tumor biology, they also play a relevant role during pregnancy. Placental MT-MMPs are required for cytotrophoblast migration and invasion of the uterine wall and in the remodeling of the spiral arteries. They are involved in the fusion of cytotrophoblasts to form the syncytiotrophoblast as well as in angiogenesis. All these processes are crucial for establishing and maintaining a successful pregnancy and, thus, MT-MMP activity has to be tightly regulated in time and space. Indeed, a de-regulation of MT-MMP expression has been linked with pregnancy complications such as preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM) and was also found in maternal obesity. Here we review what is currently known about MT-MMPs in the placenta, with a focus on their general features, their localization and their involvement in pregnancy disorders.
Collapse
Affiliation(s)
| | - Ursula Hiden
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | | | - Uwe Lang
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | - Gernot Desoye
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | - Martina Dieber-Rotheneder
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria.,c Institute of Pathology, Medical University of Graz , Graz , Austria
| |
Collapse
|
10
|
Chung EY, Ochs CJ, Wang Y, Lei L, Qin Q, Smith AM, Strongin AY, Kamm R, Qi YX, Lu S, Wang Y. Activatable and Cell-Penetrable Multiplex FRET Nanosensor for Profiling MT1-MMP Activity in Single Cancer Cells. NANO LETTERS 2015; 15:5025-5032. [PMID: 26203778 PMCID: PMC4675668 DOI: 10.1021/acs.nanolett.5b01047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells.
Collapse
Affiliation(s)
- Eddie Y. Chung
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Christopher J. Ochs
- Singapore-MIT Alliance for Research and Technology, BioSystems and Micromechanics, Singapore 138602
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Lei Lei
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Qin Qin
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Andrew M. Smith
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Alex Y. Strongin
- Sanford Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Roger Kamm
- Singapore-MIT Alliance for Research and Technology, BioSystems and Micromechanics, Singapore 138602
| | - Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoying Lu
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
11
|
Snyman C, Niesler CU. MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil 2015; 36:215-25. [DOI: 10.1007/s10974-015-9414-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/22/2015] [Indexed: 12/15/2022]
|
12
|
Wong E, Maretzky T, Peleg Y, Blobel CP, Sagi I. The Functional Maturation of A Disintegrin and Metalloproteinase (ADAM) 9, 10, and 17 Requires Processing at a Newly Identified Proprotein Convertase (PC) Cleavage Site. J Biol Chem 2015; 290:12135-46. [PMID: 25795784 DOI: 10.1074/jbc.m114.624072] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
Proenzyme maturation is a general mechanism to control the activation of enzymes. Catalytically active members of the A Disintegrin And Metalloprotease (ADAM) family of membrane-anchored metalloproteases are synthesized as proenzymes, in which the latency is maintained by their autoinhibitory pro-domains. A proteolytic processing then transforms the proenzyme into a catalytically active form. The removal of the pro-domain of ADAMs is currently thought to depend on processing at a canonical consensus site for the proprotein convertase Furin (RXXR) between the pro- and the catalytic domain. Here, we demonstrate that this previously described canonical site is a secondary cleavage site to a prerequisite cleavage in a newly characterized upstream PC site embedded within the pro-domain sequence. The novel upstream regulatory site is important for the maturation of several ADAM proenzymes. Mutations in the upstream regulatory site of ADAM17, ADAM10, and ADAM9 do not prevent pro-domain processing between the pro- and metalloprotease domain, but nevertheless, cause significantly reduced catalytic activity. Thus, our results have uncovered a novel functionally relevant PC processing site in the N-terminal part of the pro-domain that is important for the activation of these ADAMs. These results suggest that the novel PC site is part of a general mechanism underlying proenzyme maturation of ADAMs that is independent of processing at the previously identified canonical Furin cleavage site.
Collapse
Affiliation(s)
- Eitan Wong
- From the Department of Biological Regulation and
| | - Thorsten Maretzky
- the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery and
| | - Yoav Peleg
- The Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, 7610001, Israel and
| | - Carl P Blobel
- the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery and the Departments of Medicine and of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York 10021
| | - Irit Sagi
- From the Department of Biological Regulation and
| |
Collapse
|
13
|
Shiryaev SA, Remacle AG, Golubkov VS, Ingvarsen S, Porse A, Behrendt N, Cieplak P, Strongin AY. A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP. Oncogenesis 2013; 2:e80. [PMID: 24296749 PMCID: PMC3940861 DOI: 10.1038/oncsis.2013.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 01/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and, especially membrane type 1 (MT1)-MMP/MMP-14, are promising drug targets in malignancies. In contrast with multiple small-molecule and protein pan-inhibitors of MT1–MMP cleavage activity, the murine 9E8 monoclonal antibody targets the MMP-2-activating function of cellular MT1–MMP alone, rather than the general proteolytic activity and the pro-migratory function of MT1–MMP. Furthermore, the antibody does not interact in any detectable manner with other members of the membrane type (MT)-MMP family. The mechanism of this selectivity remained unknown. Using mutagenesis, binding and activity assays, and modeling in silico, we have demonstrated that the 9E8 antibody recognizes the MT-loop structure, an eight residue insertion that is specific for MT–MMPs and that is distant from the MT1–MMP active site. The binding of the 9E8 antibody to the MT-loop, however, prevents tissue inhibitor of metalloproteinases-2 (TIMP-2) association with MT1–MMP. As a result, the 9E8 antibody incapacitates the TIMP-2-dependent MMP-2-activating function alone rather than the general enzymatic activity of human MT1–MMP. The specific function of the 9E8 antibody we determined directly supports an essential, albeit paradoxical, role of the protein inhibitor (TIMP-2) in MMP-2 activation via a unique membrane-tethered mechanism. In this mechanism, the formation of a tri-molecular MT1–MMPTIMP-2MMP-2 complex is required for both the capture of the soluble MMP-2 proenzyme by cells and then its well-controlled conversion into the mature MMP-2 enzyme. In sum, understanding of the structural requirements for the 9E8 antibody specificity may pave the way for the focused design of the inhibitory antibodies against other individual MMPs.
Collapse
Affiliation(s)
- S A Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Remacle AG, Shiryaev SA, Golubkov VS, Freskos JN, Brown MA, Karwa AS, Naik AD, Howard CP, Sympson CJ, Strongin AY. Non-destructive and selective imaging of the functionally active, pro-invasive membrane type-1 matrix metalloproteinase (MT1-MMP) enzyme in cancer cells. J Biol Chem 2013; 288:20568-80. [PMID: 23733191 DOI: 10.1074/jbc.m113.471508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Proteolytic activity of cell surface-associated MT1-matrix metalloproteinase (MMP) (MMP-14) is directly related to cell migration, invasion, and metastasis. MT1-MMP is regulated as a proteinase by activation and conversion of the latent proenzyme into the active enzyme, and also via inhibition by tissue inhibitors of MMPs (TIMPs) and self-proteolysis. MT1-MMP is also regulated as a membrane protein through its internalization and recycling. Routine immunohistochemistry, flow cytometry, reverse transcription-PCR, and immunoblotting methodologies do not allow quantitative imaging and assessment of the cell-surface levels of the active, TIMP-free MT1-MMP enzyme. Here, we developed a fluorescent reporter prototype that targets the cellular active MT1-MMP enzyme alone. The reporter (MP-3653) represents a liposome tagged with a fluorochrome and functionalized with a PEG chain spacer linked to an inhibitory hydroxamate warhead. Our studies using the MP-3653 reporter and its inactive derivative demonstrated that MP-3653 can be efficiently used not only to visualize the trafficking of MT1-MMP through the cell compartment, but also to quantify the femtomolar range amounts of the cell surface-associated active MT1-MMP enzyme in multiple cancer cell types, including breast carcinoma, fibrosarcoma, and melanoma. Thus, the levels of the naturally expressed, fully functional, active cellular MT1-MMP enzyme are roughly equal to 1 × 10(5) molecules/cell, whereas these levels are in a 1 × 10(6) range in the cells with the enforced MT1-MMP expression. We suggest that the reporter we developed will contribute to the laboratory studies of MT1-MMP and then, ultimately, to the design of novel, more efficient prognostic approaches and personalized cancer therapies.
Collapse
Affiliation(s)
- Albert G Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu S, Wang Y, Huang H, Pan Y, Chaney EJ, Boppart SA, Ozer H, Strongin AY, Wang Y. Quantitative FRET imaging to visualize the invasiveness of live breast cancer cells. PLoS One 2013; 8:e58569. [PMID: 23516511 PMCID: PMC3596289 DOI: 10.1371/journal.pone.0058569] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/05/2013] [Indexed: 01/14/2023] Open
Abstract
Matrix metalloproteinases (MMPs) remodel tumor microenvironment and promote cancer metastasis. Among the MMP family proteases, the proteolytic activity of the pro-tumorigenic and pro-metastatic membrane-type 1 (MT1)-MMP constitutes a promising and targetable biomarker of aggressive cancer tumors. In this study, we systematically developed and characterized several highly sensitive and specific biosensors based on fluorescence resonant energy transfer (FRET), for visualizing MT1-MMP activity in live cells. The sensitivity of the AHLR-MT1-MMP biosensor was the highest and five times that of a reported version. Hence, the AHLR biosensor was employed to quantitatively profile the MT1-MMP activity in multiple breast cancer cell lines, and to visualize the spatiotemporal MT1-MMP activity simultaneously with the underlying collagen matrix at the single cell level. We detected a significantly higher level of MT1-MMP activity in invasive cancer cells than those in benign or non-invasive cells. Our results further show that the high MT1-MMP activity was stimulated by the adhesion of invasive cancer cells onto the extracellular matrix, which is precisely correlated with the cell’s ability to degrade the collagen matrix. Thus, we systematically optimized a FRET-based biosensor, which provides a powerful tool to detect the pro-invasive MT1-MMP activity at single cell levels. This readout can be applied to profile the invasiveness of single cells from clinical samples, and to serve as an indicator for screening anti-cancer inhibitors.
Collapse
Affiliation(s)
- Shaoying Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - He Huang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yijia Pan
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eric J. Chaney
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Stephen A. Boppart
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Howard Ozer
- Cancer Center and Department of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Alex Y. Strongin
- Sanford Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yingxiao Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemical Engineering, Center of Biophysics and Computational Biology, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Golubkov VS, Chernov AV, Strongin AY. Intradomain cleavage of inhibitory prodomain is essential to protumorigenic function of membrane type-1 matrix metalloproteinase (MT1-MMP) in vivo. J Biol Chem 2011; 286:34215-23. [PMID: 21832072 DOI: 10.1074/jbc.m111.264036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Invasive cancers use pericellular proteolysis to breach the extracellular matrix and basement membrane barriers and invade the surrounding tissue. Proinvasive membrane type-1 matrix metalloproteinase (MT1-MMP) is the primary mediator of proteolytic events on the cancer cell surface. MT1-MMP is synthesized as a zymogen. The latency of MT1-MMP is maintained by its N-terminal inhibitory prodomain. In the course of MT1-MMP activation, the R(108)RKR(111) ↓ Y(112) prodomain sequence is processed by furin. The intact prodomain released by furin alone, however, is a potent inhibitor of the emerging MT1-MMP enzyme. Evidence suggests that the prodomain undergoes intradomain cleavage at the PGD ↓ L(50) site followed by the release of the degraded prodomain by furin cleavage that finalizes the two-step activation event. These cleavages, only if combined, cause the activation of MT1-MMP. The significance of the intradomain cleavage in the protumorigenic program of MT1-MMP, however, remained unidentified. To identify this important parameter, in our current study, we used the cells that expressed the wild-type prodomain-based fluorescent biosensor and the mutant biosensor with the inactivated PGD↓L(50) cleavage site (L50D mutant) and also the cells with the enforced expression of the wild-type and L50D mutant MT1-MMP. Using cell-based tests, orthotopic breast cancer xenografts in mice, and genome-wide transcriptional profiling of cultured cells and tumor xenografts, we demonstrated that the intradomain cleavage of the PGD ↓ L(50) sequence of the prodomain is essential for the protumorigenic function of MT1-MMP. Our results emphasize the importance of the intradomain cleavages resulting in the inactivation of the respective inhibitory prodomains not only for MT1-MMP but also for other MMP family members.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
17
|
Tapia T, Ottman R, Chakrabarti R. LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells. Mol Cancer 2011; 10:6. [PMID: 21219645 PMCID: PMC3027192 DOI: 10.1186/1476-4598-10-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 01/10/2011] [Indexed: 02/15/2023] Open
Abstract
Background LIM kinase 1 (LIMK1) is an actin and microtubule cytoskeleton modulatory protein that is overexpressed in a number of cancerous tissues and cells and also promotes invasion and metastasis of prostate and breast cancer cells. Membrane type matrix metalloproteinase 1 (MT1-MMP) is a critical modulator of extracellular matrix (ECM) turnover through pericellular proteolysis and thus plays crucial roles in neoplastic cell invasion and metastasis. MT1-MMP and its substrates pro-MMP-2 and pro-MMP-9 are often overexpressed in a variety of cancers including prostate cancer and the expression levels correlate with the grade of malignancy in prostate cancer cells. The purpose of this study is to determine any functional relation between LIMK1 and MT1-MMP and its implication in cell invasion. Results Our results showed that treatment with the hydroxamate inhibitor of MT1-MMP, MMP-2 and MMP-9 ilomastat inhibited LIMK1-induced invasion of benign prostate epithelial cells. Over expression of LIMK1 resulted in increased collagenolytic activity of MMP-2, and secretion of pro-MMP2 and pro-MMP-9. Cells over expressing LIMK1 also exhibited increased expression of MT1-MMP, transcriptional activation and its localization to the plasma membrane. LIMK1 physically associates with MT1-MMP and is colocalized with it to the Golgi vesicles. We also noted increased expression of both MT1-MMP and LIMK1 in prostate tumor tissues. Conclusion Our results provide new information on regulation of MT1-MMP function by LIMK1 and showed for the first time, involvement of MMPs in LIMK1 induced cell invasion.
Collapse
Affiliation(s)
- Tenekua Tapia
- Department of Molecular Biology and Microbiology, Burnett School of Biomolecular Sciences, University of Central Florida, Orlando, FL, USA
| | | | | |
Collapse
|
18
|
Golubkov VS, Cieplak P, Chekanov AV, Ratnikov BI, Aleshin AE, Golubkova NV, Postnova TI, Radichev IA, Rozanov DV, Zhu W, Motamedchaboki K, Strongin AY. Internal cleavages of the autoinhibitory prodomain are required for membrane type 1 matrix metalloproteinase activation, although furin cleavage alone generates inactive proteinase. J Biol Chem 2010; 285:27726-36. [PMID: 20605791 DOI: 10.1074/jbc.m110.135442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD/L(50) site initiates the MT1-MMP activation, whereas the (108)RRKR(111)/Y(112) cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu LP, Liang HF, Chen XP, Zhang WG, Yang SL, Xu T, Ren L. The role of NF-kappaB in Hepatitis b virus X protein-mediated upregulation of VEGF and MMPs. Cancer Invest 2010; 28:443-51. [PMID: 20073580 DOI: 10.3109/07357900903405959] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus X protein (HBx) promotes hepatocellular carcinoma (HCC) invasion and metastasis by a poorly understood mechanism. This study investigated the role of NF-kappa B in HBx-mediated upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). In a stably expressing HBx cell line, NF-kappa B level was examined by laser scanning confocal microscopy before and after treatment with pyrrolidine dithiocarbamate (PDTC; an NF-kappa B inhibitor). VEGF, MMP2, MMP9, and MMP14 mRNA and protein levels were quantitated by real-time PCR and Western blotting, respectively. HBx stimulated NF-kappa B signaling and increased VEGF, MMP2, MMP9, and MMP14 mRNA and protein levels. PDTC treatment blocked HBx-mediated stimulation of NF-kappa B signaling and decreased VEGF, MMP9, and MMP14 (but not MMP2) mRNA and protein levels. In vivo studies, PDTC reduced angiogenesis in subcutaneous xenograft of nude mice which injected HepG2-HBx cells. This suggests that NF-kappa B is involved in upregulating these genes and in the HBx-mediated invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Li-ping Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Sounni NE, Rozanov DV, Remacle AG, Golubkov VS, Noel A, Strongin AY. Timp-2 binding with cellular MT1-MMP stimulates invasion-promoting MEK/ERK signaling in cancer cells. Int J Cancer 2010; 126:1067-78. [PMID: 19551841 PMCID: PMC2864114 DOI: 10.1002/ijc.24690] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Both invasion-promoting MT1-MMP and its physiological inhibitor TIMP-2 play a significant role in tumorigenesis and are identified in the most aggressive cancers. Despite its antiproteolytic effects in vitro, clinical data suggest that TIMP-2 expression is positively associated with tumor recurrence, thus emphasizing the wide-ranging role of TIMP-2 in malignancies. To shed light on this role of TIMP-2, we report that low concentrations of TIMP-2, by interacting with MT1-MMP (a specific membrane receptor of TIMP-2), induce the MEK/ERK signaling cascade in fibrosarcoma HT1080 cells which express MT1-MMP naturally. TIMP-2 binding with cell surface-associated MT1-MMP stimulates phosphorylation of MEK1/2, which is upstream of ERK1/2, and the ERK1/2 substrate p90RSK. Consistent with volumes of literature, we confirmed that the activation of ERK stimulated cell migration. Both the transcriptional silencing of MT1-MMP and the inhibition of MEK1/2 reversed the signaling effects of TIMP-2/MT1-MMP while the active site-targeting MMP inhibitor GM6001 did not. Our data suggest that both the interactions of TIMP-2 with MT1-MMP, which activate the pro-migratory ERK signaling cascade,and the conventional inhibition of MT1-MMP's catalytic activity by TIMP-2, play a role in the invasion-promoting function of MT1-MMP. The TIMP-2-induced stimulation of ERK signaling in cancer cells explains the direct, as opposed to the inverse, association of TIMP-2 expression with poor prognosis in cancer.
Collapse
Affiliation(s)
- Nor Eddine Sounni
- Cancer Research Center, Burnham Institute for Medical Research, La Jolla, CA
| | - Dmitri V. Rozanov
- Cancer Research Center, Burnham Institute for Medical Research, La Jolla, CA
| | - Albert G. Remacle
- Cancer Research Center, Burnham Institute for Medical Research, La Jolla, CA
| | | | - Agnes Noel
- Laboratory of Biology of Tumors and Development, University of Liege, Liege, Belgium
| | - Alex Y. Strongin
- Cancer Research Center, Burnham Institute for Medical Research, La Jolla, CA
| |
Collapse
|
21
|
Strongin AY. Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:133-41. [PMID: 19406172 PMCID: PMC2823998 DOI: 10.1016/j.bbamcr.2009.04.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 12/13/2022]
Abstract
This manuscript provides an overview of the dynamic interactions which play an important role in regulating cancer cell functions. We describe and discuss, primarily, those interactions which involve membrane type-1 matrix metalloproteinase (MT1-MMP), its physiological inhibitor tissue inhibitor of metalloproteinases-2 (TIMP-2), furin-like proprotein convertases and the low density lipoprotein-related protein 1 (LRP1) signaling scavenger receptor. The interaction among these cellular proteins controls the efficiency of the activation of MT1-MMP and the unorthodox intracellular signaling which is generated by the catalytically inert complex of MT1-MMP with TIMP-2 and which plays a potentially important role in the migration of cancer cells. Our in-depth understanding of these cellular mechanisms may provide the key to solving the puzzling TIMP-2 paradox. This unsolved paradox arises from the fact that TIMP-2 is a powerful inhibitor of MMPs including MT1-MMP, but at the same time high levels of TIMP-2 positively correlate with an unfavorable prognosis in cancer patients. Solving the TIMP-2 paradox may lead to solving a similar PAI-1 paradox and produce a clearer understanding of the biochemical mechanisms which control the functionality of the urokinase-type plasminogen activator*urokinase receptor*plasminogen activator inhibitor type-1 (uPAR*uPA*PAI-1) system in cancer.
Collapse
Affiliation(s)
- Alex Y Strongin
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Lausch E, Keppler R, Hilbert K, Cormier-Daire V, Nikkel S, Nishimura G, Unger S, Spranger J, Superti-Furga A, Zabel B. Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphyseal anadysplasia. Am J Hum Genet 2009; 85:168-78. [PMID: 19615667 DOI: 10.1016/j.ajhg.2009.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/01/2009] [Accepted: 06/23/2009] [Indexed: 01/22/2023] Open
Abstract
The matrix metalloproteinases MMP9 and MMP13 catalyze the degradation of extracellular matrix (ECM) components in the growth plate and at the same time cleave and release biologically active molecules stored in the ECM, such as VEGFA. In mice, ablation of Mmp9, Mmp13, or both Mmp9 and Mmp13 causes severe distortion of the metaphyseal growth plate. We report that mutations in either MMP9 or MMP13 are responsible for the human disease metaphyseal anadysplasia (MAD), a heterogeneous group of disorders for which a milder recessive variant and a more severe dominant variant are known. We found that recessive MAD is caused by homozygous loss of function of either MMP9 or MMP13, whereas dominant MAD is associated with missense mutations in the prodomain of MMP13 that determine autoactivation of MMP13 and intracellular degradation of both MMP13 and MMP9, resulting in a double enzymatic deficiency.
Collapse
|
23
|
Tritschler I, Gramatzki D, Capper D, Mittelbronn M, Meyermann R, Saharinen J, Wick W, Keski-Oja J, Weller M. Modulation of TGF-beta activity by latent TGF-beta-binding protein 1 in human malignant glioma cells. Int J Cancer 2009; 125:530-40. [PMID: 19431147 DOI: 10.1002/ijc.24443] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High biological activity of the transforming growth factor (TGF)-beta-Smad pathway characterizes the malignant phenotype of malignant gliomas and confers poor prognosis to glioma patients. Accordingly, TGF-beta has become a novel target for the experimental treatment of these tumors. TGF-beta is processed by furin-like proteases (FLP) and secreted from cells in a latent complex with its processed propeptide, the latency-associated peptide (LAP). Latent TGF-beta-binding protein 1 (LTBP-1) covalently binds to this small latent TGF-beta complex (SLC) and regulates its function, presumably via interaction with the extracellular matrix (ECM). We report here that the levels of LTBP-1 protein in vivo increase with the grade of malignancy in gliomas. LTBP-1 is associated with the ECM as well as secreted into the medium in cultured malignant glioma cells. The release of LTBP-1 into the medium is decreased by the inhibition of FLP activity. Gene-transfer mediated overexpression of LTBP-1 in glioma cell lines results in an increase inTGF-beta activity. Accordingly, Smad2 phosphorylation as an intracellular marker of TGF-beta activity is enhanced. Conversely, LTBP-1 gene silencing reduces TGF-beta activity and Smad2 phosphorylation without affecting TGF-beta protein levels. Collectively, we identify LTBP-1 as an important modulator of TGF-beta activation in glioma cells, which may contribute to the malignant phenotype of these tumors.
Collapse
Affiliation(s)
- Isabel Tritschler
- Department of General Neurology, Laboratory of Molecular Neuro-Oncology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wieghaus KA, Gianchandani EP, Neal RA, Paige MA, Brown ML, Papin JA, Botchwey EA. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells. Biotechnol Bioeng 2009; 103:796-807. [PMID: 19326468 PMCID: PMC2711776 DOI: 10.1002/bit.22310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode of action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray data set of PNF1-treated (vs. control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-alpha) and, subsequently, transforming growth factor-beta (TGF-beta) signaling networks by PNF1. Here we validate this microarray data set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this data set and identify three specific TGF-beta-induced genes with regulation by PNF1 conserved over multiple timepoints-amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)-that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1-48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode of action and important for successful promotion of the neovascularization that we have observed by the drug in vivo.
Collapse
Affiliation(s)
- Kristen A. Wieghaus
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, Phone: 434-982-1587, Fax: 434-982-3870
| | - Erwin P. Gianchandani
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, Phone: 434-982-6267, Fax: 434-982-3870
| | - Rebekah A. Neal
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, Phone: 434-982-1587, Fax: 434-982-3870
| | - Mikell A. Paige
- Lombardi Comprehensive Cancer Center, Drug Discovery Program, Department of Oncology, Georgetown University Medical Center, New Research Building, EP07, 3970 Reservoir Road, Washington, DC 20057, Phone: 202-687-8605
| | - Milton L. Brown
- Lombardi Comprehensive Cancer Center, Drug Discovery Program, Department of Oncology, Georgetown University Medical Center, New Research Building, EP07, 3970 Reservoir Road, Washington, DC 20057, Phone: 202-687-8605
| | - Jason A. Papin
- Cardiovascular Research Center, Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, Phone: 434-924-8195, Fax: 434-982-3870
| | - Edward A. Botchwey
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, Phone: 434-243-9846, Fax: 434-982-3870
| |
Collapse
|
25
|
Radichev IA, Remacle AG, Sounni NE, Shiryaev SA, Rozanov DV, Zhu W, Golubkova NV, Postnova TI, Golubkov VS, Strongin AY. Biochemical evidence of the interactions of membrane type-1 matrix metalloproteinase (MT1-MMP) with adenine nucleotide translocator (ANT): potential implications linking proteolysis with energy metabolism in cancer cells. Biochem J 2009; 420:37-47. [PMID: 19232058 PMCID: PMC2737480 DOI: 10.1042/bj20090082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhong Zhu
- Burnham Institute for Medical Research, La Jolla, CA 92037, U.S.A
| | | | | | | | - Alex Y. Strongin
- Burnham Institute for Medical Research, La Jolla, CA 92037, U.S.A
| |
Collapse
|
26
|
Metalloproteinase’s Activity and Oxidative Stress in Mild Cognitive Impairment and Alzheimer’s Disease. Neurochem Res 2008; 34:373-8. [DOI: 10.1007/s11064-008-9789-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
27
|
Remacle AG, Shiryaev SA, Oh ES, Cieplak P, Srinivasan A, Wei G, Liddington RC, Ratnikov BI, Parent A, Desjardins R, Day R, Smith JW, Lebl M, Strongin AY. Substrate cleavage analysis of furin and related proprotein convertases. A comparative study. J Biol Chem 2008; 283:20897-906. [PMID: 18505722 DOI: 10.1074/jbc.m803762200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We present the data and the technology, a combination of which allows us to determine the identity of proprotein convertases (PCs) related to the processing of specific protein targets including viral and bacterial pathogens. Our results, which support and extend the data of other laboratories, are required for the design of effective inhibitors of PCs because, in general, an inhibitor design starts with a specific substrate. Seven proteinases of the human PC family cleave the multibasic motifs R-X-(R/K/X)-R downward arrow and, as a result, transform proproteins, including those from pathogens, into biologically active proteins and peptides. The precise cleavage preferences of PCs have not been known in sufficient detail; hence we were unable to determine the relative importance of the individual PCs in infectious diseases, thus making the design of specific inhibitors exceedingly difficult. To determine the cleavage preferences of PCs in more detail, we evaluated the relative efficiency of furin, PC2, PC4, PC5/6, PC7, and PACE4 in cleaving over 100 decapeptide sequences representing the R-X-(R/K/X)-R downward arrow motifs of human, bacterial, and viral proteins. Our computer analysis of the data and the follow-on cleavage analysis of the selected full-length proteins corroborated our initial results thus allowing us to determine the cleavage preferences of the PCs and to suggest which PCs are promising drug targets in infectious diseases. Our results also suggest that pathogens, including anthrax PA83 and the avian influenza A H5N1 (bird flu) hemagglutinin precursor, evolved to be as sensitive to PC proteolysis as the most sensitive normal human proteins.
Collapse
Affiliation(s)
- Albert G Remacle
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|