1
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
3
|
Takahashi K, Itakura E, Takano K, Endo T. DA-Raf, a dominant-negative regulator of the Ras–ERK pathway, is essential for skeletal myocyte differentiation including myoblast fusion and apoptosis. Exp Cell Res 2019; 376:168-180. [DOI: 10.1016/j.yexcr.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
|
4
|
Gu X, Su X, Jia C, Lin L, Liu S, Zhang P, Wang X, Jiang X. Sprouty1 regulates neuritogenesis and survival of cortical neurons. J Cell Physiol 2018; 234:12847-12864. [PMID: 30569452 DOI: 10.1002/jcp.27949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2 A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
5
|
Wang Z, Qin C, Zhang J, Han Z, Tao J, Cao Q, Zhou W, Xu Z, Zhao C, Tan R, Gu M. MiR-122 promotes renal cancer cell proliferation by targeting Sprouty2. Tumour Biol 2017; 39:1010428317691184. [PMID: 28231730 DOI: 10.1177/1010428317691184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs are short non-coding RNAs, which have been implicated in several biological processes. Aberrant expression of the microRNA miR-122 has frequently been reported in malignant cancers. However, the mechanism underlying the effects of miR-122 in renal cell carcinoma remains unknown. The aim of this study was to determine the biological function of miR-122 in renal cell carcinoma and to identify a novel molecular target regulated by miR-122. We measured the expression levels of Sprouty2 in six renal cell carcinoma tissue samples and adjacent non-tumor tissues by western blot analysis. We then used reverse transcription polymerase chain reaction to measure miR-122 levels in 40 primary renal cell carcinoma and adjacent non-malignant tissue samples. The effects of miR-122 down-regulation or Sprouty2 knockdown were evaluated via Cell Counting Kit-8 assay, flow cytometry, and western blot analysis. The relationship between miR-122 and Sprouty2 was determined using dual-luciferase reporter assays. Sprouty2 was down-regulated in renal cell carcinoma tissue samples compared with adjacent normal tissue. In contrast, miR-122 was up-regulated in primary renal cell carcinoma tissue samples compared with adjacent normal tissue samples. Down-regulation of miR-122 substantially weakened the proliferative ability of renal cell carcinoma cell lines in vitro. In contrast, Sprouty2 knockdown promoted the in vitro proliferation of renal cell carcinoma cell lines. The spry2 gene could therefore be a direct target of miR-122. In conclusion, miR-122 could act as a tumor promoter and potentially target Sprouty2. MiR-122 promotes renal cell carcinoma cell proliferation, migration, and invasion and could be a molecular target in novel therapies for renal cell carcinoma.
Collapse
Affiliation(s)
- Zijie Wang
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Chao Qin
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jing Zhang
- 2 Department of Urology, Shuyang Hospital of Traditional Chinese Medicine, Shuyang, China
| | - Zhijian Han
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jun Tao
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Qiang Cao
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Wanli Zhou
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Zhen Xu
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Chunchun Zhao
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Ruoyun Tan
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Min Gu
- 1 Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, China
| |
Collapse
|
6
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. J Biol Chem 2016; 291:16787-801. [PMID: 27281823 DOI: 10.1074/jbc.m116.714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.
Collapse
Affiliation(s)
- Kristin C Hicks
- From the Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, and
| | - Tarun B Patel
- the Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
8
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
9
|
Mei Y, Bian C, Li J, Du Z, Zhou H, Yang Z, Zhao RCH. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem 2014; 114:1374-84. [PMID: 23239100 DOI: 10.1002/jcb.24479] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/05/2012] [Indexed: 12/21/2022]
Abstract
The ERK-MAPK signaling pathway plays a pivotal role during mesenchymal stem cell (MSC) differentiation. Studies have demonstrated that ERK-MAPK promotes adipogenesis and osteogenesis through the phosphorylation of differentiation-associated transcription factors and that it is the only active signaling in all three lineages (adipogenic, chondrogenic, and osteogenic) during MSC differentiation. Recent studies pointed to the significant roles of microRNA-21 (miR-21) during several physiological and pathological processes, especially stem cell fate determination. The miR-21 expression pattern is also correlated with ERK-MAPK activity. Here, we found that miR-21 expression is elevated and associated with an increased differentiation potential in MSCs during adipogenesis and osteogenesis. The overexpression of miR-21 elevated the expression level of the differentiation-associated genes PPARγ and Cbfa-1 during MSC differentiation, whereas miR-21 knockdown reduced the expression level of both genes. The ERK-MAPK signaling pathway activity had an increasing tendency to respond to miR-21 upregulation and a decreasing tendency to respond to miR-21 down-regulation during the first 4 days of adipogenesis and osteogenesis. Our data indicate that miR-21 modulated ERK-MAPK signaling activity by repressing SPRY2 expression, a known regulator of the receptor tyrosine kinase (RTK) signaling pathway, to affect the duration and magnitude of ERK-MAPK activity. The ERK-MAPK signaling pathway was regulated by Sprouty2 (SPRY2) expression via a miR-21-mediated mechanism during MSC differentiation.
Collapse
Affiliation(s)
- Yang Mei
- Center of Excellence in Tissue Engineering, Department of Cell Biology, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
11
|
Sprouty2 Is Associated With Prognosis and Suppresses Cell Proliferation and Invasion in Renal Cell Carcinoma. Urology 2013; 82:253.e1-7. [DOI: 10.1016/j.urology.2013.02.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/24/2013] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
|
12
|
Lagronova-Churava S, Spoutil F, Vojtechova S, Lesot H, Peterka M, Klein OD, Peterkova R. The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:307-20. [PMID: 23606267 DOI: 10.1002/jez.b.22502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
In mice, a toothless diastema separates the single incisor from the three molars in each dental quadrant. In the prospective diastema of the embryo, small rudimentary buds are found that are presumed to be rudiments of suppressed teeth. A supernumerary tooth occurs in the diastema of adult mice carrying mutations in either Spry2 or Spry4. In the case of Spry2 mutants, the origin of the supernumerary tooth involves the revitalization of a rudimentary tooth bud (called R2), whereas its origin in the Spry4 mutants is not known. In addition to R2, another rudimentary primordium (called MS) arises more anteriorly in the prospective diastema. We investigated the participation of both rudiments (MS and R2) in supernumerary tooth development in Spry2 and Spry4 mutants by comparing morphogenesis, proliferation, apoptosis, size and Shh expression in the dental epithelium of MS and R2 rudiments. Increased proliferation and decreased apoptosis were found in MS and R2 at embryonic day (ED) 12.5 and 13.5 in Spry2(-/-) embryos. Apoptosis was also decreased in both rudiments in Spry4(-/-) embryos, but the proliferation was lower (similar to WT mice), and supernumerary tooth development was accelerated, exhibiting a cap stage by ED13.5. Compared to Spry2(-/-) mice, a high number of Spry4(-/-) supernumerary tooth primordia degenerated after ED13.5, resulting in a low percentage of supernumerary teeth in adults. We propose that Sprouty genes were implicated during evolution in reduction of the cheek teeth in Muridae, and their deletion can reveal ancestral stages of murine dental evolution.
Collapse
|
13
|
Abstract
Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.
Collapse
|
14
|
Anderson K, Nordquist KA, Gao X, Hicks KC, Zhai B, Gygi SP, Patel TB. Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. J Biol Chem 2011; 286:42027-42036. [PMID: 22006925 DOI: 10.1074/jbc.m111.303222] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sprouty (Spry) proteins modulate the actions of receptor tyrosine kinases during development and tumorigenesis. Decreases in cellular levels of Spry, especially Sprouty2 (Spry2), have been implicated in the growth and progression of tumors of the breast, prostate, lung, and liver. During development and tumor growth, cells experience hypoxia. Therefore, we investigated how hypoxia modulates the levels of Spry proteins. Hypoxia elevated the levels of all four expressed Spry isoforms in HeLa cells. Amounts of endogenous Spry2 in LS147T and HEP3B cells were also elevated by hypoxia. Using Spry2 as a prototype, we demonstrate that silencing and expression of prolyl hydroxylase domain proteins (PHD1-3) increase and decrease, respectively, the cellular content of Spry2. Spry2 also preferentially interacted with PHD1-3 and von Hippel-Lindau protein (pVHL) during normoxia but not in hypoxia. Additionally, Spry2 is hydroxylated on Pro residues 18, 144, and 160, and substitution of these residues with Ala enhanced stability of Spry2 and abrogated its interactions with pVHL. Silencing of pVHL increased levels of Spry2 by decreasing its ubiquitylation and degradation and thereby augmented the ability of Spry2 to inhibit FGF-elicited activation of ERK1/2. Thus, prolyl hydroxylase mediated hydroxylation and subsequent pVHL-elicited ubiquitylation of Spry2 target it for degradation and, consequently, provide a novel mechanism of regulating growth factor signaling.
Collapse
Affiliation(s)
- Kimberly Anderson
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kyle A Nordquist
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Xianlong Gao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kristin C Hicks
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tarun B Patel
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153.
| |
Collapse
|
15
|
Zaremba A, Schmuecker U, Esche H. Sprouty is a cytoplasmic target of adenoviral E1A oncoproteins to regulate the receptor tyrosine kinase signalling pathway. Virol J 2011; 8:192. [PMID: 21518456 PMCID: PMC3152785 DOI: 10.1186/1743-422x-8-192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background Oncoproteins encoded by the early region of adenoviruses have been shown to be powerful tools to study gene regulatory mechanisms, which affect major cellular events such as proliferation, differentiation, apoptosis and oncogenic transformation. They are possesing a key role to favor viral replication via their interaction with multiple cellular proteins. In a yeast two-hybrid screen we have identified Sprouty1 (Spry1) as a target of adenoviral E1A Oncoproteins. Spry proteins are central and complex regulators of the receptor tyrosine kinase (RTK) signalling pathway. The deregulation of Spry family members is often associated with alterations of the RTK signalling and its downstream effectors, leading to the ERK pathway. Results Here, we confirm our yeast two-hybrid data, showing the interaction between Spry1 and E1A in GST pull-down and immunoprecipitation assays. We also demonstrated the interaction of E1A with two further Spry isoforms. Using deletion mutants we identified the N-terminus and the CR conserved region (CR) 3 of E1A- and the C-terminal half of Spry1, which contains the highly conserved Spry domain, as the essential sites for direct interaction between Spry and E1A. Immunofluorescent microscopy data revealed a co-localization of E1A13S with Spry1 in the cytoplasm. SRE and TRE reporter assays demonstrated that co-expression of Spry1 with E1A13S abolishes the inhibitory function of Spry1 in RTK signalling, which is consequently accompanied with a decrease of E1A13S-induced gene expression. Conclusions These results establish Spry1 as a cytoplasmic localized cellular target for E1A oncoproteins to regulate the RTK signalling pathway, and consequently cellular events downstream of RTK that are essential for viral replication and transformation.
Collapse
Affiliation(s)
- Angelika Zaremba
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, PO Box 12233, Durham, NC 27709, USA.
| | | | | |
Collapse
|
16
|
Spry2 expression correlates with BRAF mutation in thyroid cancer. Surgery 2011; 148:1282-7; discussion 1287. [PMID: 21134562 DOI: 10.1016/j.surg.2010.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND BRAF mutations activate the mitogen-activated protein kinase pathway and often confer an aggressive thyroid cancer (TC) phenotype. Spry2 is an inducible negative feedback regulator of the mitogen-activated protein kinase (MAPK) pathway. The aim of this study was to investigate the role of Spry2 in TC. METHODS TC cell lines were analyzed for Spry2 expression and MAPK pathway activation. Cells were treated with MEK inhibitor and Spry2 small hairpin RNA. Cells were analyzed for Spry2 expression and MEK/ERK phosphorylation (pMEK, pERK). Thirty human papillary TCs were analyzed for mitogen-activated protein kinase pathway activating mutations and Spry2 expression. RESULTS Increased baseline pMEK levels and Spry2 expression was found in BRAF V600E mutant (BRAF+) cells. MEK inhibition in BRAF+ cells showed decreased Spry2 expression and decreased pMEK/pERK levels. From our tissue samples, 10 papillary TCs had BRAF mutation, and increased Spry2 expression was found only in BRAF+ tumors. CONCLUSION Spry2 expression correlates with BRAF status in vitro and in human tissue. Spry2 may serve as a negative feedback regulator of the mitogen-activated protein kinase pathway in BRAF+ TC. Increased Spry2 expression may serve as a surrogate marker of mitogen-activated protein kinase pathway activation with prognostic and therapeutic implications.
Collapse
|
17
|
Sabatel C, Cornet AM, Tabruyn SP, Malvaux L, Castermans K, Martial JA, Struman I. Sprouty1, a new target of the angiostatic agent 16K prolactin, negatively regulates angiogenesis. Mol Cancer 2010; 9:231. [PMID: 20813052 PMCID: PMC2944818 DOI: 10.1186/1476-4598-9-231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/02/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Disorganized angiogenesis is associated with several pathologies, including cancer. The identification of new genes that control tumor neovascularization can provide novel insights for future anti-cancer therapies. Sprouty1 (SPRY1), an inhibitor of the MAPK pathway, might be one of these new genes. We identified SPRY1 by comparing the transcriptomes of untreated endothelial cells with those of endothelial cells treated by the angiostatic agent 16 K prolactin (16 K hPRL). In the present study, we aimed to explore the potential function of SPRY1 in angiogenesis. RESULTS We confirmed 16 K hPRL induced up-regulation of SPRY1 in primary endothelial cells. In addition, we demonstrated the positive SPRY1 regulation in a chimeric mouse model of human colon carcinoma in which 16 K hPRL treatment was shown to delay tumor growth. Expression profiling by qRT-PCR with species-specific primers revealed that induction of SPRY1 expression by 16 K hPRL occurs only in the (murine) endothelial compartment and not in the (human) tumor compartment. The regulation of SPRY1 expression was NF-κB dependent. Partial SPRY1 knockdown by RNA interference protected endothelial cells from apoptosis as well as increased endothelial cell proliferation, migration, capillary network formation, and adhesion to extracellular matrix proteins. SPRY1 knockdown was also shown to affect the expression of cyclinD1 and p21 both involved in cell-cycle regulation. These findings are discussed in relation to the role of SPRY1 as an inhibitor of ERK/MAPK signaling and to a possible explanation of its effect on cell proliferation. CONCLUSIONS Taken together, these results suggest that SPRY1 is an endogenous angiogenesis inhibitor.
Collapse
Affiliation(s)
- Céline Sabatel
- Unit of Molecular Biology and Genetic Engineering, GIGA-research, University of Liège, B34, Avenue de l'Hôpital, 1, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
Miraoui H, Ringe J, Häupl T, Marie PJ. Increased EFG- and PDGFalpha-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet 2010; 19:1678-89. [PMID: 20124286 DOI: 10.1093/hmg/ddq045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dysregulations of osteoblast function induced by gain-of-function genetic mutations in fibroblast growth factor receptors (FGFRs) cause premature fusion of cranial sutures in syndromic craniosynostosis. The pathogenic signaling mechanisms induced by FGFR genetic mutations in human craniosynostosis remain largely unknown. In this study, we have used microarray analysis to investigate the signaling pathways that are activated by FGFR2 mutations in Apert craniosynostosis. Transcriptomic analysis revealed that EGFR and PDGFRalpha expression is abnormally increased in human Apert calvaria osteoblasts compared with wild-type cells. Quantitative RT-PCR and western blot analyses in Apert osteoblasts and immunohistochemical analysis of Apert sutures confirmed the increased EGFR and PDGFRalpha expression in vitro and in vivo. We demonstrate that pharmacological inhibition of EGFR and PDGFR reduces the pathological upregulation of phenotypic osteoblast genes and in vitro matrix mineralization in Apert osteoblasts. Investigation of the underlying molecular mechanisms revealed that activated FGFR2 enhances EGFR and PDGFRalpha mRNA expression via activation of PKCalpha-dependent AP-1 transcriptional activity. We also show that the increased EGFR protein expression in Apert osteoblasts results in part from a post-transcriptional mechanism involving increased Sprouty2-Cbl interaction, leading to Cbl sequestration and reduced EGFR ubiquitination. These data reveal novel molecular crosstalks between activated FGFR2, EGFR and PDGFRalpha that functionally contribute to the osteoblastic dysfunction in Apert craniosynostosis, which may provide a molecular basis for novel therapeutic approaches in this severe skeletal disorder.
Collapse
Affiliation(s)
- Hichem Miraoui
- Laboratory of Osteoblast Biology and Pathology, Inserm U606, Paris, France
| | | | | | | |
Collapse
|
19
|
Edwin F, Anderson K, Patel TB. HECT domain-containing E3 ubiquitin ligase Nedd4 interacts with and ubiquitinates Sprouty2. J Biol Chem 2009; 285:255-64. [PMID: 19864419 DOI: 10.1074/jbc.m109.030882] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser(112) and Ser(121), on Spry2. The phospho-Ser(112/121) region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys(48) on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
20
|
Edwin F, Anderson K, Ying C, Patel TB. Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 2009; 76:679-91. [PMID: 19570949 PMCID: PMC2769046 DOI: 10.1124/mol.109.055848] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/01/2009] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling is spatially and temporally regulated by a number of positive and negative regulatory mechanisms. These regulatory mechanisms control the amplitude and duration of the signals initiated at the cell surface to have a normal or aberrant biological outcome in development and disease, respectively. In the past decade, the Sprouty (Spry) family of proteins has been identified as modulators of RTK signaling in normal development and disease. This review summarizes recent advances concerning the biological activities modulated by Spry family proteins, their interactions with signaling proteins, and their involvement in cardiovascular diseases and cancer. The diversity of mechanisms in the regulation of Spry expression and activity in cell systems emphasizes the crucial role of Spry proteins in development and growth across the animal kingdom.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
21
|
Ahn JH, Eum KH, Lee M. The enhancement of Raf-1 kinase activity by knockdown of Spry2 is associated with high sensitivity to paclitaxel in v-Ha-ras-transformed NIH 3T3 fibroblasts. Mol Cell Biochem 2009; 332:189-97. [PMID: 19588231 DOI: 10.1007/s11010-009-0191-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
Abstract
We previously demonstrated that the downregulation of Raf-1 kinase may contribute to the development of acquired resistance in paclitaxel-resistant cells. In this study, we determine whether the sensitivities of parental and its v-Ha-ras-transformed NIH 3T3 cells to paclitaxel were dependent on Raf-1 kinase activity. Paclitaxel sensitivity of v-Ha-ras-transformed cells was found to be significantly higher than that of its parental cells. Paclitaxel transiently increased Raf-1 kinase activity in v-Ha-ras-transformed cells while showing no effect on its parental cells, suggesting that the Raf-1-MAP kinase pathway is proapoptotic. Furthermore, using siRNA-mediated Raf-1 knockdown analysis, we showed that Raf-1 knockdown cells were more resistant than control cells to paclitaxel treatment. In particular, the expression of the gene SPRY2, which has been known to act as an inhibitor on Ras/Raf/MAPK signaling, was downregulated after the treatment with paclitaxel. Methylation-specific PCR also revealed that downregulation of Spry2 was associated with altered methylation of the CpG-rich region of the SPRY2 exon 1. In addition, the Spry2 protein knockdown cells were more susceptible to paclitaxel treatment than control cells. Taken together, our results suggest that the enhancement of Raf-1 kinase activity by knockdown of Spry2 is associated with high sensitivity to paclitaxel.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- Department of Biology, College of Natural Sciences, University of Incheon, 177 Dowha-dong, Nam-gu, Incheon, 402-749, Republic of Korea
| | | | | |
Collapse
|
22
|
Chow SY, Yu CY, Guy GR. Sprouty2 interacts with protein kinase C delta and disrupts phosphorylation of protein kinase D1. J Biol Chem 2009; 284:19623-36. [PMID: 19458088 DOI: 10.1074/jbc.m109.021600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sprouty (Spry) proteins act as inhibitors of the Ras/ERK pathway downstream of receptor tyrosine kinases. In this study, we report a novel interaction between protein kinase C delta (PKCdelta) and Spry2. Endogenous PKCdelta and Spry2 interact in cells upon basic fibroblast growth factor stimulation, indicating a physiological relevance for the interaction. This interaction appeared to require the full-length Spry2 protein and was conformation-dependent. Conformational constraints were released upon FGFR1 activation, allowing the interaction to occur. Although this interaction did not affect the phosphorylation of PKCdelta by another kinase, it reduced the phosphorylation of a PKCdelta substrate, protein kinase D1 (PKD1). Spry2 was found to interact more strongly with PKCdelta with increasing amounts of PKD1, which indicated that instead of competing with PKD1 for binding with PKCdelta, it was more likely to form a trimeric complex with both PKCdelta and PKD1. Formation of the complex was found to be dependent on an existing PKCdelta-PKD1 interaction. By disrupting the interaction between PKCdelta and PKD1, Spry2 was unable to associate with PKCdelta to form the trimeric complex. As a consequence of this trimeric complex, the existing interaction between PKCdelta and PKD1 was increased, and the transfer of phosphate groups from PKCdelta to PKD1 was at least partly blocked by Spry2. The action of Spry2 on PKCdelta resulted in the inhibition of both ERK phosphorylation and invasion of PC-3 cells via PKCdelta signaling. By disrupting the capacity of PKCdelta to phosphorylate its cognate substrates, Spry2 may serve to modulate PKCdelta signaling downstream of receptor tyrosine kinases and to regulate the physiological outcome.
Collapse
Affiliation(s)
- Soah Yee Chow
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, National University of Singapore, Singapore 117597, Singapore
| | | | | |
Collapse
|
23
|
Lito P, Mets BD, Appledorn DM, Maher VM, McCormick JJ. Sprouty 2 regulates DNA damage-induced apoptosis in Ras-transformed human fibroblasts. J Biol Chem 2008; 284:848-54. [PMID: 19008219 DOI: 10.1074/jbc.m808045200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have reported that expression of Sprouty 2 (Spry2) is necessary for tumor formation by HRas(V12)-transformed fibroblasts. We now report on the role of Spry2 in the inhibition of UV(254 nm) radiation-induced apoptosis in HRas(V12)-transformed human fibroblasts. Silencing Spry2 in this context resulted in increased apoptosis, associated with decreased Akt activation and decreased phosphorylation of HDM2 at Ser-166, which has been shown to stabilize HDM2. As a consequence, when cells with silenced Spry2 were UV-irradiated, they exhibited diminished levels of HDM2 and elevated levels of p53. In agreement with these findings, overexpression of Spry2 in the parental non-transformed fibroblasts led to increased Akt activation and to the stabilization of HDM2. It also led to diminished expression of p53 and decreased apoptosis following UV irradiation. Silencing Spry2 in HRas-transformed cells decreased Rac1 activation, but independent expression of Spry2 in the non-transformed parental cells had no effect on Rac1, suggesting a specific involvement in the activation of Rac1 by Ras. Silencing Spry2 in HRas(V12)-transformed cells resulted in diminished interaction between HRas and Tiam1, a Rac1-specific nucleotide exchange factor. Expression of constitutively active Rac1 in cells with silenced Spry2 partly reversed the effect of Spry2 down-regulation. Furthermore, loss of Spry2 expression in HRas(V12)-transformed cells augmented the cytotoxicity of the DNA-damaging, chemotherapeutic agent cisplatin, a process that was also reversed by active Rac1. Together, these data show that Spry2 inhibits apoptosis in response to DNA damage by regulating Akt, HDM2, and p53, by a process mediated partly by Rac1.
Collapse
Affiliation(s)
- Piro Lito
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-1302, USA
| | | | | | | | | |
Collapse
|
24
|
Down-regulation of Sprouty2 via p38 MAPK plays a key role in the induction of cellular apoptosis by tumor necrosis factor-alpha. Biochem Biophys Res Commun 2008; 375:460-4. [PMID: 18713620 DOI: 10.1016/j.bbrc.2008.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 02/05/2023]
Abstract
Mammalian Sprouty2 (Spry2) is a key regulator of the receptor tyrosine kinase/ERK signaling pathway and involved in many biological processes, including cell growth, migration, and tumor suppression. Here, we demonstrated that the intracellular protein level of Spry2 was significantly down-regulated by tumor necrosis factor-alpha (TNF-alpha) in both murine Swiss 3T3 fibroblasts and MLE15 lung epithelial cells. Although TNF-alpha activates multiple signaling cascades, only the inhibitor of p38 MAPK pathway blocked TNF-alpha-induced Spry2 down-regulation. Moreover, since both the mRNA level and protein half-life of Spry2 were unaltered by TNF-alpha treatment, this indicated the possible involvement of a translational mechanism in mediating the inhibitory effect of TNF-alpha. Importantly, rescue of the TNF-alpha-induced down-regulation of Spry2 by gene overexpression led to reverse of the apoptotic effect of TNF-alpha in Swiss 3T3 cells. To our knowledge, this study is the first that reported the association of Spry2 with TNF-alpha signaling pathway.
Collapse
|
25
|
Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 2008; 19:3272-82. [PMID: 18508928 PMCID: PMC2488276 DOI: 10.1091/mbc.e08-02-0159] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The posttranscriptional regulator, microRNA-21 (miR-21), is up-regulated in many forms of cancer, as well as during cardiac hypertrophic growth. To understand its role, we overexpressed it in cardiocytes where it revealed a unique type of cell-to-cell "linker" in the form of long slender outgrowths and branches. We subsequently confirmed that miR-21 directly targets and down-regulates the expression of Sprouty2 (SPRY2), an inhibitor of branching morphogenesis and neurite outgrowths. We found that beta-adrenergic receptor (betaAR) stimulation induces up-regulation of miR-21 and down-regulation of SPRY2 and is, likewise, associated with connecting cell branches. Knockdown of SPRY2 reproduced the branching morphology in cardiocytes, and vice versa, knockdown of miR-21 using a specific 'miRNA eraser' or overexpression of SPRY2 inhibited betaAR-induced cellular outgrowths. These structures enclose sarcomeres and connect adjacent cardiocytes through functional gap junctions. To determine how this aspect of miR-21 function translates in cancer cells, we knocked it down in colon cancer SW480 cells. This resulted in disappearance of their microvillus-like protrusions accompanied by SPRY2-dependent inhibition of cell migration. Thus, we propose that an increase in miR-21 enhances the formation of various types of cellular protrusions through directly targeting and down-regulating SPRY2.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|