1
|
Morales BGDV, Evaristo JAM, Oliveira GARDE, Garay AFG, Diaz JJAR, Arruda A, Pereira SS, Zanchi FB. Expression and purification of active shikimate dehydrogenase from Plasmodium falciparum. AN ACAD BRAS CIENC 2024; 96:e20230382. [PMID: 38422345 DOI: 10.1590/0001-3765202420230382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/02/2023] [Indexed: 03/02/2024] Open
Abstract
Plasmodium falciparum is known to cause severe malaria, current treatment consists in artemisinin-based combination therapy, but resistance can lead to treatment failure. Knowledge concerning P. falciparum essential proteins can be used for searching new antimalarials, among these a potential candidate is shikimate dehydrogenase (SDH), an enzyme part of the shikimate pathway which is responsible for producing endogenous aromatic amino acids. SDH from P. falciparum (PfSDH) is unexplored by the scientific community, therefore, this study aims to establish the first protocol for active PfSDH expression. Putative PfSDH nucleotide sequence was used to construct an optimized expression vector pET28a+PfSDH inserted in E. coli BL21(DE3). As a result, optimal expression conditions were acquired by varying IPTG and temperature through time. Western Blot analysis was applied to verify appropriate PfSDH expression, solubilization and purification started with lysis followed by two-steps IMAC purification. Enzyme activity was measured spectrophotometrically by NADPH oxidation, optimal PfSDH expression occur at 0.1 mM IPTG for 48 hours growing at 37 °C and shaking at 200 rpm, recombinant PfSDH obtained after purification was soluble, pure and its physiological catalysis was confirmed. Thus, this study describes the first protocol for heterologous expression of PfSDH in soluble and active form.
Collapse
Affiliation(s)
- Bruno G Dalla Vecchia Morales
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Federal University of Rondonia (UNIR), BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- São Lucas University Center (UniSL), Alexandre Guimarães Street, 1927, Areal, 76804-373 Porto Velho, RO, Brazil
| | - Joseph Albert M Evaristo
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
| | - George A R DE Oliveira
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Oswaldo Cruz Institute (IOC), Brasil Avenue 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Ana Fidelina G Garay
- Centro para el Desarrollo de la Investigación Científica (CEDIC), P975+F58, Manduvira, Asuncion, Paraguay
| | - Jorge Javier A R Diaz
- Centro para el Desarrollo de la Investigación Científica (CEDIC), P975+F58, Manduvira, Asuncion, Paraguay
| | - Andrelisse Arruda
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Antibodies Engineering, Beira Street, 7671, Lagoa, 76812-245 Porto Velho, RO, Brazil
- Oswaldo Cruz Foundation Brasília (FIOCRUZ BRASÍLIA), L3 North Avenue, Gleba A, 70904-130 Brasília, DF, Brazil
| | - Soraya S Pereira
- Federal University of Rondonia (UNIR), BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Antibodies Engineering, Beira Street, 7671, Lagoa, 76812-245 Porto Velho, RO, Brazil
| | - Fernando B Zanchi
- Oswaldo Cruz Foundation Rondônia (FIOCRUZ/RO), Laboratory of Bioinformatics and Medicinal Chemistry, BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Federal University of Rondonia (UNIR), BR 364, km 9,5, Centro, 76801-059 Porto Velho, RO, Brazil
- Oswaldo Cruz Institute (IOC), Brasil Avenue 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Chatterjee A, Sarkar K, Bank S, Ghosh S, Kumar Pal D, Saraf S, Wakle D, Roy B, Chakraborty S, Bankura B, Chattopadhyay D, Das M. Homozygous GRHPR C.494G>A mutation is deleterious that causes early onset of nephrolithiasis in West Bengal, India. Front Mol Biosci 2022; 9:1049620. [PMID: 36619171 PMCID: PMC9815608 DOI: 10.3389/fmolb.2022.1049620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pediatric nephrolithiasis (NL) or Kidney stone disease (KSD) is an untethered topic in Asian population. In Western countries, the annual incidence of paediatric NL is around 6-10%. Here, we present data from West Bengal, India, on lower age (LA, 0-20 years) NL and its prevalence for the first time. To discover the mutations associated with KSD, twenty-four (18 + 6) rare LA-NL patients were selected for Whole Exome Sequencing (WES) and Sanger sequencing, respectively. It was found that GRHPR c. 494G>A mutation (MZ826703) is predominant in our study cohort. This specific homozygous mutation is functionally studied for the first time directly from human peripheral mononuclear cell (PBMC) samples. Using expression study with biochemical activity and computational analysis we assumed that the mutation is pathogenic with loss of function. Moreover, three genes, AGXT, HOGA1 and GRHPR with Novel variants known to cause hyperoxaluria were found frequently in the study cohort. Our study analyses the genes and variations that cause LA-NL, as well as the molecular function of the GRHPR mutation, which may serve as a clinical marker in the population of West Bengal, Eastern India.
Collapse
Affiliation(s)
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, India
| | - Dilip Kumar Pal
- Department of Urology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Siddharth Saraf
- Department of Urology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Dhansagar Wakle
- Department of Urology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | | | - Biswabandhu Bankura
- Department of Zoology, University of Calcutta, Kolkata, India,Medical College, Kolkata, India
| | - Debprasad Chattopadhyay
- ICMR Virus Unit, ID & BG Hospital, Kolkata, India,ICMR-National Institute of Traditional Medicine, Belgavi, India,School of Health Sciences, NSHM Knowledge Campus, Kolkata, India,*Correspondence: Madhusudan Das, ; Debprasad Chattopadhyay,
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, India,*Correspondence: Madhusudan Das, ; Debprasad Chattopadhyay,
| |
Collapse
|
3
|
Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, Tonetti M, Van Etten JL, De Castro C. The Astounding World of Glycans from Giant Viruses. Chem Rev 2022; 122:15717-15766. [PMID: 35820164 PMCID: PMC9614988 DOI: 10.1021/acs.chemrev.2c00118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| | - Anna Notaro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Chantal Abergel
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Rosa Lanzetta
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Todd L. Lowary
- Institute
of Biological Chemistry, Academia Sinica, Academia Road, Section 2, Nangang 11529, Taipei, Taiwan
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Michela Tonetti
- Department
of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - James L. Van Etten
- Nebraska
Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, United States
- Department
of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, United States
| | - Cristina De Castro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| |
Collapse
|
4
|
Willett E, Jiang V, Koder RL, Banta S. NAD + Kinase Enzymes Are Reversible, and NAD + Product Inhibition Is Responsible for the Observed Irreversibility of the Human Enzyme. Biochemistry 2022; 61:1862-1873. [PMID: 35984481 DOI: 10.1021/acs.biochem.2c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NAD+ kinase (NADK) is the only known enzyme capable of phosphorylating NAD(H) to NADP(H) and therefore it plays a crucial role in maintaining NAD(P)(H) homeostasis. All domains of life contain at least one NADK gene, and the commonly investigated isoforms have been measured, or assumed, to be functionally irreversible. In 1977, the kinetics of native pigeon liver NADK were thoroughly investigated, and it was reported to exhibit reversible activity, such that ATP and NAD+ can be formed from ADP and NADP+. We hypothesized that the reverse activity of the pigeon enzyme may enable compensation of the high picolinic acid carboxylase (PC) activity present in pigeon livers, which inhibits NAD+ biosynthesis from dietary tryptophan. Here, we report the characterization of four recombinantly expressed NADKs and explore their reversible activities. Duck and cat livers have higher PC activity than pigeon livers, and the recombinant duck and cat NADKs exhibit high activity in the reverse direction. The human NADK has an affinity for NAD+ that is ∼600 times higher than the pigeon, duck, and cat isoforms, and we conclude that NAD+ serves as a potent product inhibitor for the reverse activity of the human NADK, which accounts for the observed irreversible behavior. These results demonstrate that while all four NADKs are reversible, the reverse activity of the human enzyme alone is impeded via product inhibition. This mechanism─the conversion of a reversible to a unidirectional reaction by product inhibition─may be valuable in future metabolic engineering applications.
Collapse
Affiliation(s)
- Emma Willett
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Virginia Jiang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York 10031, United States.,Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, New York 10016, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. THE ISME JOURNAL 2021; 15:3129-3147. [PMID: 33972727 PMCID: PMC8528832 DOI: 10.1038/s41396-021-00989-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI (B. prasinos) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters.
Collapse
|
6
|
Bhattacharya S, Nautiyal AK, Bhattacharjee R, Padhi AK, Junghare V, Bhambri M, Dasgupta D, Zhang KYJ, Ghosh D, Hazra S. A comprehensive characterization of novel CYP-BM3 homolog (CYP-BA) from Bacillus aryabhattai. Enzyme Microb Technol 2021; 148:109806. [PMID: 34116765 DOI: 10.1016/j.enzmictec.2021.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/07/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Functionalizing C-H bond poses one of the most significant challenges for chemists providing them with very few substrate-specific synthetic routes. Despite being incredibly plastic in their enzymatic ability, they are confined with deficient enzymatic action and limited explicitness of the substrates. In this study, we have endeavored to characterize novel cytochrome P450 from Bacillus aryabhattai (CYP-BA), a homolog of CYP P450-BM3, by taking interdisciplinary approaches. We conducted structure and sequence comparison to understand the conservation pattern for active site residues, conserved fold, evolutionary relationships among others. Molecular dynamics simulations were performed to understand the dynamic nature and interaction with the substrates. CYP-BA was successfully cloned, purified, and characterized. The enzyme's stability toward various physicochemical parameters was evaluated by UV-vis spectroscopy and Circular Dichroism (CD) spectroscopy. Various saturated fatty acids being the natural cytochrome P450 substrates were evaluated as catalytic efficiency of substrate oxidation by CYP-BA. The binding affinity of these natural substrates was monitored against CYP-BA by isothermal titration calorimetry (ITC). The catalytic performance of CYP-BA was satisfactory enough to proceed to the next step, that is, engineering to expand the substrate range to include polycyclic aromatic hydrocarbons (PAH). This is the first evidence of cloning, purifying and characterizing a novel homolog of CYP-BM3 to enable a better understanding of this novel biocatalyst and to provide a platform toward expanding its catalytic process through enzyme engineering.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Abhilek K Nautiyal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India
| | - Rajanya Bhattacharjee
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Aditya K Padhi
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Vivek Junghare
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Muskaan Bhambri
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Diptarka Dasgupta
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Debasish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India; Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
7
|
Eccardt AM, Pelzel RJ, Mattathil L, Moon YA, Mannino MH, Janowiak BE, Fisher JS. A peroxidase mimetic protects skeletal muscle cells from peroxide challenge and stimulates insulin signaling. Am J Physiol Cell Physiol 2020; 318:C1214-C1225. [PMID: 32348172 DOI: 10.1152/ajpcell.00167.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species such as hydrogen peroxide have been implicated in causing metabolic dysfunction such as insulin resistance. Heme groups, either by themselves or when incorporated into proteins, have been shown to scavenge peroxide and demonstrate protective effects in various cell types. Thus, we hypothesized that a metalloporphyrin similar in structure to heme, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), would be a peroxidase mimetic that could defend cells against oxidative stress. After demonstrating that FeTBAP has peroxidase activity with reduced nicotinamide adenine dinucleotide phosphate (NADPH) and NADH as reducing substrates, we determined that FeTBAP partially rescued C2C12 myotubes from peroxide-induced insulin resistance as measured by phosphorylation of AKT (S473) and insulin receptor substrate 1 (IRS-1, Y612). Furthermore, we found that FeTBAP stimulates insulin signaling in myotubes and mouse soleus skeletal muscle to about the same level as insulin for phosphorylation of AKT, IRS-1, and glycogen synthase kinase 3β (S9). We found that FeTBAP lowers intracellular peroxide levels and protects against carbonyl formation in myotubes exposed to peroxide. Additionally, we found that FeTBAP stimulates glucose transport in myotubes and skeletal muscle to about the same level as insulin. We conclude that a peroxidase mimetic can blunt peroxide-induced insulin resistance and also stimulate insulin signaling and glucose transport, suggesting a possible role of peroxidase activity in regulation of insulin signaling.
Collapse
Affiliation(s)
- Amanda M Eccardt
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Ross J Pelzel
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Lyn Mattathil
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Yerin A Moon
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Mark H Mannino
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | | | | |
Collapse
|
8
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
9
|
Tahar AB, Szymczyk A, Tingry S, Vadgama P, Zelsmanne M, Tsujumura S, Cinquin P, Martin D, Zebda A. One-year stability of glucose dehydrogenase confined in a 3D carbon nanotube electrode with coated poly-methylene green: Application as bioanode for a glucose biofuel cell. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Diverse metabolic pathways in the degradation of phenylalkanoic acids and their monohydroxylated derivatives in Cupriavidus sp. strain ST-14. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Morozov GI, Porat N, Kushnir T, Najmuldeen H, Adawi A, Chalifa-Caspi V, Benisty R, Ohayon A, Liron O, Azriel S, Malka I, Dotan S, Portnoi M, Piotrowski AA, Kafka D, Hajaj B, Fishilevich T, Shagan M, Tal M, Ellis R, Morrison DA, Mitchell AM, Mitchell TJ, Dagan R, Yesilkaya H, Nebenzahl YM. Flavin Reductase Contributes to Pneumococcal Virulence by Protecting from Oxidative Stress and Mediating Adhesion and Elicits Protection Against Pneumococcal Challenge. Sci Rep 2018; 8:314. [PMID: 29321514 PMCID: PMC5762878 DOI: 10.1038/s41598-017-18645-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022] Open
Abstract
Pneumococcal flavin reductase (FlaR) is known to be cell-wall associated and possess age dependent antigenicity in children. This study aimed at characterizing FlaR and elucidating its involvement in pneumococcal physiology and virulence. Bioinformatic analysis of FlaR sequence identified three-conserved cysteine residues, suggesting a transition metal-binding capacity. Recombinant FlaR (rFlaR) bound Fe2+ and exhibited FAD-dependent NADP-reductase activity, which increased in the presence of cysteine or excess Fe2+ and inhibited by divalent-chelating agents. flaR mutant was highly susceptible to H2O2 compared to its wild type (WT) and complemented strains, suggesting a role for FlaR in pneumococcal oxidative stress resistance. Additionally, flaR mutant demonstrated significantly decreased mice mortality following intraperitoneal infection. Interestingly, lack of FlaR did not affect the extent of phagocytosis by primary mouse peritoneal macrophages but reduced adhesion to A549 cells compared to the WT and complemented strains. Noteworthy are the findings that immunization with rFlaR elicited protection in mice against intraperitoneal lethal challenge and anti-FlaR antisera neutralized bacterial virulence. Taken together, FlaR's roles in pneumococcal physiology and virulence, combined with its lack of significant homology to human proteins, point towards rFlaR as a vaccine candidate.
Collapse
Affiliation(s)
- Giora I Morozov
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nurith Porat
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hastyar Najmuldeen
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom.,Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
| | - Asad Adawi
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Benisty
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Ariel Ohayon
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Shalhevet Azriel
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itai Malka
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Andrew A Piotrowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Barak Hajaj
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Tali Fishilevich
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrea M Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ron Dagan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Galiakhmetov AR, Kovrigina EA, Xia C, Kim JJP, Kovrigin EL. Application of methyl-TROSY to a large paramagnetic membrane protein without perdeuteration: 13C-MMTS-labeled NADPH-cytochrome P450 oxidoreductase. JOURNAL OF BIOMOLECULAR NMR 2018; 70:21-31. [PMID: 29168021 PMCID: PMC5820150 DOI: 10.1007/s10858-017-0152-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/11/2017] [Indexed: 05/03/2023]
Abstract
NMR spectroscopy of membrane proteins involved in electron transport is difficult due to the presence of both the lipids and paramagnetic centers. Here we report the solution NMR study of the NADPH-cytochrome P450 oxidoreductase (POR) in its reduced and oxidized states. We interrogate POR, first, in its truncated soluble form (70 kDa), which is followed by experiments with the full-length protein incorporated in a lipid nanodisc (240 kDa). To overcome paramagnetic relaxation in the reduced state of POR as well as the signal broadening due to its high molecular weight, we utilized the methyl-TROSY approach. Extrinsic 13C-methyl groups were introduced by modifying the engineered surface-exposed cysteines with methyl-methanethiosulfonate. Chemical shift dispersion of the resonances from different sites in POR was sufficient to monitor differential effects of the reduction-oxidation process and conformation changes in the POR structure related to its function. Despite the high molecular weight of the POR-nanodisc complex, the surface-localized 13C-methyl probes were sufficiently mobile to allow for signal detection at 600 MHz without perdeuteration. This work demonstrates a potential of the solution methyl-TROSY in analysis of structure, dynamics, and function of POR, which may also be applicable to similar paramagnetic and flexible membrane proteins.
Collapse
Affiliation(s)
| | | | - Chuanwu Xia
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jung-Ja P Kim
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
13
|
Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei. Protein Expr Purif 2017. [PMID: 28642005 DOI: 10.1016/j.pep.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isocitrate dehydrogenases (IDHs) are metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate. Depending on the electron acceptor and subcellular localization, these enzymes are classified as NADP+-dependent IDH1 in the cytosol or peroxisomes, NADP+-dependent IDH2 and NAD+-dependent IDH3 in mitochondria. Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness in humans and Nagana disease in animals. Here, for the first time, a putative glycosomal T. brucei type 1 IDH (TbIDH1) was expressed in Escherichia coli and purified for crystallographic study. Surprisingly, the putative NADP+-dependent TbIDH1 has higher activity with NAD+ compared with NADP+ as electron acceptor, a unique characteristic among known eukaryotic IDHs which encouraged us to crystallize TbIDH1 for future biochemical and structural studies. Methods of expression and purification of large amounts of recombinant TbIDH1 with improved solubility to facilitate protein crystallization are presented.
Collapse
|
14
|
Van Etten JL, Agarkova I, Dunigan DD, Tonetti M, De Castro C, Duncan GA. Chloroviruses Have a Sweet Tooth. Viruses 2017; 9:E88. [PMID: 28441734 PMCID: PMC5408694 DOI: 10.3390/v9040088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16 transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum and Golgi machinery to synthesize and transfer the glycans.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Irina Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - David D Dunigan
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Michela Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova Viale Benedetto XV/1, 16132 Genova, Italy.
| | - Christina De Castro
- Department of Agricultural Sciences, University of Napoli, Via Università 100, 80055 Portici, NA, Italy.
| | - Garry A Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE 68504-2796, USA.
| |
Collapse
|
15
|
Yau S, Hemon C, Derelle E, Moreau H, Piganeau G, Grimsley N. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri. PLoS Pathog 2016; 12:e1005965. [PMID: 27788272 PMCID: PMC5082852 DOI: 10.1371/journal.ppat.1005965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae. We propose that chromosome 19 of O. tauri is specialized in defence against viral attack, a constant threat for all planktonic life, and that the most likely cause of resistance is the over-expression of numerous predicted glycosyltransferase genes. O. tauri thus provides an amenable model for molecular analysis of genome evolution under environmental stress and for investigating glycan-mediated host-virus interactions, such as those seen in herpes, influenza, HIV, PBCV and mimivirus.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Claire Hemon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Evelyne Derelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Hervé Moreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Gwenaël Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
- * E-mail:
| |
Collapse
|
16
|
Singh N, Bhattacharyya D. Evaluation of the presence of reduced nicotinamide adenine dinucleotide phosphate in bacterial metabolites used as immunostimulators and its role in nitric oxide induction. Microbiol Immunol 2016; 59:311-21. [PMID: 25864512 DOI: 10.1111/1348-0421.12258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022]
Abstract
Bacterial metabolites that act as immunostimulators have aroused interest because of their therapeutic potential in several immune disorders. These metabolites are complex, heterogeneous, and comprise numerous immune-boosting biomolecules. To better understand their immune stimulatory properties, characterization of their components is essential. An ether extract of metabolites from nine bacterial species was analyzed for the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) or other fluorophores. This metabolite in combination with bile lipids is a licensed immune stimulatory drug. Excitation of the extract at 340 nm resulted in fluorescence with an emission maximum of around 410 nm, which is fairly specific for NADH and NADPH. Reverse-phase-HPLC and electro-spray ionization-mass analysis confirmed the presence of NADPH in the bacterial metabolites. Quantification by glutathione reductase assay indicated 11.90 ± 0.01 µM of NADPH in the metabolites. Further characterization of the individual bacterial extracts of the metabolite confirmed the presence of NADPH. Subsequently, studies were performed to evaluate the role/s of NADPH in immune-stimulatory drugs. NADPH is known to be involved in production of nitric oxide (NO), which has versatile roles in the immune system. The biological function of NADPH in NO induction by RAW 264.7 (mouse macrophage) cells was evaluated and it was found that bacterial NADPH has a significant role in inducing NO and that NADPH from individual bacterial extracts is capable of inducing NO. Investigation on the stability and biological potency of NADPH in bacterial metabolites is important because of NADPH's wide therapeutic applications, most of which are associated with its role in NO induction.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
17
|
The Autonomous Glycosylation of Large DNA Viruses. Int J Mol Sci 2015; 16:29315-28. [PMID: 26690138 PMCID: PMC4691112 DOI: 10.3390/ijms161226169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.
Collapse
|
18
|
Krych J, Gebicki JL, Gebicka L. Flavonoid-induced conversion of catalase to its inactive form--Compound II. Free Radic Res 2014; 48:1334-41. [PMID: 25111015 DOI: 10.3109/10715762.2014.953139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Flavonoids (FlaOHs), plant polyphenols, are ubiquitous components of human diet and are known as antioxidants. However, their prooxidant activity has also been reported. We have recently found that FlaOHs inhibit catalase, the heme enzyme which catalyzes the decomposition of hydrogen peroxide (H2O2) into water and molecular oxygen. The catalytic cycle proceeds with the formation of the intermediate, Compound I (Cpd I), an oxoferryl porphyrin π-cation radical, the two-electron oxidation product of a heme group. Under conditions of low H2O2 fluxes and in the presence of an appropriate substrate, Cpd I can undergo one-electron reduction to inactive Compound II (Cpd II), oxoferryl derivative without radical site. Here we show that in vitro, under low fluxes of H2O2, FlaOHs reduce Cpd I to inactive Cpd II. Measurable amounts of Cpd II can be formed even in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) at concentration comparable with the investigated FlaOHs. Possible mechanisms of electron transfer from FlaOH molecule to the heme are discussed.
Collapse
Affiliation(s)
- J Krych
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology (TUL) , Lodz , Poland
| | | | | |
Collapse
|
19
|
Piacente F, De Castro C, Jeudy S, Molinaro A, Salis A, Damonte G, Bernardi C, Abergel C, Tonetti MG. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars. J Biol Chem 2014; 289:24428-39. [PMID: 25035429 DOI: 10.1074/jbc.m114.588947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways.
Collapse
Affiliation(s)
- Francesco Piacente
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy
| | - Cristina De Castro
- the Department of Chemical Sciences, University of Napoli "Federico II", Via Cintia 4, Italy
| | - Sandra Jeudy
- the Structural and Genomic Information Laboratory, CNRS, Aix-Marseille Université UMR7256, IMM, Parc Scientifique de Luminy, FR-13288 Marseille, France, and
| | - Antonio Molinaro
- the Department of Chemical Sciences, University of Napoli "Federico II", Via Cintia 4, Italy
| | - Annalisa Salis
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy, the Department of Hearth Environmental and Life Science (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Gianluca Damonte
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy
| | - Cinzia Bernardi
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy
| | - Chantal Abergel
- the Structural and Genomic Information Laboratory, CNRS, Aix-Marseille Université UMR7256, IMM, Parc Scientifique de Luminy, FR-13288 Marseille, France, and
| | - Michela G Tonetti
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy,
| |
Collapse
|
20
|
Borel F, Hachi I, Palencia A, Gaillard MC, Ferrer JL. Crystal structure of mouse mu-crystallin complexed with NADPH and the T3 thyroid hormone. FEBS J 2014; 281:1598-612. [PMID: 24467707 DOI: 10.1111/febs.12726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED Mu-crystallin (CRYM), first described as a structural component of the eye lens in marsupials, has been characterized as an NADPH-dependent cytosolic T3 thyroid hormone (triiodothyronine) binding protein. More recently, CRYM has also been associated with ketimine reductase activity. Here, we report three crystal structures: mouse CRYM (mCRYM) in its apo form, in a form complexed with NADPH, and in a form with both NADPH and triiodothyronine bound. Comparison of the apo and NADPH forms reveals a rearrangement of the protein upon NADPH binding that reduces the degrees of freedom of several residues and traps the conformation of the binding pocket in a more T3 competent state. These findings are in agreement with the cooperative mechanism identified using isothermal titration calorimetry. Our structure with T3 reveals for the first time the location of the hormone binding site and shows its detailed interactions. T3 binding involves mainly hydrophobic interactions. Only five residues, either directly or through bridging water molecules, are hydrogen bonded to the hormone. Using in silico docking analysis, a series of ring-containing hydrophobic molecules were identified as potential mCRYM ligands, suggesting that the specificity for the recognition of the hydrophobic part of the hormone might be low. This is in agreement with the ketimine reductase activity that has been identified for ovine CRYM, as it demonstrates how a protein known as a thyroid hormone transporter can accommodate the ringed molecules required for its ketimine reductase activity. In the light of our results, a putative role of CRYM in thyroid hormone metabolism is also discussed. STRUCTURED DIGITAL ABSTRACT CRYM and CRYM bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Franck Borel
- Institut de Biologie Structurale, Université de Grenoble Alpes, CEA, CNRS, France
| | | | | | | | | |
Collapse
|
21
|
Singh S, Phillips GN, Thorson JS. The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep 2012; 29:1201-37. [PMID: 22688446 DOI: 10.1039/c2np20039b] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycosylation of microbial natural products often dramatically influences the biological and/or pharmacological activities of the parental metabolite. Over the past decade, crystal structures of several enzymes involved in the biosynthesis and attachment of novel sugars found appended to natural products have emerged. In many cases, these studies have paved the way to a better understanding of the corresponding enzyme mechanism of action and have served as a starting point for engineering variant enzymes to facilitate to production of differentially-glycosylated natural products. This review specifically summarizes the structural studies of bacterial enzymes involved in biosynthesis of novel sugar nucleotides.
Collapse
Affiliation(s)
- Shanteri Singh
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
22
|
Piacente F, Marin M, Molinaro A, De Castro C, Seltzer V, Salis A, Damonte G, Bernardi C, Claverie JM, Abergel C, Tonetti M. Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-D-glucose (Viosamine). J Biol Chem 2012; 287:3009-18. [PMID: 22157758 PMCID: PMC3270958 DOI: 10.1074/jbc.m111.314559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Van Etten JL, Dunigan DD. Chloroviruses: not your everyday plant virus. TRENDS IN PLANT SCIENCE 2012; 17:1-8. [PMID: 22100667 PMCID: PMC3259250 DOI: 10.1016/j.tplants.2011.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/20/2011] [Accepted: 10/25/2011] [Indexed: 05/29/2023]
Abstract
Viruses infecting higher plants are among the smallest viruses known and typically have four to ten protein-encoding genes. By contrast, many viruses that infect algae (classified in the virus family Phycodnaviridae) are among the largest viruses found to date and have up to 600 protein-encoding genes. This brief review focuses on one group of plaque-forming phycodnaviruses that infect unicellular chlorella-like green algae. The prototype chlorovirus PBCV-1 has more than 400 protein-encoding genes and 11 tRNA genes. About 40% of the PBCV-1 encoded proteins resemble proteins of known function including many that are completely unexpected for a virus. In many respects, chlorovirus infection resembles bacterial infection by tailed bacteriophages.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| | | |
Collapse
|
24
|
Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. J Virol 2010; 84:8829-38. [PMID: 20538863 DOI: 10.1128/jvi.00770-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three enzymes responsible for the synthesis of the sugar L-rhamnose: two UDP-D-glucose 4,6-dehydratases (UGDs) encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-D-glucose epimerase/reductase (UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER are expressed as late genes, which is consistent with their role in posttranslational modification of capsid proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan structures essential for virus replication and infection.
Collapse
|
25
|
Chlorella viruses encode most, if not all, of the machinery to glycosylate their glycoproteins independent of the endoplasmic reticulum and Golgi. Biochim Biophys Acta Gen Subj 2010; 1800:152-9. [DOI: 10.1016/j.bbagen.2009.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/15/2009] [Accepted: 07/18/2009] [Indexed: 11/19/2022]
|
26
|
Yanai-Balser GM, Duncan GA, Eudy JD, Wang D, Li X, Agarkova IV, Dunigan DD, Van Etten JL. Microarray analysis of Paramecium bursaria chlorella virus 1 transcription. J Virol 2010; 84:532-42. [PMID: 19828609 PMCID: PMC2798440 DOI: 10.1128/jvi.01698-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/07/2009] [Indexed: 11/20/2022] Open
Abstract
Paramecium bursaria chlorella virus 1 (PBCV-1), a member of the family Phycodnaviridae, is a large double-stranded DNA, plaque-forming virus that infects the unicellular green alga Chlorella sp. strain NC64A. The 330-kb PBCV-1 genome is predicted to encode 365 proteins and 11 tRNAs. To monitor global transcription during PBCV-1 replication, a microarray containing 50-mer probes to the PBCV-1 365 protein-encoding genes (CDSs) was constructed. Competitive hybridization experiments were conducted by using cDNAs from poly(A)-containing RNAs obtained from cells at seven time points after virus infection. The results led to the following conclusions: (i) the PBCV-1 replication cycle is temporally programmed and regulated; (ii) 360 (99%) of the arrayed PBCV-1 CDSs were expressed at some time in the virus life cycle in the laboratory; (iii) 227 (62%) of the CDSs were expressed before virus DNA synthesis begins; (iv) these 227 CDSs were grouped into two classes: 127 transcripts disappeared prior to initiation of virus DNA synthesis (considered early), and 100 transcripts were still detected after virus DNA synthesis begins (considered early/late); (v) 133 (36%) of the CDSs were expressed after virus DNA synthesis begins (considered late); and (vi) expression of most late CDSs is inhibited by adding the DNA replication inhibitor, aphidicolin, prior to virus infection. This study provides the first comprehensive evaluation of virus gene expression during the PBCV-1 life cycle.
Collapse
Affiliation(s)
- Giane M. Yanai-Balser
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Garry A. Duncan
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - James D. Eudy
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Dong Wang
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Xiao Li
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Irina V. Agarkova
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| |
Collapse
|
27
|
Abstract
Viruses with genomes greater than 300 kb and up to 1200 kb are being discovered with increasing frequency. These large viruses (often called giruses) can encode up to 900 proteins and also many tRNAs. Consequently, these viruses have more protein-encoding genes than many bacteria, and the concept of small particle/small genome that once defined viruses is no longer valid. Giruses infect bacteria and animals although most of the recently discovered ones infect protists. Thus, genome gigantism is not restricted to a specific host or phylogenetic clade. To date, most of the giruses are associated with aqueous environments. Many of these large viruses (phycodnaviruses and Mimiviruses) probably have a common evolutionary ancestor with the poxviruses, iridoviruses, asfarviruses, ascoviruses, and a recently discovered Marseillevirus. One issue that is perhaps not appreciated by the microbiology community is that large viruses, even ones classified in the same family, can differ significantly in morphology, lifestyle, and genome structure. This review focuses on some of these differences than on extensive details about individual viruses.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | | | |
Collapse
|
28
|
King JD, Poon KKH, Webb NA, Anderson EM, McNally DJ, Brisson JR, Messner P, Garavito RM, Lam JS. The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-D-rhamnose biosynthesis pathway. FEBS J 2009; 276:2686-2700. [PMID: 19459932 PMCID: PMC4381037 DOI: 10.1111/j.1742-4658.2009.06993.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rare 6-deoxysugar D-rhamnose is a component of bacterial cell surface glycans, including the D-rhamnose homopolymer produced by Pseudomonas aeruginosa, called A-band O polysaccharide. GDP-D-rhamnose synthesis from GDP-D-mannose is catalyzed by two enzymes. The first is a GDP-D-mannose-4,6-dehydratase (GMD). The second enzyme, RMD, reduces the GMD product (GDP-6-deoxy-D-lyxo-hexos-4-ulose) to GDP-d-rhamnose. Genes encoding GMD and RMD are present in P. aeruginosa, and genetic evidence indicates they act in A-band O-polysaccharide biosynthesis. Details of their enzyme functions have not, however, been previously elucidated. We aimed to characterize these enzymes biochemically, and to determine the structure of RMD to better understand what determines substrate specificity and catalytic activity in these enzymes. We used capillary electrophoresis and NMR analysis of reaction products to precisely define P. aeruginosa GMD and RMD functions. P. aeruginosa GMD is bifunctional, and can catalyze both GDP-d-mannose 4,6-dehydration and the subsequent reduction reaction to produce GDP-D-rhamnose. RMD catalyzes the stereospecific reduction of GDP-6-deoxy-D-lyxo-hexos-4-ulose, as predicted. Reconstitution of GDP-D-rhamnose biosynthesis in vitro revealed that the P. aeruginosa pathway may be regulated by feedback inhibition in the cell. We determined the structure of RMD from Aneurinibacillus thermoaerophilus at 1.8 A resolution. The structure of A. thermoaerophilus RMD is remarkably similar to that of P. aeruginosa GMD, which explains why P. aeruginosa GMD is also able to catalyze the RMD reaction. Comparison of the active sites and amino acid sequences suggests that a conserved amino acid side chain (Arg185 in P. aeruginosa GMD) may be crucial for orienting substrate and cofactor in GMD enzymes.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Karen K H Poon
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Nicole A Webb
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - David J McNally
- Institute for Biological Sciences, National Research Council, Ottawa, Canada
| | - Jean-Robert Brisson
- Institute for Biological Sciences, National Research Council, Ottawa, Canada
| | - Paul Messner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, Austria
| | - R M Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| |
Collapse
|
29
|
Abstract
The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- W H Wilson
- Bigelow Laboratory for Ocean Sciences, 180 McKown Point, P.O. Box 475, West Boothbay Harbor, ME 04575-0475, USA.
| | | | | |
Collapse
|