1
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
2
|
Kim SS, Lee EH, Shin JH, Seo SR. MAP kinase/ERK kinase 1 (MEK1) phosphorylates regulator of calcineurin 1 (RCAN1) to regulate neuronal differentiation. J Cell Physiol 2021; 237:1406-1417. [PMID: 34647615 DOI: 10.1002/jcp.30609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Regulator of calcineurin 1 (RCAN1) is located close to the Down syndrome critical region (DSCR) on human chromosome 21 and is related to the Down syndrome (DS) phenotype. To identify a novel binding partner of RCAN1, we performed yeast two-hybrid screening and identified mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) as a partner. MEK1 was able to bind and phosphorylate RCAN1 in vitro and in vivo. MEK1-dependent RCAN1 phosphorylation caused an increase in RCAN1 expression by increasing the protein half-life. Nerve growth factor (NGF)-dependent activation of the MEK1 pathway consistently induced RCAN1 expression. Moreover, we found that RCAN1 overexpression inhibited NGF-induced neurite outgrowth and expression of neuronal marker genes, such as growth cone-associated protein 43 (GAP43) and synapsin I, via inhibition of MEK1-ERK1/2 pathways. Our findings provide evidence that MEK1-dependent RCAN1 phosphorylation acts as an important molecular mechanism in the control of neuronal differentiation.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Hak Shin
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Lane BM, Murray S, Benson K, Bierzynska A, Chryst-Stangl M, Wang L, Wu G, Cavalleri G, Doyle B, Fennelly N, Dorman A, Conlon S, Vega-Warner V, Fermin D, Vijayan P, Qureshi MA, Shril S, Barua M, Hildebrandt F, Pollak M, Howell D, Sampson MG, Saleem M, Conlon PJ, Spurney R, Gbadegesin R. A Rare Autosomal Dominant Variant in Regulator of Calcineurin Type 1 ( RCAN1) Gene Confers Enhanced Calcineurin Activity and May Cause FSGS. J Am Soc Nephrol 2021; 32:1682-1695. [PMID: 33863784 PMCID: PMC8425665 DOI: 10.1681/asn.2020081234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3β, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3β, in the treatment of FSGS.
Collapse
Affiliation(s)
- Brandon M. Lane
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Murray
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Katherine Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Agnieszka Bierzynska
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Megan Chryst-Stangl
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Guanghong Wu
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | - Brendan Doyle
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Neil Fennelly
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Shane Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
| | | | - Damian Fermin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Poornima Vijayan
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Mohammad Azfar Qureshi
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Moumita Barua
- Division of Nephrology, Department of Medicine, University of Toronto and Toronto General Hospital, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
| | - Martin Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Hospital and Harvard University Medical School, Boston, Massachusetts
| | - David Howell
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital and Harvard University Medical School, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Moin Saleem
- Department of Pediatrics, Bristol Royal Hospital for Children and University of Bristol, Bristol, United Kingdom
| | - Peter J. Conlon
- Irish Kidney Gene Project, Department of Genetics, Royal College of Surgeons of Ireland, Dublin, Republic of Ireland
- Division of Nephrology, Department of Medicine, Beaumont General Hospital, Dublin, Republic of Ireland
| | - Robert Spurney
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
4
|
RCAN1 Inhibits BACE2 Turnover by Attenuating Proteasome-Mediated BACE2 Degradation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1920789. [PMID: 32566665 PMCID: PMC7293731 DOI: 10.1155/2020/1920789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022]
Abstract
Amyloid-β protein (Aβ) is the main component of neuritic plaques, the pathological hallmark of Alzheimer's disease (AD). β-site APP cleaving enzyme 1 (BACE1) is a major β-secretase contributing to Aβ generation. β-site APP cleaving enzyme 2 (BACE2), the homolog of BACE1, is not only a θ-secretase but also a conditional β-secretase. Previous studies showed that regulator of calcineurin 1 (RCAN1) is markedly increased by AD and promotes BACE1 expression. However, the role of RCAN1 in BACE2 regulation remains elusive. Here, we showed that RCAN1 increases BACE2 protein levels. Moreover, RCAN1 inhibits the turnover of BACE2 protein. Furthermore, RCAN1 attenuates proteasome-mediated BACE2 degradation, but not lysosome-mediated BACE2 degradation. Taken together, our work indicates that RCAN1 inhibits BACE2 turnover by attenuating proteasome-mediated BACE2 degradation. It advances our understanding of BACE2 regulation and provides a potential mechanism of BACE2 dysregulation in AD.
Collapse
|
5
|
Pan XY, You HM, Wang L, Bi YH, Yang Y, Meng HW, Meng XM, Ma TT, Huang C, Li J. Methylation of RCAN1.4 mediated by DNMT1 and DNMT3b enhances hepatic stellate cell activation and liver fibrogenesis through Calcineurin/NFAT3 signaling. Theranostics 2019; 9:4308-4323. [PMID: 31285763 PMCID: PMC6599664 DOI: 10.7150/thno.32710] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Liver fibrosis is characterized by extensive deposition of extracellular matrix (ECM) components in the liver. RCAN1 (regulator of calcineurin 1), an endogenous inhibitor of calcineurin (CaN), is required for ECM synthesis during hypertrophy of various organs. However, the functional role of RCAN1 in liver fibrogenesis has not yet been addressed. Methods: We induced experimental liver fibrosis in mice by intraperitoneal injection of 10 % CCl4 twice a week. To investigate the functional role of RCAN1.4 in the progression of liver fibrosis, we specifically over-expressed RCAN1.4 in mice liver using rAAV8-packaged RCAN1.4 over-expression plasmid. Following the establishment of the fibrotic mouse model, primary hepatic stellate cells were isolated. Subsequently, we evaluated the effect of RCAN1.4 on hepatic fibrogenesis, hepatic stellate cell activation, and cell survival. The biological role and signaling events for RCAN1 were analyzed by protein-protein interaction (PPI) network. Bisulfite sequencing PCR (BSP) was used to predict the methylated CpG islands in the RCAN1.4 gene promoter. We used the chromatin immunoprecipitation (ChIP assay) to investigate DNA methyltransferases which induced decreased expression of RCAN1.4 in liver fibrosis. Results: Two isoforms of RCAN1 protein were expressed in CCl4-induced liver fibrosis mouse model and HSC-T6 cells cultured with transforming growth factor-beta 1 (TGF-β1). RCAN1 isoform 4 (RCAN1.4) was selectively down-regulated in vivo and in vitro. The BSP analysis indicated the presence of two methylated sites in RCAN1.4 promoter and the downregulated RCAN1.4 expression levels could be restored by 5-aza-2'-deoxycytidine (5-azadC) and DNMTs-RNAi transfection in vitro. ChIP assay was used to demonstrate that the decreased RCAN1.4 expression was associated with DNMT1 and DNMT3b. Furthermore, we established a CCl4-induced liver fibrosis mouse model by injecting the recombinant adeno-associated virus-packaged RCAN1.4 (rAAV8-RCAN1.4) over-expression plasmid through the tail vein. Liver- specific-over-expression of RAN1.4 led to liver function recovery and alleviated ECM deposition. The key protein (a member of the NFAT family of proteins) identified on PPI network data was analyzed in vivo and in vitro. Our results demonstrated that RCAN1.4 over-expression alleviates, whereas its knockdown exacerbates, TGF-β1-induced liver fibrosis in vitro in a CaN/NFAT3 signaling-dependent manner. Conclusions: RCAN1.4 could alleviate liver fibrosis through inhibition of CaN/NFAT3 signaling, and the anti-fibrosis function of RCAN1.4 could be blocked by DNA methylation mediated by DNMT1 and DNMT3b. Thus, RCAN1.4 may serve as a potential therapeutic target in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xue-yin Pan
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Hong-mei You
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Ling Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Yi-hui Bi
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Hong-wu Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Xiao-ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Tao-tao Ma
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| |
Collapse
|
6
|
Seo JY, Jung Y, Kim DY, Ryu HG, Lee J, Kim SW, Kim KT. DAP5 increases axonal outgrowth of hippocampal neurons by enhancing the cap-independent translation of DSCR1.4 mRNA. Cell Death Dis 2019; 10:49. [PMID: 30718468 PMCID: PMC6362140 DOI: 10.1038/s41419-018-1299-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Abstract
Proper wiring between neurons is indispensable for proper brain function. From the early developmental stage, axons grow and navigate to connect to targets according to specific guidance cues. The accuracy of axonal outgrowth and navigation are controlled by a variety of genes, and mutations and/or deficiencies in these genes are closely related to several brain disorders, such as autism. DSCR1 is one of these genes and regulates actin filament formation in axons. Thus, identifying the detailed regulatory mechanisms of DSCR1 expression is crucial for the understanding of the axon development of neurons; however, these regulatory mechanisms of DSCR1 remain unknown. Here, we discovered that mRNA encoding the DSCR1 isoform DSCR1.4 is present and mainly translated by the cap-independent initiation mechanisms in both the soma and axons of hippocampal neurons. We found that translation of DSCR1.4 mRNA is enhanced by death-associated protein 5 (DAP5), which can bind to DSCR1.4 5'UTR. BDNF-stimulus induced an increase in DAP5 expression and the cap-independent translation efficiency of DSCR1.4 mRNA in axon as well as soma. Furthermore, we showed the importance of the cap-independent translation of DSCR1.4 on enhancement of DSCR1.4 expression by BDNF-stimulus and axonal outgrowth of hippocampal neurons. Our findings suggest a new translational regulatory mechanism for DSCR1.4 expressions and a novel function of DAP5 as a positive regulator of DSCR1.4 mRNA translation induced in soma and axon of hippocampal neurons.
Collapse
Affiliation(s)
- Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University (KNU), Daegu, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sung Wook Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea. .,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
7
|
A single extra copy of Down syndrome critical region 1-4 results in impaired hepatic glucose homeostasis. Mol Metab 2018; 21:82-89. [PMID: 30583978 PMCID: PMC6407364 DOI: 10.1016/j.molmet.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/19/2023] Open
Abstract
Objectives During fasting, hepatic gluconeogenesis is induced to maintain energy homeostasis. Moreover, abnormal dysregulation of hepatic glucose production is commonly observed in type 2 diabetes. However, the signaling components controlling hepatic glucose production to maintain normal glucose levels are not fully understood. Here, we examined the physiological role of Down syndrome critical region 1–4 (DSCR1-4), an endogenous calcineurin signaling inhibitor in the liver that mediates metabolic adaptation to fasting. Methods We assessed the effect of cyclosporine A, an inhibitor of calcineurin signaling on gluconeogenic gene expression in primary hepatocytes. DSCR1-4 expression was examined in diet- and genetically-induced mouse models of obesity. We also investigated the metabolic phenotype of a single extra copy of DSCR1-4 in transgenic mice and how DSCR1-4 regulates glucose homeostasis in the liver. Results Treatment with cyclosporin A increased hepatic glucose production and gluconeogenic gene expression. The expression of DSCR1-4 was induced by refeeding and overexpressed in obese mouse livers. Moreover, transgenic mice with a single extra copy of DSCR1-4 exhibited pyruvate intolerance and impaired glucose homeostasis. Mechanistically, DSCR1-4 overexpression increased phosphorylation of the cAMP response element-binding protein, which led to elevated expression levels of gluconeogenic genes and, thus, enhanced hepatic glucose production during fasting. Conclusion A single extra copy of DSCR1-4 results in dysregulated hepatic glucose homeostasis and pyruvate intolerance. Our findings suggest that nutrient-sensitive DSCR1-4 is a novel target for controlling hepatic gluconeogenesis in diabetes. DSCR1 mRNA and protein levels are increased in livers upon nutrient availability. DSCR1-4 is overexpressed in diet- or genetically induced obesity. DSCR1-4 trisomy mice exhibit impaired glucose homeostasis and pyruvate intolerance. Trisomy of DSCR1-4 leads to increased hepatic glucose production.
Collapse
|
8
|
Fu Q, Wu Y. RCAN1 in the inverse association between Alzheimer's disease and cancer. Oncotarget 2017; 9:54-66. [PMID: 29416595 PMCID: PMC5787488 DOI: 10.18632/oncotarget.23094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The inverse association between Alzheimer’s disease (AD) and cancer has been reported in several population-based studies although both of them are age-related disorders. However, molecular mechanisms of the inverse association remain elusive. Increased expression of regulator of calcineurin 1 (RCAN1) promotes the pathogenesis of AD, while it suppresses cancer growth and progression in many types of cancer. Moreover, aberrant RCAN1 expression is detected in both AD and various types of cancer. It suggests that RCAN1 may play a key role in the inverse association between AD and cancer. In this article, we aim to review the role of RCAN1 in the inverse association and discuss underlying mechanisms, providing an insight into developing a novel approach to treat AD and cancer.
Collapse
Affiliation(s)
- Qiang Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|
9
|
Han KA, Yoo L, Sung JY, Chung SA, Um JW, Kim H, Seol W, Chung KC. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1. Front Cell Neurosci 2017; 11:125. [PMID: 28553204 PMCID: PMC5425608 DOI: 10.3389/fncel.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a Ser/Thr kinase having mixed lineage kinase-like and GTPase domains, controlling neurite outgrowth and neuronal cell death. Evidence suggests that LRRK2 is involved in innate immune response signaling, but the underlying mechanism is yet unknown. A novel protein inhibitor of phosphatase 3B, RCAN1, is known to positively regulate inflammatory signaling through modulation of several intracellular targets of interleukins in immune cells. In the present study, we report that LRRK2 phosphorylates RCAN1 (RCAN1-1S) and is markedly up-regulated during interleukin-1β (IL-1β) treatment. During IL-1β treatment, LRRK2-mediated phosphorylation of RCAN1 promoted the formation of protein complexes, including that between Tollip and RCAN1. LRRK2 decreased binding between Tollip and IRAK1, which was accompanied by increased formation of the IRAK1-TRAF6 complex. TAK1 activity was significantly enhanced by LRRK2. Furthermore, LRRK2 enhanced transcriptional activity of NF-κB and cytokine IL-8 production. These findings suggest that LRRK2 might be important in positively modulating IL-1β-mediated signaling through selective phosphorylation of RCAN1.
Collapse
Affiliation(s)
- Kyung A Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Jee Y Sung
- Center for Pediatric Oncology, National Cancer CenterGoyang-si, South Korea
| | - Sun A Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Ji W Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu, South Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang UniversityGunpo-si, South Korea
| | - Kwang C Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| |
Collapse
|
10
|
Hong A, Lee JE, Chung KWANGCHUL. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. J Cell Physiol 2015; 230:1651-60. [DOI: 10.1002/jcp.24917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/18/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Ahyoung Hong
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| | - Ji Eun Lee
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| | - KWANG CHUL Chung
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| |
Collapse
|
11
|
Serrano-Candelas E, Alemán-Muench G, Solé-Sánchez S, Aubareda A, Martínez-Høyer S, Adán J, Aranguren-Ibáñez Á, Pritchard MA, Soldevila G, Pérez-Riba M. RCAN 1 and 3 proteins regulate thymic positive selection. Biochem Biophys Res Commun 2015; 460:295-301. [PMID: 25783055 DOI: 10.1016/j.bbrc.2015.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/06/2015] [Indexed: 01/18/2023]
Abstract
Cooperation between calcineurin (CN)-NFATc and RAF-MEK-ERK signaling pathways is essential in thymocyte positive selection. It is known that the Regulators of Calcineurin (RCAN) proteins can act either facilitating or suppressing CN-dependent signaling events. Here, we show that RCAN genes are expressed in lymphoid tissues, and address the role of RCAN proteins in T cell development. Overexpression of human RCAN3 and RCAN1 can modulate T cell development by increasing positive selection-related surface markers, as well as the "Erk(hi) competence state" in double positive thymocytes, a characteristic molecular signature of positive selection, without affecting CN activity. We also found that RCAN1/3 interact with RAF kinases and CN in a non-exclusive manner. Our data suggests that the balance of RCAN interactions with CN and/or RAF kinases may influence T cell positive selection.
Collapse
Affiliation(s)
- Eva Serrano-Candelas
- Human Molecular Genetics Laboratory, Cell Signaling Unit, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Germán Alemán-Muench
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF 04510, Mexico
| | - Sònia Solé-Sánchez
- Human Molecular Genetics Laboratory, Cell Signaling Unit, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Anna Aubareda
- Human Molecular Genetics Laboratory, Cell Signaling Unit, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Sergio Martínez-Høyer
- Human Molecular Genetics Laboratory, Cell Signaling Unit, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jaume Adán
- LEITAT Technological Center, Biomed Divison, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Álvaro Aranguren-Ibáñez
- Human Molecular Genetics Laboratory, Cell Signaling Unit, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF 04510, Mexico.
| | - Mercè Pérez-Riba
- Human Molecular Genetics Laboratory, Cell Signaling Unit, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain.
| |
Collapse
|
12
|
Kim SS, Lee EH, Lee K, Jo SH, Seo SR. PKA regulates calcineurin function through the phosphorylation of RCAN1: identification of a novel phosphorylation site. Biochem Biophys Res Commun 2015; 459:604-9. [PMID: 25753203 DOI: 10.1016/j.bbrc.2015.02.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/20/2022]
Abstract
Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
13
|
Histone deacetylase 3 promotes RCAN1 stability and nuclear translocation. PLoS One 2014; 9:e105416. [PMID: 25144594 PMCID: PMC4140772 DOI: 10.1371/journal.pone.0105416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Regulator of calcineurin 1 (RCAN1; also referred as DSCR1 or MCIP1) is located in close proximity to a Down syndrome critical region of human chromosome 21. Although RCAN1 is an endogenous inhibitor of calcineurin signaling that controls lymphocyte activation, apoptosis, heart development, skeletal muscle differentiation, and cardiac function, it is not yet clear whether RCAN1 might be involved in other cellular activities. In this study, we explored the extra-functional roles of RCAN1 by searching for novel RCAN1-binding partners. Using a yeast two-hybrid assay, we found that RCAN1 (RCAN1-1S) interacts with histone deacetylase 3 (HDAC3) in mammalian cells. We also demonstrate that HDAC3 deacetylates RCAN1. In addition, HDAC3 increases RCAN1 protein stability by inhibiting its poly-ubiquitination. Furthermore, HDAC3 promotes RCAN1 nuclear translocation. These data suggest that HDAC3, a new binding regulator of RCAN1, affects the protein stability and intracellular localization of RCAN1.
Collapse
|
14
|
Wu Y, Ly PTT, Song W. Aberrant expression of RCAN1 in Alzheimer's pathogenesis: a new molecular mechanism and a novel drug target. Mol Neurobiol 2014; 50:1085-97. [PMID: 24752590 DOI: 10.1007/s12035-014-8704-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
AD, a devastating neurodegenerative disorder, is the most common cause of dementia in the elderly. Patients with AD are characterized by three hallmarks of neuropathology including neuritic plaque deposition, neurofibrillary tangle formation, and neuronal loss. Growing evidences indicate that dysregulation of regulator of calcineurin 1 (RCAN1) plays an important role in the pathogenesis of AD. Aberrant RCAN1 expression facilitates neuronal apoptosis and Tau hyperphosphorylation, leading to neuronal loss and neurofibrillary tangle formation. This review aims to describe the recent advances of the regulation of RCAN1 expression and its physiological functions. Moreover, the AD risk factors-induced RCAN1 dysregulation and its role in promoting neuronal loss, synaptic impairments and neurofibrillary tangle formation are summarized. Furthermore, we provide an outlook into the effects of RCAN1 dysregulation on APP processing, Aβ generation and neuritic plaque formation, and the possible underlying mechanisms, as well as the potential of targeting RCAN1 as a new therapeutic approach.
Collapse
Affiliation(s)
- Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
15
|
Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem 2014; 155:217-26. [PMID: 24505143 DOI: 10.1093/jb/mvu006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcineurin-nuclear factor of activated T cells (NFAT) signalling plays a critical role not only in the immune and nervous systems, but also in cardiovascular development and pathological endothelial cell activation during angiogenesis or inflammation. Studies in NFAT-null mice demonstrated that there is high redundancy between functions of the different NFAT family members. Deletion of only one NFAT causes mild phenotypes, but compound deletions of multiple NFAT family members leads to severe abnormalities in multiple organ systems. Genome-wide transcription analysis revealed that many NFAT target genes are related to cell growth and inflammation, whereas the gene most strongly induced by NFAT in endothelial cells is an auto-inhibitory molecule, Down syndrome critical region (DSCR)-1. The NFAT-DSCR-1 signalling axis may vary depending on the cell-type or signal dosage level under the microenvironment. In the endothelium, stable expression of the DSCR-1 short isoform attenuates septic inflammatory shock, tumour growth and tumour metastasis to lung. Moreover, dysfunction of DSCR-1 and the NFAT priming kinase, DYRK1A, prevents NFAT nuclear occupancy. This change in NFAT nuclear localization is responsible for many of the features of Down syndrome. Thus, fine-tuning of the NFAT-DSCR-1 negative feedback loop may enable therapeutic manipulation in vasculopathic diseases.
Collapse
Affiliation(s)
- Takashi Minami
- Div. of Vascular Biology, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
16
|
Song WJ, Song EAC, Choi SH, Baik HH, Jin BK, Kim JH, Chung SH. Dyrk1A-mediated phosphorylation of RCAN1 promotes the formation of insoluble RCAN1 aggregates. Neurosci Lett 2013; 554:135-40. [PMID: 24021800 DOI: 10.1016/j.neulet.2013.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/13/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
Abstract
The mechanisms underlying aggregate formation in age-related neurodegenerative diseases remain not well understood. Here we investigated whether dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is involved in the formation of regulator of calcineurin 1 (RCAN1) aggregates. We show that RCAN1 self-associates and forms multimers, and that this process is promoted by the Dyrk1A-mediated phosphorylation of RCAN1 at the Thr(192) residue. Transgenic mice that overexpress the Dyrk1A exhibited lower levels of phospho-Thr(192)-RCAN1 in 10-month-old-group compared to littermate controls, when analyzed with soluble hippocampus lysates. These results suggest that the phosphorylation of RCAN1 by Dyrk1A stimulates the formation of insoluble aggregates upon aging.
Collapse
Affiliation(s)
- Woo-Joo Song
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Méndez-Barbero N, Esteban V, Villahoz S, Escolano A, Urso K, Alfranca A, Rodríguez C, Sánchez SA, Osawa T, Andrés V, Martínez-González J, Minami T, Redondo JM, Campanero MR. A major role for RCAN1 in atherosclerosis progression. EMBO Mol Med 2013; 5:1901-17. [PMID: 24127415 PMCID: PMC3914525 DOI: 10.1002/emmm.201302842] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/08/2013] [Accepted: 09/03/2013] [Indexed: 01/19/2023] Open
Abstract
Atherosclerosis is a complex inflammatory disease involving extensive vascular vessel remodelling and migration of vascular cells. As RCAN1 is implicated in cell migration, we investigated its contribution to atherosclerosis. We show RCAN1 induction in atherosclerotic human and mouse tissues. Rcan1 was expressed in lesional macrophages, endothelial cells and vascular smooth muscle cells and was induced by treatment of these cells with oxidized LDLs (oxLDLs). Rcan1 regulates CD36 expression and its genetic inactivation reduced atherosclerosis extension and severity in Apoe−/− mice. This effect was mechanistically linked to diminished oxLDL uptake, resistance to oxLDL-mediated inhibition of macrophage migration and increased lesional IL-10 and mannose receptor expression. Moreover, Apoe−/−Rcan1−/− macrophages expressed higher-than-Apoe−/− levels of anti-inflammatory markers. We previously showed that Rcan1 mediates aneurysm development and that its expression is not required in haematopoietic cells for this process. However, transplantation of Apoe−/−Rcan1−/− bone-marrow (BM) cells into Apoe−/− recipients confers atherosclerosis resistance. Our data define a major role for haematopoietic Rcan1 in atherosclerosis and suggest that therapies aimed at inhibiting RCAN1 expression or function might significantly reduce atherosclerosis burden.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Granese B, Scala I, Spatuzza C, Valentino A, Coletta M, Vacca RA, De Luca P, Andria G. Validation of microarray data in human lymphoblasts shows a role of the ubiquitin-proteasome system and NF-kB in the pathogenesis of Down syndrome. BMC Med Genomics 2013; 6:24. [PMID: 23830204 PMCID: PMC3717290 DOI: 10.1186/1755-8794-6-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is a complex disorder caused by the trisomy of either the entire, or a critical region of chromosome 21 (21q22.1-22.3). Despite representing the most common cause of mental retardation, the molecular bases of the syndrome are still largely unknown. METHODS To better understand the pathogenesis of DS, we analyzed the genome-wide transcription profiles of lymphoblastoid cell lines (LCLs) from six DS and six euploid individuals and investigated differential gene expression and pathway deregulation associated with trisomy 21. Connectivity map and PASS-assisted exploration were used to identify compounds whose molecular signatures counteracted those of DS lymphoblasts and to predict their therapeutic potential. An experimental validation in DS LCLs and fetal fibroblasts was performed for the most deregulated GO categories, i.e. the ubiquitin mediated proteolysis and the NF-kB cascade. RESULTS We show, for the first time, that the level of protein ubiquitination is reduced in human DS cell lines and that proteasome activity is increased in both basal conditions and oxidative microenvironment. We also provide the first evidence that NF-kB transcription levels, a paradigm of gene expression control by ubiquitin-mediated degradation, is impaired in DS due to reduced IkB-alfa ubiquitination, increased NF-kB inhibitor (IkB-alfa) and reduced p65 nuclear fraction. Finally, the DSCR1/DYRK1A/NFAT genes were analysed. In human DS LCLs, we confirmed the presence of increased protein levels of DSCR1 and DYRK1A, and showed that the levels of the transcription factor NFATc2 were decreased in DS along with a reduction of its nuclear translocation upon induction of calcium fluxes. CONCLUSIONS The present work offers new perspectives to better understand the pathogenesis of DS and suggests a rationale for innovative approaches to treat some pathological conditions associated to DS.
Collapse
Affiliation(s)
- Barbara Granese
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Iris Scala
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Carmen Spatuzza
- Department of Biotechnological Sciences, Federico II University, Naples 80131, Italy
| | - Anna Valentino
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Marcella Coletta
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari 70126, Italy
| | - Pasquale De Luca
- Stazione Zoologica “A. Dohrn”, c/o BioGeM, Via Camporeale, Ariano Irpino 83031, Italy
| | - Generoso Andria
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| |
Collapse
|
19
|
Cho CKJ, Drabovich AP, Karagiannis GS, Martínez-Morillo E, Dason S, Dimitromanolakis A, Diamandis EP. Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome. Clin Proteomics 2013; 10:2. [PMID: 23394617 PMCID: PMC3626793 DOI: 10.1186/1559-0275-10-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/18/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways. RESULTS Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression. CONCLUSIONS The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.
Collapse
Affiliation(s)
- Chan-Kyung J Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kim SS, Seo SR. Hydrogen peroxide-induced MAPK activation causes the increase of RCAN1 (DSCR1) protein expression. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Covalent NEDD8 conjugation increases RCAN1 protein stability and potentiates its inhibitory action on calcineurin. PLoS One 2012; 7:e48315. [PMID: 23118980 PMCID: PMC3485183 DOI: 10.1371/journal.pone.0048315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022] Open
Abstract
Similar to ubiquitin, regulatory roles for NEDD8 (neural precursor cell-expressed developmentally down-regulated 8) are being clarified during cell growth, signal transduction, immune response, and development. However, NEDD8 targets and their functional alterations are not well known. Regulator of calcineurin 1 (RCAN1/DSCR1P1) is located near the Down syndrome critical region on the distal part of chromosome 21, and its gene product is an endogenous inhibitor of calcineurin signaling. RCAN1 is modified by ubiquitin and consequently undergoes proteasomal degradation. Here we report that NEDD8 is conjugated to RCAN1 (RCAN1-1S) via three lysine residues, K96, K104, and K107. Neddylation enhances RCAN1 protein stability without affecting its cellular location. In addition, we found that neddylation significantly inhibits proteasomal degradation of RCAN1, which may underlie the ability of NEDD8 to enhance RCAN1 stability. Furthermore, neddylation increases RCAN1 binding to calcineurin, which potentiates its inhibitory activity toward downstream NFAT signaling. The present study provides a new regulatory mechanism of RCAN1 function and highlights an important role for diverse RCAN1-involved cellular physiology.
Collapse
|
22
|
Wu Y, Song W. Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J 2012; 27:208-21. [PMID: 23038757 DOI: 10.1096/fj.12-213124] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abnormal expression of regulator of calcineurin 1 (RCAN1) has been implicated in Alzheimer's disease (AD) and Down's syndrome (DS). There are two major isoforms of RCAN1, isoforms 1 and 4. RCAN1 isoform 1 is predominantly expressed in the brain, particularly in neurons. In this report, we showed that there are two translation start codons in RCAN1 exon 1 serving as a functional translation initiation site to generate a longer 41-kDa isoform 1 (RCAN1.1L) and a shorter 31-kDa isoform 1 (RCAN1.1S). The first translation initiation site has higher translation efficiency than the downstream second one, and the translation initiation of two AUG sites is by a Cap-dependent mechanism. Short-term expression of RCAN1.1L protected SH-SY5Y cells from oxidative stress-induced apoptosis by inhibiting caspase-3 activation. However, long-term accumulation of RCAN1.1L in SH-SY5Y cells promoted oxidative stress-induced apoptosis via caspase-3 activation, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that the apoptosis ratio was increased to 499.03 ± 47.56% in SH-1.1L cells compared with 283.93 ± 28.66% in control cells. Furthermore, we found that RCAN1.1L is significantly elevated in the AD brains and patients with DS. RCAN1.1S is expressed at a low level in both human cells and brain tissues. Our results defined the regulatory mechanism underlying RCAN1 expression and the roles of RCAN1.1 in oxidative stress-induced neurodegeneration in AD and DS pathogenesis.
Collapse
Affiliation(s)
- Yili Wu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
23
|
p38α MAP kinase phosphorylates RCAN1 and regulates its interaction with calcineurin. SCIENCE CHINA-LIFE SCIENCES 2012; 55:559-66. [PMID: 22864830 DOI: 10.1007/s11427-012-4340-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
Abstract
RCAN1, also known as DSCR1, is an endogenous regulator of calcineurin, a serine/threonine protein phosphatase that plays a critical role in many physiological processes. In this report, we demonstrate that p38α MAP kinase can phosphorylate RCAN1 at multiple sites in vitro and show that phospho-RCAN1 is a good protein substrate for calcineurin. In addition, we found that unphosphorylated RCAN1 noncompetitively inhibits calcineurin protein phosphatase activity and that the phosphorylation of RCAN1 by p38α MAP kinase decreases the binding affinity of RCAN1 for calcineurin. These findings reveal the molecular mechanism by which p38α MAP kinase regulates the function of RCAN1/calcineurin through phosphorylation.
Collapse
|
24
|
Lyn is involved in CD24-induced ERK1/2 activation in colorectal cancer. Mol Cancer 2012; 11:43. [PMID: 22731636 PMCID: PMC3464950 DOI: 10.1186/1476-4598-11-43] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022] Open
Abstract
Background and aim CD24 expression is associated with human colorectal cancer (CRC). Our previous data indicated that CD24 promoted the proliferation and invasion of colorectal cancer cells through the activation of ERK1/2. Since Src family kinases are frequently deregulated in CRC and closely related to the MAPK signaling pathway, we investigated the impact of Lyn, an important member of SFKs, on CD24-induced ERK1/2 activation in CRC. Methods and Results The interaction of CD24 and Lyn was identified by co-immunoprecipitation (Co-IP) and ectopic expression of CD24-induced Lyn activation. Inhibition of Lyn activation by phosphatase PP2 in SW480CD24cells abrogated CD24-induced invasion. The results of the Co-IP and immunofluorescence assay revealed that overexpression of CD24 enhanced the interaction of Lyn and ERK1/2 and induced the nuclear translocation of Lyn. However, inhibition of Lyn activity attenuated CD24-induced ERK1/2 activation, and depletion of CD24 disrupted Lyn-ERK1/2 interaction. Immunohistochemistry analysis for 202 cases of CRC showed that the expression of both CD24 and Lyn was positively correlated with tumor grade, stage, lymph node and distant metastasis. Patients with lower expression of CD24 or Lyn had a higher survival rate. The Cox multivariate analysis showed that CD24 expression, but not Lyn expression, was an independent prognostic factor of CRC. Conclusions Our results suggest that Lyn is involved in CD24-induced ERK1/2 activation in CRC. The expression of CD24 is associated with activation of Lyn and ERK1/2, which might be a novel mechanism related to CD24-mediated regulation of CRC development.
Collapse
|
25
|
Lee JW, Kang HS, Lee JY, Lee EJ, Rhim H, Yoon JH, Seo SR, Chung KC. The transcription factor STAT2 enhances proteasomal degradation of RCAN1 through the ubiquitin E3 ligase FBW7. Biochem Biophys Res Commun 2012; 420:404-10. [DOI: 10.1016/j.bbrc.2012.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
26
|
Kim SS, Oh Y, Chung KC, Seo SR. Protein kinase A phosphorylates Down syndrome critical region 1 (RCAN1). Biochem Biophys Res Commun 2012; 418:657-61. [PMID: 22293192 DOI: 10.1016/j.bbrc.2012.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/14/2012] [Indexed: 12/11/2022]
Abstract
The Down syndrome critical region 1 (DSCR1) gene encodes a regulator of the calcineurin 1 (RCAN1) protein, and the elevated levels of RCAN1 are associated with Alzheimer's disease (AD) and Down syndrome (DS). In this report, we found that protein kinase A (PKA) was able to phosphorylate RCAN1 in vitro and in vivo. In addition, we found that the phosphorylation of RCAN1 by PKA caused an increase of RCAN1 expression by increasing of the half-life of the protein. Consistently, the pharmacological inhibition of intracellular PKA using H-89 and the knockdown of the endogenous PKA catalytic subunit with siRNA decreased the expression of RCAN1. Furthermore, the phosphorylation of RCAN1 by PKA enhanced the inhibitory function of RCAN1 on calcineurin-mediated gene transcription. Our data provide the first evidence that PKA acts as an important regulatory component in the control of RCAN1 function through phosphorylation.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Jung MS, Park JH, Ryu YS, Choi SH, Yoon SH, Kwen MY, Oh JY, Song WJ, Chung SH. Regulation of RCAN1 protein activity by Dyrk1A protein-mediated phosphorylation. J Biol Chem 2011; 286:40401-12. [PMID: 21965663 PMCID: PMC3220559 DOI: 10.1074/jbc.m111.253971] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/21/2011] [Indexed: 01/22/2023] Open
Abstract
Two genes on chromosome 21, namely dual specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) and regulator of calcineurin 1 (RCAN1), have been implicated in some of the phenotypic characteristics of Down syndrome, including the early onset of Alzheimer disease. Although a link between Dyrk1A and RCAN1 and the nuclear factor of activated T cells (NFAT) pathway has been reported, it remains unclear whether Dyrk1A directly interacts with RCAN1. In the present study, Dyrk1A is shown to directly interact with and phosphorylate RCAN1 at Ser(112) and Thr(192) residues. Dyrk1A-mediated phosphorylation of RCAN1 at Ser(112) primes the protein for the GSK3β-mediated phosphorylation of Ser(108). Phosphorylation of RCAN1 at Thr(192) by Dyrk1A enhances the ability of RCAN1 to inhibit the phosphatase activity of calcineurin (Caln), leading to reduced NFAT transcriptional activity and enhanced Tau phosphorylation. These effects are mediated by the enhanced binding of RCAN1 to Caln and its extended half-life caused by Dyrk1A-mediated phosphorylation. Furthermore, an increased expression of phospho-Thr(192)-RCAN1 was observed in the brains of transgenic mice overexpressing the Dyrk1A protein. These results suggest a direct link between Dyrk1A and RCAN1 in the Caln-NFAT signaling and Tau hyperphosphorylation pathways, supporting the notion that the synergistic interaction between the chromosome 21 genes RCAN1 and Dyrk1A is associated with a variety of pathological features associated with DS.
Collapse
Affiliation(s)
- Min-Su Jung
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Jung-Hwa Park
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Young Shin Ryu
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Sun-Hee Choi
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Song-Hee Yoon
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Mi-Yang Kwen
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Ji Youn Oh
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Woo-Joo Song
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Sul-Hee Chung
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| |
Collapse
|
28
|
Jang C, Lim JH, Park CW, Cho YJ. Regulator of Calcineurin 1 Isoform 4 (RCAN1.4) Is Overexpressed in the Glomeruli of Diabetic Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:299-305. [PMID: 22128263 DOI: 10.4196/kjpp.2011.15.5.299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/13/2011] [Accepted: 10/21/2011] [Indexed: 12/15/2022]
Abstract
Calcineurin (CaN) is activated in diabetes and plays a role in glomerular hypertrophy and extracellular matrix (ECM) accumulation. Here, kidneys from diabetic model mice were investigated for the expression of the regulator of CaN 1 (RCAN1) isoform 4 (RCAN1.4) which had been shown to be transcriptionally upregulated by CaN activation. We found the increased immunoreactivity for RCAN1 in the glomerular cells of db/db mice and streptozotocin-induced diabetic mice. In concordance, the expression of RCAN1 protein and RCAN1.4 mRNA were elevated in the whole kidney sample from db/db mice. Interleukin-1β (IL-1β), tumor necrosis factor-α, and glycated albumin (AGE-BSA) were identified as inducers of RCAN1.4 in mesangial cells. Pretreatment of cyclosporine A blocked the increases of RCAN1.4 stimulated by IL-1β or AGE-BSA, suggesting that activation of CaN is required for the RCAN1.4 induction. Stable transfection of RCAN1.4 in Mes-13 mesangial cells upregulated several factors relevant to ECM production and degradation. These results suggested that RCAN1.4 might act as a link between CaN activation and ECM turnover in diabetic nephropathy.
Collapse
Affiliation(s)
- Chorong Jang
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
29
|
Esteban V, Méndez-Barbero N, Jiménez-Borreguero LJ, Roqué M, Novensá L, García-Redondo AB, Salaices M, Vila L, Arbonés ML, Campanero MR, Redondo JM. Regulator of calcineurin 1 mediates pathological vascular wall remodeling. ACTA ACUST UNITED AC 2011; 208:2125-39. [PMID: 21930771 PMCID: PMC3182048 DOI: 10.1084/jem.20110503] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Angiotensin-II–driven calcineurin activation and regulator of calcineurin-1 (Rcan-1) expression is required for pathological vascular remodeling in mice. Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression.
Collapse
Affiliation(s)
- Vanesa Esteban
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, Yuan J, Xia K, Gronemeyer H, Flavell RA, Song W. Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem 2011; 286:9049-62. [PMID: 21216952 DOI: 10.1074/jbc.m110.177519] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Individuals with Down syndrome (DS) will inevitably develop Alzheimer disease (AD) neuropathology sometime after middle age, which may be attributable to genes triplicated in individuals with DS. The characteristics of AD neuropathology include neuritic plaques, neurofibrillary tangles, and neuronal loss in various brain regions. The mechanism underlying neurodegeneration in AD and DS remains elusive. Regulator of calcineurin 1 (RCAN1) has been implicated in the pathogenesis of DS. Our data show that RCAN1 expression is elevated in the cortex of DS and AD patients. RCAN1 expression can be activated by the stress hormone dexamethasone. A functional glucocorticoid response element was identified in the RCAN1 isoform 1 (RCAN1-1) promoter region, which is able to mediate the up-regulation of RCAN1 expression. Here we show that overexpression of RCAN1-1 in primary neurons activates caspase-9 and caspase-3 and subsequently induces neuronal apoptosis. Furthermore, we found that the neurotoxicity of RCAN1-1 is inhibited by knock-out of caspase-3 in caspase-3(-/-) neurons. Our study provides a novel mechanism by which RCAN1 functions as a mediator of stress- and Aβ-induced neuronal death, and overexpression of RCAN1 due to an extra copy of the RCAN1 gene on chromosome 21 contributes to AD pathogenesis in DS.
Collapse
Affiliation(s)
- Xiulian Sun
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Seo SR, Kim SS, Chung KC. Activation of adenylate cyclase by forskolin increases the protein stability of RCAN1 (DSCR1 or Adapt78). FEBS Lett 2009; 583:3140-4. [DOI: 10.1016/j.febslet.2009.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 11/30/2022]
|
32
|
Hirakawa Y, Nary LJ, Medh RD. Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis. J Mol Signal 2009; 4:6. [PMID: 19725972 PMCID: PMC2745384 DOI: 10.1186/1750-2187-4-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 09/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoid hormones (GCs) induce apoptosis of leukemic T-cells by transcriptional regulation via the GC receptor, GR. In the human leukemic CEM cell culture model, RCAN1 has been identified as one of the genes that is specifically upregulated only in the GC-sensitive CEM C7-14 cells, but not in the GC-resistant CEM-C1-15 sister cells in correlation with GC-evoked apoptosis. RCAN1 gene encodes two major protein isoforms of the regulator of calcineurin (RCAN1), RCAN1-1 and RCAN1-4 via alternative splicing of exons 1 and 4 respectively, to exons 5-7. Studies reported here evaluated the differential regulation and function of the two transcripts and protein products of RCAN1 by the synthetic GC dexamethasone (Dex), and by modulators of calcium signaling. RESULTS Dex selectively upregulates transcript specific for RCAN 1-1 in glucocorticoid (GC)-susceptible human leukemic CEM-C7-14 cells but not in GC-refractory CEM-C1-15 sister cells. Expression of the second major transcript, RCAN1-4, is upregulated by [Ca2+]i inducers, thapsigargin and A23187, but not by Dex, suggesting a mutually exclusive regulatory pathway for both RCAN1 transcripts. GC-mediated upregulation of RCAN1-1 transcript and RCAN1-1 protein was kinase dependent, and was blocked by staurosporine and the p38 MAP kinase inhibitor SB 202190. RCAN1-1 coimmunoprecipitates with calcineurin PP3C and Dex-mediated RCAN1-1 upregulation correlated with reduction in calcineurin PP3C activity. CONCLUSION Data presented here suggest that GCs specifically upregulate RCAN1-1 transcript and protein while inducers of [Ca2+]i selectively upregulate RCAN1-4. GC-mediated increase in RCAN1-1 abundance and binding possibly inhibits calcineurin activity and modulates apoptosis in CEM-C7-14 cells.
Collapse
Affiliation(s)
- Yasuko Hirakawa
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | | | | |
Collapse
|
33
|
Lee JY, Lee HJ, Lee EJ, Jang SH, Kim H, Yoon JH, Chung KC. Down syndrome candidate region-1 protein interacts with Tollip and positively modulates interleukin-1 receptor-mediated signaling. Biochim Biophys Acta Gen Subj 2009; 1790:1673-80. [PMID: 19716405 DOI: 10.1016/j.bbagen.2009.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/08/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND The Down syndrome candidate region-1 gene (DSCR1, also known as RCAN1) is situated close to the Down Syndrome Critical Region (DSCR), which contains genes responsible for many features of Down syndrome. DSCR1 modulates calcineurin phosphatase activity, though its functional role is incompletely understood. METHODS Here we investigated the role of DSCR1-1S isoform in IL-1 receptor (IL-1R)-mediated signaling by analyzing interaction between DSCR1-1S and the IL-1R pathway components Tollip, IRAK-1, and TRAF6. RESULTS Co-immunoprecipitation analyses of HEK293 cells revealed that DSCR1-1S interacted with Tollip, an IRAK-1 inhibitor, leading to the dissociation of IRAK-1 from Tollip. Similarly, both DSCR1-1S and Tollip interacted with TRAF6, with DSCR1 reducing interaction between Tollip and TRAF6. DSCR1-1S also stimulated IL-1R-mediated signaling pathways, TAK1 activation, NF-kappaB transactivation, and IL-8 production, all downstream consequences of IL-1R activation. GENERAL SIGNIFICANCE Together, these results suggest that DSCR1-1S isoform positively modulates IL-1R-mediated signaling pathways by regulating Tollip/IRAK-1/TRAF6 complex formation.
Collapse
Affiliation(s)
- Jae Youn Lee
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Park J, Oh Y, Chung KC. Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1. BMB Rep 2009; 42:6-15. [PMID: 19192387 DOI: 10.5483/bmbrep.2009.42.1.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most common genetic disorder Down syndrome (DS) displays various developmental defects including mental retardation, learning and memory deficit, the early onset of Alzheimer's disease (AD), congenital heart disease, and craniofacial abnormalities. Those characteristics result from the extra-genes located in the specific region called nDown syndrome critical region (DSCR)' in human chromosome 21. In this review, we summarized the recent findings of the DYRK1A and RCAN1 genes, which are located on DSCR and thought to be closely associated with the typical features of DS patients, and their implication to the pathogenesis of neural defects in DS. DYRK1A phosphorylates several transcriptional factors, such as CREB and NFAT, endocytic complex proteins, and AD-linked gene products. Meanwhile, RCAN1 is an endogenous inhibitor of calcineurin A, and its unbalanced activity is thought to cause major neuronal and/or non-neuronal malfunction in DS and AD. Interestingly, they both contribute to the learning and memory deficit, altered synaptic plasticity, impaired cell cycle regulation, and AD-like neuropathology in DS. By understanding their biochemical, functional and physiological roles, we hope to get important molecular basis of DS pathology, which would consequently lead to the basis to develop the possible therapeutic tools for the neural defects in DS. [BMB reports 2009; 42(1): 6-15].
Collapse
Affiliation(s)
- Joongkyu Park
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
35
|
Yang YJ, Chen W, Edgar A, Li B, Molkentin JD, Berman JN, Lin TJ. Rcan1 negatively regulates Fc epsilonRI-mediated signaling and mast cell function. ACTA ACUST UNITED AC 2009; 206:195-207. [PMID: 19124655 PMCID: PMC2626669 DOI: 10.1084/jem.20081140] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aggregation of the high affinity IgE receptor (Fc epsilonRI) activates a cascade of signaling events leading to mast cell activation. Subsequently, inhibitory signals are engaged for turning off activating signals. We identified that regulator of calcineurin (Rcan) 1 serves as a negative regulator for turning off Fc epsilonRI-mediated mast cell activation. Fc epsilonRI-induced Rcan1 expression was identified by suppression subtractive hybridization and verified by real-time quantitative polymerase chain reaction and Western blotting. Deficiency of Rcan1 led to increased calcineurin activity, increased nuclear factor of activated T cells and nuclear factor kappaB activation, increased cytokine production, and enhanced immunoglobulin E-mediated late-phase cutaneous reactions. Forced expression of Rcan1 in wild-type or Rcan1-deficient mast cells reduced Fc epsilonRI-mediated cytokine production. Rcan1 deficiency also led to increased Fc epsilonRI-mediated mast cell degranulation and enhanced passive cutaneous anaphylaxis. Analysis of the Rcan1 promoter identified a functional Egr1 binding site. Biochemical and genetic evidence suggested that Egr1 controls Rcan1 expression. Our results identified Rcan1 as a novel inhibitory signal in Fc epsilonRI-induced mast cell activation and established a new link of Egr1 and Rcan1 in Fc epsilonRI signaling.
Collapse
Affiliation(s)
- Yong Jun Yang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Song HJ, Park J, Seo SR, Kim J, Paik SR, Chung KC. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor β in HEK293 cells. Biochem Biophys Res Commun 2008; 376:478-82. [DOI: 10.1016/j.bbrc.2008.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
|