1
|
Yuan J, Yu Z, Zhang P, Luo K, Xu Y, Lan T, Zhang M, Chen Y, Lu Z. DDAH1 recruits peroxiredoxin 1 and sulfiredoxin 1 to preserve its activity and regulate intracellular redox homeostasis. Redox Biol 2024; 70:103080. [PMID: 38354630 PMCID: PMC10876909 DOI: 10.1016/j.redox.2024.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Growing evidence suggests that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a crucial enzyme for the degradation of asymmetric dimethylarginine (ADMA), is closely related to oxidative stress during the development of multiple diseases. However, the underlying mechanism by which DDAH1 regulates the intracellular redox state remains unclear. In the present study, DDAH1 was shown to interact with peroxiredoxin 1 (PRDX1) and sulfiredoxin 1 (SRXN1), and these interactions could be enhanced by oxidative stress. In HepG2 cells, H2O2-induced downregulation of DDAH1 and accumulation of ADMA were attenuated by overexpression of PRDX1 or SRXN1 but exacerbated by knockdown of PRDX1 or SRXN1. On the other hand, DDAH1 also maintained the expression of PRDX1 and SRXN1 in H2O2-treated cells. Furthermore, global knockout of Ddah1 (Ddah1-/-) or liver-specific knockout of Ddah1 (Ddah1HKO) exacerbated, while overexpression of DDAH1 alleviated liver dysfunction, hepatic oxidative stress and downregulation of PRDX1 and SRXN1 in CCl4-treated mice. Overexpression of liver PRDX1 improved liver function, attenuated hepatic oxidative stress and DDAH1 downregulation, and diminished the differences between wild type and Ddah1-/- mice after CCl4 treatment. Collectively, our results suggest that the regulatory effect of DDAH1 on cellular redox homeostasis under stress conditions is due, at least in part, to the interaction with PRDX1 and SRXN1.
Collapse
Affiliation(s)
- Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoran Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, 55455, USA
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Lan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China.
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Shen X, Luo K, Yuan J, Gao J, Cui B, Yu Z, Lu Z. Hepatic DDAH1 mitigates hepatic steatosis and insulin resistance in obese mice: Involvement of reduced S100A11 expression. Acta Pharm Sin B 2023; 13:3352-3364. [PMID: 37655336 PMCID: PMC10465955 DOI: 10.1016/j.apsb.2023.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is an important regulator of plasma asymmetric dimethylarginine (ADMA) levels, which are associated with insulin resistance in patients with nonalcoholic fatty liver disease (NAFLD). To elucidate the role of hepatic DDAH1 in the pathogenesis of NAFLD, we used hepatocyte-specific Ddah1-knockout mice (Ddah1HKO) to examine the progress of high-fat diet (HFD)-induced NAFLD. Compared to diet-matched flox/flox littermates (Ddah1f/f), Ddah1HKO mice exhibited higher serum ADMA levels. After HFD feeding for 16 weeks, Ddah1HKO mice developed more severe liver steatosis and worse insulin resistance than Ddah1f/f mice. On the contrary, overexpression of DDAH1 attenuated the NAFLD-like phenotype in HFD-fed mice and ob/ob mice. RNA-seq analysis showed that DDAH1 affects NF-κB signaling, lipid metabolic processes, and immune system processes in fatty livers. Furthermore, DDAH1 reduces S100 calcium-binding protein A11 (S100A11) possibly via NF-κB, JNK and oxidative stress-dependent manner in fatty livers. Knockdown of hepatic S100a11 by an AAV8-shS100a11 vector alleviated hepatic steatosis and insulin resistance in HFD-fed Ddah1HKO mice. In summary, our results suggested that the liver DDAH1/S100A11 axis has a marked effect on liver lipid metabolism in obese mice. Strategies to increase liver DDAH1 activity or decrease S100A11 expression could be a valuable approach for NAFLD therapy.
Collapse
Affiliation(s)
- Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Respiratory Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqing Cui
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ragavan VN, Nair PC, Jarzebska N, Angom RS, Ruta L, Bianconi E, Grottelli S, Tararova ND, Ryazanskiy D, Lentz SR, Tommasi S, Martens-Lobenhoffer J, Suzuki-Yamamoto T, Kimoto M, Rubets E, Chau S, Chen Y, Hu X, Bernhardt N, Spieth PM, Weiss N, Bornstein SR, Mukhopadhyay D, Bode-Böger SM, Maas R, Wang Y, Macchiarulo A, Mangoni AA, Cellini B, Rodionov RN. A multicentric consortium study demonstrates that dimethylarginine dimethylaminohydrolase 2 is not a dimethylarginine dimethylaminohydrolase. Nat Commun 2023; 14:3392. [PMID: 37296100 PMCID: PMC10256801 DOI: 10.1038/s41467-023-38467-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects against cardiovascular disease by metabolising the risk factor asymmetric dimethylarginine (ADMA). However, the question whether the second DDAH isoform, DDAH2, directly metabolises ADMA has remained unanswered. Consequently, it is still unclear if DDAH2 may be a potential target for ADMA-lowering therapies or if drug development efforts should focus on DDAH2's known physiological functions in mitochondrial fission, angiogenesis, vascular remodelling, insulin secretion, and immune responses. Here, an international consortium of research groups set out to address this question using in silico, in vitro, cell culture, and murine models. The findings uniformly demonstrate that DDAH2 is incapable of metabolising ADMA, thus resolving a 20-year controversy and providing a starting point for the investigation of alternative, ADMA-independent functions of DDAH2.
Collapse
Affiliation(s)
- Vinitha N Ragavan
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Natalia Jarzebska
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Luana Ruta
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, Perugia, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, Perugia, Italy
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, P.le L. Sevari 1, Perugia, Italy
| | | | | | - Steven R Lentz
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sara Tommasi
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
| | | | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masumi Kimoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Elena Rubets
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sarah Chau
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, NY, USA
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xinli Hu
- Institute of Molecular Medicine, Beijing University, Beijing, China
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter M Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Norbert Weiss
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto von Guericke University, Magdeburg, Germany
| | - Renke Maas
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU New - Research Center for New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, NY, USA
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, Perugia, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, P.le L. Sevari 1, Perugia, Italy
| | - Roman N Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
- College of Medicine and Public Health, Flinders University and Flinders Medical Center, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Salinas R, Cannistraci E, Schumacher MA. Structure of the T. brucei kinetoplastid RNA editing substrate-binding complex core component, RESC5. PLoS One 2023; 18:e0282155. [PMID: 36862634 PMCID: PMC9980740 DOI: 10.1371/journal.pone.0282155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Kinetoplastid protists such as Trypanosoma brucei undergo an unusual process of mitochondrial uridine (U) insertion and deletion editing termed kinetoplastid RNA editing (kRNA editing). This extensive form of editing, which is mediated by guide RNAs (gRNAs), can involve the insertion of hundreds of Us and deletion of tens of Us to form a functional mitochondrial mRNA transcript. kRNA editing is catalyzed by the 20 S editosome/RECC. However, gRNA directed, processive editing requires the RNA editing substrate binding complex (RESC), which is comprised of 6 core proteins, RESC1-RESC6. To date there are no structures of RESC proteins or complexes and because RESC proteins show no homology to proteins of known structure, their molecular architecture remains unknown. RESC5 is a key core component in forming the foundation of the RESC complex. To gain insight into the RESC5 protein we performed biochemical and structural studies. We show that RESC5 is monomeric and we report the T. brucei RESC5 crystal structure to 1.95 Å. RESC5 harbors a dimethylarginine dimethylaminohydrolase-like (DDAH) fold. DDAH enzymes hydrolyze methylated arginine residues produced during protein degradation. However, RESC5 is missing two key catalytic DDAH residues and does bind DDAH substrate or product. Implications of the fold for RESC5 function are discussed. This structure provides the first structural view of an RESC protein.
Collapse
Affiliation(s)
- Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Emily Cannistraci
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, DUMC, Durham, NC, United States of America
| |
Collapse
|
5
|
Johnson CM, Fast W. On the kinetic mechanism of dimethylarginine dimethylaminohydrolase. Bioorg Med Chem 2022; 66:116816. [PMID: 35598478 DOI: 10.1016/j.bmc.2022.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH, EC 3.5.3.18) catalyzes the hydrolysis of asymmetric Nω,Nω-dimethyl-l-arginine (ADMA), an endogenous inhibitor of human nitric oxide synthases. The active-site cysteine residue has been proposed to serve as the catalytic nucleophile, forming an S-alkylthiourea reaction intermediate, and serving as a target for covalent inhibitors. Inhibition can lead to ADMA accumulation and downstream inhibition of nitric oxide production. Prior studies have provided experimental evidence for formation of this covalent adduct but have not characterized it kinetically. Here, rapid quench-flow is used with ADMA and the DDAH from Pseudomonas aeruginosa to determine the rate constants for formation (k2 = 17 ± 2 s-1) and decay (k3 = 1.5 ± 0.1 s-1) of the covalent S-alkylthiourea adduct. A minimal kinetic mechanism for DDAH is proposed that supports the kinetic competence of this species as a covalent reaction intermediate and assigns the rate-limiting step in substrate turnover as hydrolysis of this intermediate. This work helps elucidate the different reactivities of S-alkylthiourea intermediates found among the mechanistically diverse pentein superfamily of guanidine-modifying enzymes and provides information useful for inhibitor development.
Collapse
Affiliation(s)
- Corey M Johnson
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA; Department of Chemistry and Biochemistry, Howard College of Arts and Sciences, Samford University, Birmingham, AL 35229, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Singh I, Kim J, Saxena N, Choi S, Islam SMT, Singh AK, Khan M, Won J. Vascular and immunopathological role of Asymmetric Dimethylarginine (ADMA) in Experimental Autoimmune Encephalomyelitis. Immunology 2021; 164:602-616. [PMID: 34310708 DOI: 10.1111/imm.13396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor/uncoupler inducing vascular pathology. Vascular pathology is an important factor for the development and progression of CNS pathology of MS, yet the role of ADMA in MS remains elusive. Patients with multiple sclerosis (MS) are reported to have elevated blood levels of ADMA, and mice with experimental autoimmune encephalomyelitis (EAE, an animal model of MS) generated by auto-immunization of myelin oligodendrocyte glycoprotein (MOG) and blood-brain barrier (BBB) disruption by pertussis toxin also had increased blood ADMA levels in parallel with induction of clinical disease. To explore the role of ADMA in EAE pathogenesis, EAE mice were treated with a daily dose of ADMA. It is of special interest that ADMA treatment enhanced the BBB disruption in EAE mice and exacerbated the clinical and CNS disease of EAE. ADMA treatment also induced the BBB disruption and EAE disease in MOG-immunized mice even without pertussis toxin treatment, suggesting the role of ADMA in BBB dysfunction in EAE. T-cell polarization studies also documented that ADMA treatment promotes TH 1- and TH 17-mediated immune responses but without affecting Treg-mediated immune response in EAE mice as well as in in vitro T-cell culture. Taken together, these data, for the first time, document the vascular and immunopathogenic roles of ADMA in EAE, thus pointing to the potential of ADMA-mediated mechanism as a new target of potential therapy for MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
7
|
Lee Y, Mehrotra P, Basile D, Ullah M, Singh A, Skill N, Younes ST, Sasser J, Shekhar A, Singh J. Specific Lowering of Asymmetric Dimethylarginine by Pharmacological Dimethylarginine Dimethylaminohydrolase Improves Endothelial Function, Reduces Blood Pressure and Ischemia-Reperfusion Injury. J Pharmacol Exp Ther 2021; 376:181-189. [PMID: 33214214 PMCID: PMC7816763 DOI: 10.1124/jpet.120.000212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple clinical and preclinical studies have demonstrated that plasma levels of asymmetric dimethylarginine (ADMA) are strongly associated with hypertension, diabetes, and cardiovascular and renal disease. Genetic studies in rodents have provided evidence that ADMA metabolizing dimethylarginine dimethylaminohydrolase (DDAH)-1 plays a role in hypertension and cardiovascular disease. However, it remains to be established whether ADMA is a bystander, biomarker, or sufficient contributor to the pathogenesis of hypertension and cardiovascular and renal disease. The goal of the present investigation was to develop a pharmacological molecule to specifically lower ADMA and determine the physiologic consequences of ADMA lowering in animal models. Further, we sought to determine whether ADMA lowering will produce therapeutic benefits in vascular disease in which high ADMA levels are produced. A novel long-acting recombinant DDAH (M-DDAH) was produced by post-translational modification, which effectively lowered ADMA in vitro and in vivo. Treatment with M-DDAH improved endothelial function as measured by increase in cGMP and in vitro angiogenesis. In a rat model of hypertension, M-DDAH significantly reduced blood pressure (vehicle: 187 ± 19 mm Hg vs. M-DDAH: 157 ± 23 mm Hg; P < 0.05). Similarly, in a rat model of ischemia-reperfusion injury, M-DDAH significantly improved renal function as measured by reduction in serum creatinine (vehicle: 3.14 ± 0.74 mg/dl vs. M-DDAH: 1.1 ± 0.75 mg/dl; P < 0.01), inflammation, and injured tubules (vehicle: 73.1 ± 11.1% vs. M-DDAH: 22.1 ± 18.4%; P < 0.001). These pharmacological studies have provided direct evidence for a pathologic role of ADMA and the therapeutic benefits of ADMA lowering in preclinical models of endothelial dysfunction, hypertension, and ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: High levels of ADMA occur in patients with cardiovascular and renal disease. A novel modified dimethylarginine dimethylaminohydrolase by PEGylation effectively lowers ADMA, improves endothelial function, reduces blood pressure and protects from ischemia-reperfusion renal injury.
Collapse
Affiliation(s)
- Young Lee
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Purvi Mehrotra
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - David Basile
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Mahbub Ullah
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Arshnoor Singh
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Nicholas Skill
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Subhi Talal Younes
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Jennifer Sasser
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Anantha Shekhar
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Jaipal Singh
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., Ar.S., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (P.M., D.B., M.U., N.S., Ar.S., J.S.); University of Mississippi Medical Center, Jackson, Mississippi (S.T.Y., Je.S.); and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| |
Collapse
|
8
|
Abdel-Magied N, Shedid SM. Impact of zinc oxide nanoparticles on thioredoxin-interacting protein and asymmetric dimethylarginine as biochemical indicators of cardiovascular disorders in gamma-irradiated rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:430-442. [PMID: 31749214 DOI: 10.1002/tox.22879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticle is a microscopic particle that has been existed in a wide range of biotechnological purposes. Zinc oxide nanoparticles (ZnO-NPs) have fewer environmental hazards and have shown positive impacts in the medical field. This work aimed to observe the effects of low and high doses of ZnO-NPs on heart injury induced by ionizing radiation (IR). Animals were irradiated by 8 Gy of gamma rays and ZnO-NPs (10 and 300 mg/Kg/day) were orally delivered to rats 1 hour after irradiation. Animals were dissected on 15th day postirradiation. Data showed that the oxidative damage resulted from radiation exposure, appeared by marked increments in the malondialdehyde (MDA) content and the level and protein expression of thioredoxin-interacting protein (TXNIP) with a noticeable decline in the level and expression of thioredoxin 1 (Trx-1) and thioredoxin reductase (TrxR), as well as glutathione (GSH) level and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Moreover, radiation-induced inflammation, manifested by a noticeable elevation in the level of tumor necrotic factor-alpha (TNF-α), interleukin-18 (IL-18), and C-reactive protein (CRP). Additionally, endothelial dysfunction marked with a high level of asymmetric dimethylarginine (ADMA), total nitrite/nitrate (NOx), intercellular adhesion molecule 1 (ICAM-1), homocysteine (Hcy), creatine kinase (CK-MB), cardiac troponin-I (cTn-I), and lactate dehydrogenase (LDH). In addition, a decrease of zinc (Zn) level in the cardiac tissue was recorded. ZnO-NPs treatment (10 mg/kg) mitigated the oxidative stress and inflammation effects on the cardiovascular tissue through the positive modulations in the studied parameters. In contrast, ZnO-NPs treatment (300 mg/kg) induced cardiovascular toxicity of normal rats and elevated the deleterious effects of radiation. In conclusion, ZnO-NPs at a low dose could mitigate the adverse effects on cardiovascular tissue induced by radiation during its applications, while the high dose showed morbidity and mortality in normal and irradiated rats.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Kaur K, Singh N, Dhawan RK. Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1415-1423. [PMID: 32133059 PMCID: PMC7043882 DOI: 10.22038/ijbms.2019.14067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme responsible for degradation of ADMA, the present study was designed to explore the role of DDAH/ADMA/NO pathway in cardio-protective mechanism of ischaemic postconditioning. Materials and Methods Isolated rat hearts were subjected to myocardial ischaemia for 30 min followed by reperfusion for 2 hours in control group. Myocardial injury was assessed by measurement of infarct size, left ventricular developed pressure (LVDP), lactate dehydrogenase (LDH) and creatine kinase (CK) enzymes in coronary effluents. The reperfused hearts were homogenised and tissue concentration of nitrite, ADMA level and DDAH enzyme activity was determined. Results A significant increase in infarct size, LDH, CK release in coronary effluents and ADMA level in myocardial tissue was observed in control group. The increase in tissue ADMA coincided with reductions of NO tissue concentrations and DDAH activity. Ischaemic postconditioning significantly attenuated ischaemia-reperfusion induced myocardial injury manifested in the terms of decreased infarct size, LDH, CK, tissue ADMA along with increase in NO levels and DDAH enzyme activity. Pretreatment with L-Homocysteine (300 µM), a competitive inhibitor of DDAH, and L-NG-nitroarginine methyl ester (L-NAME; 100 µM), an inhibitor of eNOS, completely abolished ischaemic postconditioning-induced myocardial protection. Conclusion Enhancing DDAH activity by postconditioning may be a novel target to reduce ADMA level and increase NO bioavailability to prevent myocardial ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Kamaldeep Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar
| |
Collapse
|
10
|
Fulton MD, Brown T, Zheng YG. The Biological Axis of Protein Arginine Methylation and Asymmetric Dimethylarginine. Int J Mol Sci 2019; 20:ijms20133322. [PMID: 31284549 PMCID: PMC6651691 DOI: 10.3390/ijms20133322] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Protein post-translational modifications (PTMs) in eukaryotic cells play important roles in the regulation of functionalities of the proteome and in the tempo-spatial control of cellular processes. Most PTMs enact their regulatory functions by affecting the biochemical properties of substrate proteins such as altering structural conformation, protein-protein interaction, and protein-nucleic acid interaction. Amid various PTMs, arginine methylation is widespread in all eukaryotic organisms, from yeasts to humans. Arginine methylation in many situations can drastically or subtly affect the interactions of substrate proteins with their partnering proteins or nucleic acids, thus impacting major cellular programs. Recently, arginine methylation has become an important regulator of the formation of membrane-less organelles inside cells, a phenomenon of liquid-liquid phase separation (LLPS), through altering π-cation interactions. Another unique feature of arginine methylation lies in its impact on cellular physiology through its downstream amino acid product, asymmetric dimethylarginine (ADMA). Accumulation of ADMA in cells and in the circulating bloodstream is connected with endothelial dysfunction and a variety of syndromes of cardiovascular diseases. Herein, we review the current knowledge and understanding of protein arginine methylation in regards to its canonical function in direct protein regulation, as well as the biological axis of protein arginine methylation and ADMA biology.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Kami Reddy KR, Dasari C, Vandavasi S, Natani S, Supriya B, Jadav SS, Sai Ram N, Kumar JM, Ummanni R. Novel Cellularly Active Inhibitor Regresses DDAH1 Induced Prostate Tumor Growth by Restraining Tumor Angiogenesis through Targeting DDAH1/ADMA/NOS Pathway. ACS COMBINATORIAL SCIENCE 2019; 21:241-256. [PMID: 30673277 DOI: 10.1021/acscombsci.8b00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dimethylarginine dimethylaminohydrolase1 (DDAH1) inhibitors are important therapeutics by virtue of their ability to control nitric oxide (NO) production by elevating asymmetric dimethylarginine (ADMA) levels. In a screening campaign, we identified that DD1E5 (3-amino-6- tert-butyl-N-(1,3-thiazol-2-yl)-4-(trifluoromethyl)thieno[2,3- b]pyridine-2- carboxamide) inhibits the DDAH1 activity both in vitro and in cultured cells. Mechanistic studies found that DD1E5 is a competitive inhibitor (dissociation constant ( Ki) of 2.05 ± 0.15 μM). Enzyme kinetic assays showed time and concentration dependent inhibition of DDAH1 with DD1E5, which shows tight binding with an inactivation rate constant of 0.2756 ± 0.015 M-1 S-1. Treatment of cancer cells with DDAH1 inhibitors shows inhibition of cell proliferation and a subsequent decrease in NO production with ADMA accumulation. DD1E5 reversed the elevated VEGF, c-Myc, HIF-1α, and iNOS levels induced by exogenous DDAH1 overexpression in PCa cells. Moreover, DD1E5 significantly increased intracellular levels of ADMA and reduced NO production, suggesting its therapeutic potential for cancers in which DDAH1 is upregulated. In in vitro assays, DD1E5 abrogated the secretion of angiogenic factors (bFGF and IL-8) into conditional media, indicating its antiangiogenic potential. DD1E5 inhibited in vivo growth of xenograft tumors derived from PCa cells with DDAH1 overexpression, by reducing tumor endothelial content represented with low CD31 expression. VEGF, HIF-1α, and iNOS expression were reversed in DD1E5 treated tumors compared to respective control tumors. In this work, integrating multiple approaches shows DD1E5 is a promising tool for the study of methylarginine-mediated NO control and a potential therapeutic lead compound against pathological conditions with elevated NO production such as cancers and other diseases.
Collapse
Affiliation(s)
- Karthik Reddy Kami Reddy
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Shalini Vandavasi
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sirisha Natani
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Bhukya Supriya
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Surender Singh Jadav
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - N. Sai Ram
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | | | - Ramesh Ummanni
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
12
|
Petkowski JJ, Bains W, Seager S. An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols or Nitrogen-Sulfur Bonds, but Not Both. ASTROBIOLOGY 2019; 19:579-613. [PMID: 30431334 DOI: 10.1089/ast.2018.1831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A fundamental goal of biology is to understand the rules behind life's use of chemical space. Established work focuses on why life uses the chemistry that it does. Given the enormous scope of possible chemical space, we postulate that it is equally important to ask why life largely avoids certain areas of chemical space. The nitrogen-sulfur bond is a prime example, as it rarely appears in natural molecules, despite the very rich N-S bond chemistry applied in various branches of industry (e.g., industrial materials, agrochemicals, pharmaceuticals). We find that, out of more than 200,000 known, unique compounds made by life, only about 100 contain N-S bonds. Furthermore, the limited number of N-S bond-containing molecules that life produces appears to fall into a few very distinctive structural groups. One may think that industrial processes are unrelated to biochemistry because of a greater possibility of solvents, catalysts, and temperatures available to industry than to the cellular environment. However, the fact that life does rarely make N-S bonds, from the plentiful precursors available, and has evolved the ability to do so independently several times, suggests that the restriction on life's use of N-S chemistry is not in its synthesis. We present a hypothesis to explain life's extremely limited usage of the N-S bond: that the N-S bond chemistry is incompatible with essential segments of biochemistry, specifically with thiols. We support our hypothesis by (1) a quantitative analysis of the occurrence of N-S bond-containing natural products and (2) reactivity experiments between selected N-S compounds and key biological molecules. This work provides an example of a reason why life nearly excludes a distinct region of chemical space. Combined with future examples, this potentially new field of research may provide fresh insight into life's evolution through chemical space and its origin and early evolution.
Collapse
Affiliation(s)
- Janusz J Petkowski
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Sara Seager
- 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
- 3 Department of Physics, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
El-Sayed ASA, Shindia AA, AbouZaid AA, Yassin AM, Ali GS, Sitohy MZ. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb Technol 2019; 124:41-53. [PMID: 30797478 DOI: 10.1016/j.enzmictec.2019.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Peptidylarginine deiminases (PADs) are a group of hydrolases, mediating the deimination of peptidylarginine residues into peptidyl-citrulline. Equivocal protein citrullination by PADs of fungal pathogens has a strong relation to the progression of multiple human diseases, however, the biochemical properties of fungal PADs remain ambiguous. Thus, this is the first report exploring the molecular properties of PAD from thermotolerant fungi, to imitate the human temperature. The teleomorph Emericella dentata and anamorph Aspergillus nidulans have been morphologically and molecularly identified, with observed robust growth at 37-40 °C, and strong PAD productivity. The physiological profiles of E. dentata and A. nidulans for PADs production in response to carbon, nitrogen sources, initial medium pH and incubation temperature were relatively identical, emphasizing the taxonomical proximity of these fungal isolates. PADs were purified from E. dentata and A. nidulans with apparent molecular masses 41 and 48 kDa, respectively. The peptide fingerprints of PADs from E. dentata and A. nidulans have been analyzed by MALDI-TOF/MS, displaying a higher sequence similarity to human PAD4 by 18% and 31%, respectively. The conserved peptide sequences of E. dentata and A. nidulans PADs displayed a higher similarity to human PAD than A. fumigatus PADs clade. PADs from both fungal isolates have an optimum pH and pH stability at 7.0-8.0, with putative pI 5.0-5.5, higher structural denaturation at pH 4.0-5.5 and 9.5-12 as revealed from absorbance at λ280nm. E. dentata PAD had a higher conformationally thermal stability than A. nidulans PAD as revealed from its lower Kr value. From the proteolytic mapping, the orientation of trypsinolytic recognition sites on the PADs surface from both fungal isolates was very similar. PADs from both isolates are calcium dependent, with participation of serine and cysteine residues on their catalytic sites. PADs displayed a higher affinity to deiminate the peptidylarginine residues with a feeble affinity to work as ADI. So, PADs from E. dentata and A. nidulans had a relatively similar conformational and kinetic properties. Further molecular modeling analysis are ongoing to explore the role of PADs in citrullination of human proteins in Aspergillosis, that will open a new avenue for unraveling the vague of protein-protein interaction of human A. nidulans pathogen.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza A AbouZaid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Amany M Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gul Shad Ali
- MREC, Department of Plant Pathology, University of Florida, Florida, 32703, USA
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Burstein-Teitelbaum G, Er JAV, Monzingo AF, Tuley A, Fast W. Dissection, Optimization, and Structural Analysis of a Covalent Irreversible DDAH1 Inhibitor. Biochemistry 2018; 57:4574-4582. [PMID: 29983043 DOI: 10.1021/acs.biochem.8b00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inhibitors of the human enzyme dimethylarginine dimethylaminohydrolase-1 (DDAH1) can control endogenous nitric oxide production. A time-dependent covalent inactivator of DDAH1, N5-(1-imino-2-chloroethyl)-l-ornithine ( KI = 1.3 μM, kinact = 0.34 min-1), was conceptually dissected into two fragments and each characterized separately: l-norvaline ( Ki = 470 μM) and 2-chloroacetamidine ( KI = 310 μM, kinact = 4.0 min-1). This analysis suggested that the two fragments were not linked in a manner that allows either to reach full affinity or reactivity, prompting the synthesis and characterization of three analogues: two that mimic the dimethylation status of the substrate, N5-(1-imino-2-chloroisopropyl)-l-ornithine ( kinact /KI = 208 M-1 s-1) and N5-(1-imino-2-chlorisopropyl)-l-lysine ( kinact /KI = 440 M-1 s-1), and one that lengthens the linker beyond that found in the substrate, N5-(1-imino-2-chloroethyl)-l-lysine (Cl-NIL, KI = 0.19 μM, kinact = 0.22 min-1). Cl-NIL is one of the most potent inhibitors reported for DDAH1, inactivates with a second order rate constant (1.9 × 104 M-1 s-1) larger than the catalytic efficiency of DDAH1 for its endogenous substrate (1.6 × 102 M-1 s-1), and has a partition ratio of 1 with a >100 000-fold selectivity for DDAH1 over arginase. An activity-based protein-profiling probe is used to show inhibition of DDAH1 within cultured HEK293T cells (IC50 = 10 μM) with cytotoxicity appearing only at higher concentrations (ED50 = 118 μM). A 1.91 Å resolution X-ray crystal structure reveals specific interactions made with DDAH1 upon covalent inactivation by Cl-NIL. Dissecting a covalent inactivator and analysis of its constituent fragments proved useful for the design and optimization of this potent and effective DDAH1 inhibitor.
Collapse
Affiliation(s)
- Gayle Burstein-Teitelbaum
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| | - Joyce A V Er
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| | - Arthur F Monzingo
- Center for Biomedical Research Support , University of Texas , Austin , Texas 78712 , United States
| | - Alfred Tuley
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy , University of Texas , Austin , Texas 78712 , United States
| |
Collapse
|
15
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing a Nitrogen-Sulfur Bond. JOURNAL OF NATURAL PRODUCTS 2018; 81:423-446. [PMID: 29364663 DOI: 10.1021/acs.jnatprod.7b00921] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William Bains
- Rufus Scientific , 37 The Moor, Melbourn, Royston, Herts SG8 6ED, U.K
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Schardon CL, Tuley A, Er JAV, Swartzel JC, Fast W. Selective Covalent Protein Modification by 4-Halopyridines through Catalysis. Chembiochem 2017; 18:1551-1556. [PMID: 28470883 DOI: 10.1002/cbic.201700104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 12/12/2022]
Abstract
We have investigated 4-halopyridines as selective, tunable, and switchable covalent protein modifiers for use in the development of chemical probes. Nonenzymatic reactivity of 4-chloropyridine with amino acids and thiols was ranked with respect to common covalent protein-modifying reagents and found to have reactivity similar to that of acrylamide, but could be switched to a reactivity similar to that of iodoacetamide upon stabilization of the positively charged pyridinium. Diverse, fragment-sized 4-halopyridines inactivated human dimethylarginine dimethylaminohydrolase-1 (DDAH1) through covalent modification of the active site cysteine, acting as quiescent affinity labels that required off-pathway catalysis through stabilization of the protonated pyridinium by a neighboring aspartate residue. A series of 2-fluoromethyl-substituted 4-chloropyridines demonstrated that the pKa and kinact /KI values could be predictably varied over several orders of magnitude. Covalent labeling of proteins in an Escherichia coli lysate was shown to require folded proteins, indicating that alternative proteins can be targeted, and modification is likely to be catalysisdependent. 4-Halopyridines, and quiescent affinity labels in general, represent an attractive strategy to develop reagents with switchable electrophilicity as selective covalent protein modifiers.
Collapse
Affiliation(s)
| | - Alfred Tuley
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, TX, 78712, USA
| | - Joyce A V Er
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, TX, 78712, USA
| | - Jake C Swartzel
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, TX, 78712, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, TX, 78712, USA.,LaMontagne Center for Infectious Disease, The University of Texas, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Peng H, Chen L, Huang X, Yang T, Yu Z, Cheng G, Zhang G, Shi R. Vascular peroxidase 1 up regulation by angiotensin II attenuates nitric oxide production through increasing asymmetrical dimethylarginine in HUVECs. ACTA ACUST UNITED AC 2016; 10:741-751.e3. [DOI: 10.1016/j.jash.2016.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/05/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022]
|
18
|
Bonnefont-Rousselot D. Resveratrol and Cardiovascular Diseases. Nutrients 2016; 8:nu8050250. [PMID: 27144581 PMCID: PMC4882663 DOI: 10.3390/nu8050250] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
The increased incidence of cardiovascular diseases (CVDs) has stimulated research for substances that could improve cardiovascular health. Among them, resveratrol (RES), a polyphenolic compound notably present in grapes and red wine, has been involved in the “French paradox”. RES is known for its antioxidant and anti-inflammatory properties and for its ability to upregulate endothelial NO synthase (eNOS). RES was able to scavenge •OH/O2•− and peroxyl radicals, which can limit the lipid peroxidation processes. Moreover, in bovine aortic endothelial cells (BAEC) under glucose-induced oxidative stress, RES restored the activity of dimethylargininedimethylaminohydrolase (DDAH), an enzyme that degrades an endogenous inhibitor of eNOS named asymmetric dimethylarginine (ADMA). Thus, RES could improve •NO availability and decrease the endothelial dysfunction observed in diabetes. Preclinical studies have made it possible to identify molecular targets (SIRT-1, AMPK, Nrf2, NFκB…); however, there are limited human clinical trials, and difficulties in the interpretation of results arise from the use of high-dose RES supplements in research studies, whereas low RES concentrations are present in red wine. The discussions on potential beneficial effects of RES in CVDs (atherosclerosis, hypertension, stroke, myocardial infarction, heart failure) should compare the results of preclinical studies with those of clinical trials.
Collapse
Affiliation(s)
- Dominique Bonnefont-Rousselot
- Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris 75006, France.
- Department of Metabolic Biochemistry, Pitié-Salpêtrière-Charles Foix Hospital (AP-HP), Paris 75013, France.
- Inserm UMR_S 1166 ICAN, UPMC, La Pitié Hospital, Paris 75013, France.
| |
Collapse
|
19
|
Protein N-homocysteinylation: From cellular toxicity to neurodegeneration. Biochim Biophys Acta Gen Subj 2015; 1850:2239-45. [DOI: 10.1016/j.bbagen.2015.08.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/29/2022]
|
20
|
Sharma GS, Kumar T, Singh LR. N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS One 2014; 9:e116386. [PMID: 25551634 PMCID: PMC4281231 DOI: 10.1371/journal.pone.0116386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/06/2014] [Indexed: 12/23/2022] Open
Abstract
One of the proposed mechanisms of homocysteine toxicity in human is the modification of proteins by the metabolite of Hcy, homocysteine thilolactone (HTL). Incubation of proteins with HTL has earlier been shown to form covalent adducts with ε-amino group of lysine residues of protein (called N-homocysteinylation). It has been believed that protein N-homocysteinylation is the pathological hallmark of cardiovascular and neurodegenerative disorders as homocysteinylation induces structural and functional alterations in proteins. In the present study, reactivity of HTL towards proteins with different physico-chemical properties and hence their structural and functional alterations were studied using different spectroscopic approaches. We found that N-homocysteinylation has opposite consequences on acidic and basic proteins suggesting that pI of the protein determines the extent of homocysteinylation, and the structural and functional consequences due to homocysteinylation. Mechanistically, pI of protein determines the extent of N-homocysteinylation and the associated structural and functional alterations. The study suggests the role of HTL primarily targeting acidic proteins in eliciting its toxicity that could yield mechanistic insights for the associated neurodegeneration.
Collapse
Affiliation(s)
| | - Tarun Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | |
Collapse
|
21
|
Ghebremariam YT, LePendu P, Lee JC, Erlanson DA, Slaviero A, Shah NH, Leiper J, Cooke JP. Unexpected effect of proton pump inhibitors: elevation of the cardiovascular risk factor asymmetric dimethylarginine. Circulation 2013; 128:845-53. [PMID: 23825361 DOI: 10.1161/circulationaha.113.003602] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) are gastric acid-suppressing agents widely prescribed for the treatment of gastroesophageal reflux disease. Recently, several studies in patients with acute coronary syndrome have raised the concern that use of PPIs in these patients may increase their risk of major adverse cardiovascular events. The mechanism of this possible adverse effect is not known. Whether the general population might also be at risk has not been addressed. METHODS AND RESULTS Plasma asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase. Elevated plasma ADMA is associated with increased risk for cardiovascular disease, likely because of its attenuation of the vasoprotective effects of endothelial nitric oxide synthase. We find that PPIs elevate plasma ADMA levels and reduce nitric oxide levels and endothelium-dependent vasodilation in a murine model and ex vivo human tissues. PPIs increase ADMA because they bind to and inhibit dimethylarginine dimethylaminohydrolase, the enzyme that degrades ADMA. CONCLUSIONS We present a plausible biological mechanism to explain the association of PPIs with increased major adverse cardiovascular events in patients with unstable coronary syndromes. Of concern, this adverse mechanism is also likely to extend to the general population using PPIs. This finding compels additional clinical investigations and pharmacovigilance directed toward understanding the cardiovascular risk associated with the use of the PPIs in the general population.
Collapse
Affiliation(s)
- Yohannes T Ghebremariam
- Department of Cardiovascular Sciences, Texas Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study. PLoS One 2013; 8:e54870. [PMID: 23365680 PMCID: PMC3554694 DOI: 10.1371/journal.pone.0054870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023] Open
Abstract
Background Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH) activity] and with symmetric dimethylarginine (SDMA). We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level. Methods Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS), and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis) were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR) = 64 (60–70) years]. Results Regression analysis showed that: a) age (P = 0.001), gender (P = 0.03), lower estimated glomerular filtration rate (eGFR, P = 0.08), body mass index (P = 0.008), treatment with beta-blockers (P = 0.03), homocysteine (P = 0.02), and glutamylcysteine (P = 0.003) were independently associated with higher ADMA concentrations; and b) age (P = 0.001), absence of diabetes (P = 0.001), lower body mass index (P = 0.01), lower eGFR (P<0.001), cysteine (P = 0.007), and glutamylcysteine (P<0.001) were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations. Conclusions After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA) and/or cationic amino acid transport requires further investigations.
Collapse
|
23
|
Liu LH, Guo Z, Feng M, Wu ZZ, He ZM, Xiong Y. Protection of DDAH2 overexpression against homocysteine-induced impairments of DDAH/ADMA/NOS/NO pathway in endothelial cells. Cell Physiol Biochem 2012; 30:1413-22. [PMID: 23171931 DOI: 10.1159/000343329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Homocysteine-induced endothelial dysfunction favors the development of cardiovascular diseases through accumulation of endogenous nitric oxide (NO) synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA). Dimethylarginine dimethylaminohydrolase 2 (DDAH2) is the major enzyme for the degradation of ADMA in endothelial cells. The purpose of this study was to determine whether suppressed DDAH2 expression contributed to impairments of DDAH/ADMA/NOS/NO pathway induced by homocysteine in endothelial cells and whether DDAH2 overexpression could prevent endothelial cell dysfunction caused by homocysteine. METHODS Liposome-mediated transfection of endothelial cells was performed to establish the cell line of DDAH2 overexpression. After treatment of cells with 1 mmol/L homocysteine for 24 h, the transcription and expression of DDAH1 and DDAH2, DDAH and NOS activities as well as ADMA and NO concentrations were measured. RESULTS Treatment of endothelial cells with homocysteine significantly suppressed the transcription and expression of DDAH2 but not DDAH1. This suppression was associated with the declined DDAH activity, increased ADMA accumulation, inhibited NOS activity and decreased NO production in endothelial cells. DDAH2 overexpression not only resisted homocysteine-induced decline of DDAH activity, but also decreased the accumulation of endogenous ADMA, subsequently attenuated the reductions of NOS activity and NO production induced by homocysteine. CONCLUSIONS These results indicate that suppression of DDAH2 expression is a culprit for homocysteine-induced impairments of DDAH/ADMA/NOS/NO pathway in endothelial cells, and therapeutic manipulation of DDAH2 expression may be a promising strategy for preventing endothelial dysfunction and cardiovascular diseases associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Li-Hua Liu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Sydow K, Boger RH. Reloaded: ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inaemia: effects of L-arginine and B vitamins: AUTHORS' RETROSPECTIVE. Cardiovasc Res 2012. [DOI: 10.1093/cvr/cvs205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
25
|
Linsky TW, Fast W. Discovery of structurally-diverse inhibitor scaffolds by high-throughput screening of a fragment library with dimethylarginine dimethylaminohydrolase. Bioorg Med Chem 2012; 20:5550-8. [PMID: 22921743 DOI: 10.1016/j.bmc.2012.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 12/11/2022]
Abstract
Potent and selective inhibitors of the enzyme dimethylarginine dimethylaminohydrolase (DDAH) are useful as molecular probes to better understand cellular regulation of nitric oxide. Inhibitors are also potential therapeutic agents for treatment of pathological states associated with the inappropriate overproduction of nitric oxide, such as septic shock, selected types of cancer, and other conditions. Inhibitors with structures dissimilar to substrate may overcome limitations inherent to substrate analogs. Therefore, to identify structurally-diverse inhibitor scaffolds, high-throughput screening (HTS) of a 4000-member library of fragment-sized molecules was completed using the Pseudomonas aeruginosa DDAH and human DDAH-1 isoforms. Use of a substrate concentration equal to its K(M) value during the primary screen allowed for the detection of inhibitors with different modes of inhibition. A series of validation tests were designed and implemented in the identification of four inhibitors of human DDAH-1 that were unknown prior to the screen. Two inhibitors share a 4-halopyridine scaffold and act as quiescent affinity labels that selectively and covalently modify the active-site Cys residue. Two inhibitors are benzimidazole-like compounds that reversibly and competitively inhibit human DDAH-1 with Ligand Efficiency values ≥0.3 kcal/mol/heavy (non-hydrogen) atom, indicating their suitability for further development. Both inhibitor scaffolds have available sites to derivatize for further optimization. Therefore, use of this fragment-based HTS approach is demonstrated to successfully identify two novel scaffolds for development of DDAH-1 inhibitors.
Collapse
Affiliation(s)
- Thomas W Linsky
- Graduate Program in Biochemistry, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
26
|
Interference in mevalonate pathway ameliorates homocysteine-induced endothelium-dysfunction. Eur J Pharmacol 2012; 692:61-8. [PMID: 22796672 DOI: 10.1016/j.ejphar.2012.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
Homocysteine is a risk factor for atherosclerosis and hypertension and induces endothelium-dysfunction. Accumulation of cholesterol and reactive oxygen species plays a key role in the endothelium-dysfunction. This study investigated the hypothesis of an involvement of mevalonate pathway and oxidative pathway in homocysteine-induced endothelial damage. Homocysteine induced impairment of the endothelium-dependent vasorelaxation of rat aortic rings by isometric tension, while it also reduced the nitric oxide level and the nitric oxide synthase activity in human umbilical vein endothelial cells, followed by accumulation of superoxide anion and cholesterol. However, the level of asymmetric dimethylarginine remained unaffected by homocysteine. The adverse effect of homocysteine on endothelial function was found to be partially enhanced either by squalestatin-reducing cholesterol or by superoxide dismutase-reducing superoxide anion. Moreover, this effect of homocysteine could be completely ameliorated by simvastatin, very similar to that of cotreatment of squalestatin and superoxide dismutase. Respectively, mevalonolactone partly or squalene fully attenuated the effect of simvastatin or squalestatin on homocysteine-induced endothelial dysfunction. In conclusion, our results suggested that the mevalonate pathway mediates homocysteine-induced endothelium dysfunction besides the oxidative pathway. Interference in the mevalonate pathway and oxidative pathway provides effective protection of endothelial function.
Collapse
|
27
|
Sorolla MA, Rodríguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J, Cabiscol E. Protein oxidation in Huntington disease. Biofactors 2012; 38:173-85. [PMID: 22473822 DOI: 10.1002/biof.1013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/08/2012] [Indexed: 12/20/2022]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene, affecting initially the striatum and progressively the cortex. Oxidative stress, and consequent protein oxidation, has been described as important to disease progression. This review focuses on recent advances in the field, with a particular emphasis on the identified target proteins and the role that their oxidation has or might have in the pathophysiology of HD. Oxidation and the resulting inactivation and/or degradation of important proteins can explain the impairment of several metabolic pathways in HD. Oxidation of enzymes involved in ATP synthesis can account for the energy deficiency observed. Impairment of protein folding and degradation can be due to oxidation of several heat shock proteins and Valosin-containing protein. Oxidation of two enzymes involved in the vitamin B6 metabolism could result in decreased availability of pyridoxal phosphate, which is a necessary cofactor in transaminations, the kynurenine pathway and the synthesis of glutathione, GABA, dopamine and serotonin, all of which have a key role in HD pathology. In addition, protein oxidation often contributes to oxidative stress, aggravating the molecular damage inside the cell.
Collapse
Affiliation(s)
- M Alba Sorolla
- Department of Basic Medical Sciences, IRBLleida, Universitat de Lleida, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Villamil MA, Chen J, Liang Q, Zhuang Z. A Noncanonical Cysteine Protease USP1 Is Activated through Active Site Modulation by USP1-Associated Factor 1. Biochemistry 2012; 51:2829-39. [DOI: 10.1021/bi3000512] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark A. Villamil
- Department
of Chemistry and Biochemistry, 214A Drake
Hall, University of Delaware, Newark, Delaware
19716, United States
| | - Junjun Chen
- Department
of Chemistry and Biochemistry, 214A Drake
Hall, University of Delaware, Newark, Delaware
19716, United States
| | - Qin Liang
- Department
of Chemistry and Biochemistry, 214A Drake
Hall, University of Delaware, Newark, Delaware
19716, United States
| | - Zhihao Zhuang
- Department
of Chemistry and Biochemistry, 214A Drake
Hall, University of Delaware, Newark, Delaware
19716, United States
| |
Collapse
|
29
|
Abstract
Cancer has become the leading cause of death in the developed world and has remained one of the most difficult diseases to treat. One of the difficulties in treating cancer is that conventional chemotherapies often have unacceptable toxicities toward normal cells at the doses required to kill tumor cells. Thus, the demand for new and improved tumor specific therapeutics for the treatment of cancer remains high. Alterations to cellular metabolism constitute a nearly universal feature of many types of cancer cells. In particular, many tumors exhibit deficiencies in one or more amino acid synthesis or salvage pathways forcing a reliance on the extracellular pool of these amino acids to satisfy protein biosynthesis demands. Therefore, one treatment modality that satisfies the objective of developing cancer cell-selective therapeutics is the systemic depletion of that tumor-essential amino acid, which can result in tumor apoptosis with minimal side effects to normal cells. While this strategy was initially suggested over 50 years ago, it has been recently experiencing a renaissance owing to advances in protein engineering technology, and more sophisticated approaches to studying the metabolic differences between tumorigenic and normal cells. Dietary restriction is typically not sufficient to achieve a therapeutically relevant level of amino acid depletion for cancer treatment. Therefore, intravenous administration of enzymes is used to mediate the degradation of such amino acids for therapeutic purposes. Unfortunately, the human genome does not encode enzymes with the requisite catalytic or pharmacological properties necessary for therapeutic purposes. The use of heterologous enzymes has been explored extensively both in animal studies and in clinical trials. However, heterologous enzymes are immunogenic and elicit adverse responses ranging from anaphylactic shock to antibody-mediated enzyme inactivation, and therefore have had limited utility. The one notable exception is Escherichia colil-asparaginase II (EcAII), which has been FDA-approved for the treatment of childhood acute lymphoblastic leukemia. The use of engineered human enzymes, to which natural tolerance is likely to prevent recognition by the adaptive immune system, offers a novel approach for capitalizing on the promising strategy of systemic depletion of tumor-essential amino acids. In this work, we review several strategies that we have developed to: (i) reduce the immunogenicity of a nonhuman enzyme, (ii) engineer human enzymes for novel catalytic specificities, and (iii) improve the pharmacological characteristics of a human enzyme that exhibits the requisite substrate specificity for amino acid degradation but exhibits low activity and stability under physiological conditions.
Collapse
|
30
|
Linsky T, Fast W. A continuous, fluorescent, high-throughput assay for human dimethylarginine dimethylaminohydrolase-1. JOURNAL OF BIOMOLECULAR SCREENING 2011; 16:1089-97. [PMID: 21921133 PMCID: PMC3248755 DOI: 10.1177/1087057111417712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitors of human dimethylarginine dimethylaminohydrolase-1 (DDAH-1) are of therapeutic interest for controlling pathological nitric oxide production. Only a limited number of biologically useful inhibitors have been identified, so structurally diverse lead compounds are desired. In contrast with previous assays that do not possess adequate sensitivity for optimal screening, herein is reported a high-throughput assay that uses an alternative thiol-releasing substrate, S-methyl-L-thiocitrulline, and a thiol-reactive fluorophore, 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin, to enable continuous detection of product formation by DDAH-1. The assay is applied to query two commercial libraries totaling 4446 compounds, and two representative hits are described, including a known DDAH-1 inhibitor. This is the most sensitive DDAH-1 assay reported to date and enables screening of compound libraries using [S] = K (M) conditions while displaying Z' factors from 0.6 to 0.8. Therefore, this strategy now makes possible high-throughput screening for human DDAH-1 inhibitors in pursuit of molecular probes and drugs to control excessive nitric oxide production.
Collapse
Affiliation(s)
- Thomas Linsky
- Graduate Program in Biochemistry, University of Texas, Austin, USA
| | | |
Collapse
|
31
|
Ke Z, Guo H. Ab initio QM/MM free-energy studies of arginine deiminase catalysis: the protonation state of the Cys nucleophile. J Phys Chem B 2011; 115:3725-33. [PMID: 21395290 PMCID: PMC3070061 DOI: 10.1021/jp200843s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first step of the hydrolytic deimination of L-arginine catalyzed by arginine deiminase is examined using ab initio quantum mechanical/molecular mechanical molecular dynamics simulations. Two possible protonation states of the nucleophilic Cys406 residue were investigated, and the corresponding activation free energies were obtained via umbrella sampling. Our calculations indicated a reaction free-energy barrier of 21.3 kcal/mol for the neutral cysteine, which is in reasonably good agreement with the experimental k(cat) value of 6.3 s(-1), i.e., a barrier of 16.7 kcal/mol. On the other hand, the deprotonated Cys nucleophile yields a free-energy barrier of 6.7 kcal/mol, much lower than the experimental result. The reaction free-energy barriers along with other data suggest that the Cys nucleophile is dominated by its protonated state in the Michaelis complex, and the reaction barrier corresponds largely to its deprotonation.
Collapse
Affiliation(s)
- Zhihong Ke
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131
| |
Collapse
|
32
|
Chen N, Leng YP, Xu WJ, Luo JD, Chen MS, Xiong Y. Contribution of endogenous inhibitor of nitric oxide synthase to hepatic mitochondrial dysfunction in streptozotocin-induced diabetic rats. Cell Physiol Biochem 2011; 27:341-52. [PMID: 21471723 DOI: 10.1159/000327960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2011] [Indexed: 11/19/2022] Open
Abstract
AIMS Mitochondrial dysfunction plays important roles in the development of diabetes. Elevated nitric oxide (NO) synthase inhibitor asymmetric dimethylarginine (ADMA) has been shown to be closely related to diabetes. But the relationship between them in diabetes has not been determined. This study was to explore the role of ADMA in hepatic mitochondrial dysfunction and its potential mechanisms in diabetic rats and hepatocytes. METHODS Respiratory enzymes activities, mitochondrial transmembrane potential and ATP content were measured to evaluate mitochondrial function. The copy number ratio of mitochondrial gene to nuclear gene was used to represent mitochondrial biogenesis. The activity of superoxide dismutase and malondialdehyde content were detected to reflect oxidative stress. Furthermore, changes in ADMA and NO contents, uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) transcriptions were determined. RESULTS Elevated ADMA levels in serum of diabetic rats were found to be associated with hepatic mitochondrial dysfunction reflected by reductions of respiratory enzyme activities, mitochondrial membrane potential and ATP contents. Similar mitochondrial dysfunction also occurred in ADMA-treated hepatocytes. The mitochondrial dysfunction observed in diabetic rats or hepatocytes was accompanied with suppressions of mitochondrial biogenesis, PGC-1α transcription and NO synthesis as well as enhances of UCP 2 transcription and oxidative stress. These effects of ADMA could be attenuated by treatments with antioxidant or NO donor. CONCLUSIONS These results indicate that elevated endogenous ADMA contributes to hepatic mitochondrial dysfunction in diabetic rats, and underlying mechanisms may be related to the suppression of mitochondrial biogenesis and mitochondrial uncoupling via inhibiting NO synthesis and enhancing oxidative stress.
Collapse
Affiliation(s)
- Na Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Lluis M, Wang Y, Monzingo AF, Fast W, Robertus JD. Characterization of C-alkyl amidines as bioavailable covalent reversible inhibitors of human DDAH-1. ChemMedChem 2011; 6:81-8. [PMID: 20979083 PMCID: PMC3251910 DOI: 10.1002/cmdc.201000392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Indexed: 11/12/2022]
Abstract
C-Alkyl amidine analogues of asymmetric N(ω),N(ω)-dimethyl-L-arginine are dual-targeted inhibitors of both human DDAH-1 and nitric oxide (NO) synthase, and provide a promising scaffold for the development of therapeutics to control NO overproduction in a variety of pathologies including septic shock and some cancers. Using a two-part click-chemistry-mediated activity probe, a homologated series of C-alkyl amidines were ranked for their ability to inhibit DDAH-1 within cultured HEK 293T cells. N⁵-(1-Iminopentyl)-L-ornithine was determined to be the most potent compound in vitro (K(d)=7 μM) as well as in cultured cells, and the binding conformation and covalent reversible mode of inhibition was investigated by comparison of interactions made with DDAH-1 and a catalytically inactive C274S variant, as gauged by X-ray crystallography and isothermal titration calorimetry. By interrupting the ability of the inhibitor to form a covalent bond, the contribution of this interaction could be estimated. These results suggest that further stabilization of the covalent adduct is a promising strategy for lead optimization in the design of effective reagents to block NO synthesis.
Collapse
Affiliation(s)
- Matthew Lluis
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas, Austin, Fax: (512) 471-6135
| | - Yun Wang
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, 1 University Station, C0850, Fax: (512) 232-2606
| | - Arthur F. Monzingo
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas, Austin, Fax: (512) 471-6135
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, 1 University Station, C0850, Fax: (512) 232-2606
| | - Jon D. Robertus
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas, Austin, Fax: (512) 471-6135
| |
Collapse
|
34
|
Linsky T, Fast W. Mechanistic similarity and diversity among the guanidine-modifying members of the pentein superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1943-53. [PMID: 20654741 DOI: 10.1016/j.bbapap.2010.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/24/2022]
Abstract
The pentein superfamily is a mechanistically diverse superfamily encompassing both noncatalytic proteins and enzymes that catalyze hydrolase, dihydrolase and amidinotransfer reactions on guanidine substrates. Despite generally low sequence identity, they possess a conserved structural fold and display common mechanistic themes in catalysis. The structurally characterized catalytic penteins possess a conserved core of residues that include a Cys, His and two polar, guanidine-binding residues. All known catalytic penteins use the core Cys to attack the substrate's guanidine moiety to form a covalent thiouronium adduct and all cleave one or more of the guanidine C--N bonds. The mechanistic information compiled to date supports the hypothesis that this superfamily may have evolved divergently from a catalytically promiscuous ancestor.
Collapse
Affiliation(s)
- Thomas Linsky
- Graduate Program in Biochemistry, The University of Texas at Austin, USA
| | | |
Collapse
|
35
|
Wang Y, Hu S, Fast W. A click chemistry mediated in vivo activity probe for dimethylarginine dimethylaminohydrolase. J Am Chem Soc 2010; 131:15096-7. [PMID: 19919155 DOI: 10.1021/ja906432e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asymmetric N(omega),N(omega)-dimethyl-l-arginine (ADMA) is an endogenously produced inhibitor of human nitric oxide synthase and an emerging biomarker for cardiovascular disease. Concentrations of ADMA are controlled by two isoforms of its catabolic enzyme dimethylarginine dimethylaminohydrolase (DDAH), the dysregulation of which has been studied as a mediating factor for endothelial dysfunction. A two-part, click-chemistry mediated activity-based probe, N-but-3-ynyl-2-chloroacetamidine, is shown to label myc-tagged DDAH-1 expressed in HEK 293T cells, but not an inactive mutant or inhibited enzyme. A two-color Western blotting technique is used to determine the in vivo IC(50) value for a reversible inhibitor of DDAH-1, N(5)-(1-iminopropyl)-l-ornithine, indicating this compound's bioavailability and its competition for binding to the active site. This probe provides a novel tool for the analysis of DDAH-1 activity in normal and pathophysiological states and should allow more meaningful studies of the etiology of endothelial dysfunction.
Collapse
Affiliation(s)
- Yun Wang
- Division of Medicinal Chemistry, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
36
|
Pope AJ, Karrupiah K, Kearns PN, Xia Y, Cardounel AJ. Role of dimethylarginine dimethylaminohydrolases in the regulation of endothelial nitric oxide production. J Biol Chem 2009; 284:35338-47. [PMID: 19820234 PMCID: PMC2790963 DOI: 10.1074/jbc.m109.037036] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/29/2009] [Indexed: 01/08/2023] Open
Abstract
Reduced NO is a hallmark of endothelial dysfunction, and among the mechanisms for impaired NO synthesis is the accumulation of the endogenous nitric-oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Free ADMA is actively metabolized by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH), which catalyzes the conversion of ADMA to citrulline. Decreased DDAH expression/activity is evident in disease states associated with endothelial dysfunction and is believed to be the mechanism responsible for increased methylarginines and subsequent ADMA-mediated endothelial nitric-oxide synthase impairment. Two isoforms of DDAH have been identified; however, it is presently unclear which is responsible for endothelial ADMA metabolism and NO regulation. The current study investigated the effects of both DDAH-1 and DDAH-2 in the regulation of methylarginines and endothelial NO generation. Results demonstrated that overexpression of DDAH-1 and DDAH-2 increased endothelial NO by 24 and 18%, respectively. Moreover, small interfering RNA-mediated down-regulation of DDAH-1 and DDAH-2 reduced NO bioavailability by 27 and 57%, respectively. The reduction in NO production following DDAH-1 gene silencing was associated with a 48% reduction in l-Arg/ADMA and was partially restored with l-Arg supplementation. In contrast, l-Arg/ADMA was unchanged in the DDAH-2-silenced cells, and l-Arg supplementation had no effect on NO. These results clearly demonstrate that DDAH-1 and DDAH-2 manifest their effects through different mechanisms, the former of which is largely ADMA-dependent and the latter ADMA-independent. Overall, the present study demonstrates an important regulatory role for DDAH in the maintenance of endothelial function and identifies this pathway as a potential target for treating diseases associated with decreased NO bioavailability.
Collapse
Affiliation(s)
- Arthur J. Pope
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| | - Kanchana Karrupiah
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| | - Patrick N. Kearns
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| | - Yong Xia
- the Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio 43210
| | - Arturo J. Cardounel
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| |
Collapse
|
37
|
Wang Y, Monzingo AF, Hu S, Schaller TH, Robertus JD, Fast W. Developing dual and specific inhibitors of dimethylarginine dimethylaminohydrolase-1 and nitric oxide synthase: toward a targeted polypharmacology to control nitric oxide. Biochemistry 2009; 48:8624-35. [PMID: 19663506 PMCID: PMC2746464 DOI: 10.1021/bi9007098] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecules that block nitric oxide's (NO) biosynthesis are of significant interest. For example, nitric oxide synthase (NOS) inhibitors have been suggested as antitumor therapeutics, as have inhibitors of dimethylarginine dimethylaminohydrolase (DDAH), an enzyme that catabolizes endogenous NOS inhibitors. Dual-targeted inhibitors hold promise as more effective reagents to block NO biosynthesis than single-targeted compounds. In this study, a small set of known NOS inhibitors are surveyed as inhibitors of recombinant human DDAH-1. From these, an alkylamidine scaffold is selected for homologation. Stepwise lengthening of one substituent converts an NOS-selective inhibitor into a dual-targeted NOS/DDAH-1 inhibitor and then into a DDAH-1 selective inhibitor, as seen in the inhibition constants of N5-(1-iminoethyl)-, N5-(1-iminopropyl)-, N5-(1-iminopentyl)- and N(5)-(1-iminohexyl)-l-ornithine for neuronal NOS (1.7, 3, 20, >1,900 microM, respectively) and DDAH-1 (990, 52, 7.5, 110 microM, respectively). A 1.9 A X-ray crystal structure of the N5-(1-iminopropyl)-L-ornithine:DDAH-1 complex indicates covalent bond formation between the inhibitor's amidino carbon and the active-site Cys274, and solution studies show reversible competitive inhibition, consistent with a reversible covalent mode of DDAH inhibition by alkylamidine inhibitors. These represent a versatile scaffold for the development of a targeted polypharmacological approach to control NO biosynthesis.
Collapse
Affiliation(s)
- Yun Wang
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Arthur F. Monzingo
- Department of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712
- Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Shougang Hu
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
- Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Tera H. Schaller
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Jon D. Robertus
- Department of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712
- Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
- Texas Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712
| |
Collapse
|
38
|
Pope AJ, Karuppiah K, Cardounel AJ. Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production. Pharmacol Res 2009; 60:461-5. [PMID: 19682581 DOI: 10.1016/j.phrs.2009.07.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 01/22/2023]
Abstract
There is abundant evidence that the endothelium plays a crucial role in the maintenance of vascular tone and structure. One of the major endothelium-derived vasoactive mediators is nitric oxide (NO), formed in healthy vascular endothelium from the amino acid precursor l-arginine. Endothelial dysfunction is increased by various cardiovascular risk factors, metabolic diseases, and systemic or local inflammation. One mechanism that has been implicated in the development of endothelial dysfunction is the presence of elevated levels of asymmetric dimethylarginine (ADMA). Free ADMA, which is formed during proteolysis, is actively degraded by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH) which catalyzes the conversion of ADMA to citrulline and dimethylamine. It has been estimated that more than 70% of ADMA is metabolized by DDAH (Achan et al. [1]). Decreased DDAH expression/activity is evident in disease states associated with endothelial dysfunction and is believed to be the mechanism responsible for increased methylarginines and subsequent ADMA mediated eNOS impairment. However, recent studies suggest that DDAH may regulate eNOS activity and endothelial function through both ADMA-dependent and -independent mechanisms. In this regard, elevated plasma ADMA may serve as a marker of impaired methylarginine metabolism and the pathology previously attributed to elevated ADMA may be manifested, at least in part, through altered activity of the enzymes involved in ADMA regulation, specifically DDAH and PRMT.
Collapse
Affiliation(s)
- Arthur J Pope
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, 32607, United States
| | | | | |
Collapse
|
39
|
Li Z, Kulakova L, Li L, Galkin A, Zhao Z, Nash TE, Mariano PS, Herzberg O, Dunaway-Mariano D. Mechanisms of catalysis and inhibition operative in the arginine deiminase from the human pathogen Giardia lamblia. Bioorg Chem 2009; 37:149-61. [PMID: 19640561 DOI: 10.1016/j.bioorg.2009.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/06/2009] [Accepted: 06/08/2009] [Indexed: 11/27/2022]
Abstract
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an insilico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, N(alpha)-benzoyl-l-arginine, and N(omega)-amino-l-arginine as substrates but not agmatine, l-homoarginine, N(alpha)-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424-alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k(1)=80s(-1)) and hydrolysis (k(2)=35s(-1)) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (k(cat)=2.6s(-1)), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas N(omega)-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD.
Collapse
Affiliation(s)
- Zhimin Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wadham C, Mangoni AA. Dimethylarginine dimethylaminohydrolase regulation: a novel therapeutic target in cardiovascular disease. Expert Opin Drug Metab Toxicol 2009; 5:303-19. [PMID: 19331593 DOI: 10.1517/17425250902785172] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous methylated form of the amino acid L-arginine, inhibits the activity of the enzyme endothelial nitric oxide synthase, with consequent reduced synthesis of nitric oxide. ADMA is metabolised to L-citrulline and dimethylamine by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). The modulation of DDAH activity and expression plays a pivotal role in regulating intracellular ADMA concentrations, with important effects on vascular homeostasis. For example, impairment in DDAH activity, resulting in elevated ADMA concentrations and reduced nitric oxide synthesis, can promote the onset and progression of atherosclerosis in experimental models. This review discusses the current role of ADMA and DDAH in vascular health and disease, the techniques used to assess DDAH activity and expression, and the results of recent studies on pharmacological and biological agents modulating DDAH activity and expression. Suggestions for future basic and clinical research directions are also discussed.
Collapse
Affiliation(s)
- Carol Wadham
- Flinders University, Flinders Medical Centre, Department of Clinical Pharmacology, Adelaide, Australia
| | | |
Collapse
|
41
|
Li L, Li Z, Wang C, Xu D, Mariano PS, Guo H, Dunaway-Mariano D. The Electrostatic Driving Force for Nucleophilic Catalysis in l-Arginine Deiminase: A Combined Experimental and Theoretical Study. Biochemistry 2008; 47:4721-32. [DOI: 10.1021/bi7023496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ling Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Zhimin Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Canhui Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Dingguo Xu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Patrick S. Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|