1
|
Xie D, Wen Y, Chen J, Guo Z, Li P, Liu Z. Probing Protein 4'-Phosphopantetheinylation in Single Living Cells. Anal Chem 2023; 95:7229-7236. [PMID: 37115508 DOI: 10.1021/acs.analchem.3c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
4'-Phosphopantetheinylation (4PPTylation) of proteins, which is derived from the hydrolysis of coenzyme A (CoA), is an essential post-translational modification participating in biosynthetic and metabolic pathways. However, due to the lack of specific recognition ligands as well as the shortage of sensitive analytical tools for single-cell analysis, the in-depth exploration of new cellular functions and mechanisms of protein 4PPTylation has been much hampered. In this study, we rationally engineered CoA-imprinted Raman nanotags for the specific recognition of 4PPTylation and thereby developed a molecularly imprinted polymer (MIP)-based plasmonic immunosandwich assay (PISA) for facile probing the 4PPTylation of ALDH1L1 in single cells. The molecularly imprinted nanotags exhibited excellent binding properties, giving a dissociation constant of 10-6 M and cross-reactivity values of less than 10%. The MIP-based PISA enabled the specific and sensitive detection of the level of 4PPTylated ALDH1L1 in single living cells. Particularly, monitoring of the fluctuation of 4PPTylated ALDH1L1 in single cells under simulation by an inhibitor (methotrexate) that acts on a different metabolism pathway was achieved, implying possible crosstalk between two different pathways in folate metabolism. Thus, the imprinted Raman nanotags-PISA provides a promising analytical tool with a single-cell resolution for exploring new functions and elucidating their mechanisms of protein 4PPTylation.
Collapse
Affiliation(s)
- Dan Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Qu Y, He Y, Ruan H, Qin L, Han Z. Abnormal downregulation of 10-formyltetrahydrofolate dehydrogenase promotes the progression of oral squamous cell carcinoma by activating PI3K/Akt/Rb pathway. Cancer Med 2023; 12:5781-5797. [PMID: 36336972 PMCID: PMC10028165 DOI: 10.1002/cam4.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND 10-formyltetrahydrofolate dehydrogenase (ALDH1L1) is a major folate enzyme, which is usually underexpressed in malignant tumors and competes with tumors for the same folate substrate. However, the specific role and mechanisms of ALDH1L1 in oral squamous cell carcinoma (OSCC) remainsobscure. METHODS The expression level of ALDH1L1 in paired OSCC tissues and adjacent noncancerous tissues were detected by quantitative realtime PCR, Western blot and immunohistochemistry. The relationship between ALDH1L1 expression and clinical characteristics was analyzed. Besides, CCK8, EdU staining, colony formation, wound healing, transwell invasion, apoptosis, cell cycle assays and nude mice tumor bearing experiments were employed to assess the role of ALDH1L1 in OSCC. To explore the underlying mechanisms of these effects, cell cycle-related markers were examined. RESULTS In this study, we revealed that ALDH1L1 expression was significantly reduced in OSCC, and its downregulation was associated with the malignancy of the tumor and poor prognosis of patients. In vivo and in vitro experiments, downregulation of ALDH1L1 in OSCC significantly inhibited the occurrence of NADP+ -dependent catalytic reactions and facilitated tumor cell growth, migration, invasion, survival, cell cycle progression, and xenograft tumor growth. On the contrary, re-expression of ALDH1L1 plays a similar role to anti-folate therapy, promoting NADPH production and suppressing the progression of OSCC. Furthermore, ALDH1L1 overexpressing obviously inhibited the expression of PI3K, p-Akt, CDK2, CDK6, Cyclin D1, Cyclin D3, and Rb in OSCC cells, and promoted the expression of p27. LY294002 and 740 Y-P were used to confirm the inhibitory effects of ALDH1L1 on OSCC progression through PI3K/Akt/Rb pathway. CONCLUSION Our findings highlight the clinical value of ALDH1L1 as a prognostic marker and the potential of a new target for anti-folate therapy.
Collapse
Affiliation(s)
- Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ying He
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hanjin Ruan
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Tsybovsky Y, Sereda V, Golczak M, Krupenko NI, Krupenko SA. Structure of putative tumor suppressor ALDH1L1. Commun Biol 2022; 5:3. [PMID: 35013550 PMCID: PMC8748788 DOI: 10.1038/s42003-021-02963-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
Putative tumor suppressor ALDH1L1, the product of natural fusion of three unrelated genes, regulates folate metabolism by catalyzing NADP+-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Cryo-EM structures of tetrameric rat ALDH1L1 revealed the architecture and functional domain interactions of this complex enzyme. Highly mobile N-terminal domains, which remove formyl from 10-formyltetrahydrofolate, undergo multiple transient inter-domain interactions. The C-terminal aldehyde dehydrogenase domains, which convert formyl to CO2, form unusually large interfaces with the intermediate domains, homologs of acyl/peptidyl carrier proteins (A/PCPs), which transfer the formyl group between the catalytic domains. The 4'-phosphopantetheine arm of the intermediate domain is fully extended and reaches deep into the catalytic pocket of the C-terminal domain. Remarkably, the tetrameric state of ALDH1L1 is indispensable for catalysis because the intermediate domain transfers formyl between the catalytic domains of different protomers. These findings emphasize the versatility of A/PCPs in complex, highly dynamic enzymatic systems.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD, 21701, USA.
| | - Valentin Sereda
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Chen N, Wang C. Chemical Labeling of Protein 4'-Phosphopantetheinylation. Chembiochem 2021; 22:1357-1367. [PMID: 33289264 DOI: 10.1002/cbic.202000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Nature uses a diverse array of protein post-translational modifications (PTMs) to regulate protein structure, activity, localization, and function. Among them, protein 4'-phosphopantetheinylation derived from coenzyme A (CoA) is an essential PTM for the biosynthesis of fatty acids, polyketides, and nonribosomal peptides in prokaryotes and eukaryotes. To explore its functions, various chemical probes mimicking the natural structure of 4'-phosphopantetheinylation have been developed. In this minireview, we summarize these chemical probes and describe their applications in direct and metabolic labeling of proteins in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Coenzyme A levels influence protein acetylation, CoAlation and 4'-phosphopantetheinylation: Expanding the impact of a metabolic nexus molecule. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118965. [PMID: 33450307 DOI: 10.1016/j.bbamcr.2021.118965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Coenzyme A (CoA) is a key molecule in cellular metabolism including the tricarboxylic acid cycle, fatty acid synthesis, amino acid synthesis and lipid metabolism. Moreover, CoA is required for biological processes like protein post-translational modifications (PTMs) including acylation. CoA levels affect the amount of histone acetylation and thereby modulate gene expression. A direct influence of CoA levels on other PTMs, like CoAlation and 4'-phosphopantetheinylation has been relatively less addressed and will be discussed here. Increased CoA levels are associated with increased CoAlation, whereas decreased 4'-phosphopantetheinylation is observed under circumstances of decreased CoA levels. We discuss how these two PTMs can positively or negatively influence target proteins depending on CoA levels. This review highlights the impact of CoA levels on post-translational modifications, their counteractive interplay and the far-reaching consequences thereof.
Collapse
|
6
|
Brown AS, Sissons JA, Owen JG, Ackerley DF. Directed Evolution of the Nonribosomal Peptide Synthetase BpsA to Enable Recognition by the Human Phosphopantetheinyl Transferase for Counter-Screening Antibiotic Candidates. ACS Infect Dis 2020; 6:2879-2886. [PMID: 33118808 DOI: 10.1021/acsinfecdis.0c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial type II phosphopantetheinyl transferases (PPTases), required for the activation of many cellular mega-synthases, have been validated as promising drug targets in several pathogens. Activation of the blue-pigment-synthesizing nonribosomal peptide synthetase BpsA by a target PPTase can be used to screen in vitro for new antibiotic candidates from chemical libraries. For a complete screening platform, there is a need to also counter-screen inhibitors for cross-reactivity with the endogenous human Type II PPTase (hPPTase), as this is a likely source of toxicity. As hPPTase is unable to recognize the PCP-domain of native BpsA, we used a combination of directed evolution and rational engineering to generate a triple-substitution variant that is able to be efficiently activated by hPPTase. Our engineered BpsA variant was able to readily detect inhibition of both hPPTase and the equivalent rat PPTase by broad-spectrum PPTase inhibitors, demonstrating its potential for high-throughput counter-screening of novel antibiotic candidates.
Collapse
Affiliation(s)
- Alistair S. Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jack A. Sissons
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
7
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
8
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020; 59:16069-16075. [DOI: 10.1002/anie.202004105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
9
|
Schulz AC, Frielingsdorf S, Pommerening P, Lauterbach L, Bistoni G, Neese F, Oestreich M, Lenz O. Formyltetrahydrofolate Decarbonylase Synthesizes the Active Site CO Ligand of O2-Tolerant [NiFe] Hydrogenase. J Am Chem Soc 2019; 142:1457-1464. [DOI: 10.1021/jacs.9b11506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Anne-Christine Schulz
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Phillip Pommerening
- Institut für Chemie, Organische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Lars Lauterbach
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Giovanni Bistoni
- Department of Molecular Theory and Spectroscopy, Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Martin Oestreich
- Institut für Chemie, Organische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
10
|
Jeong SY, Hogarth P, Placzek A, Gregory AM, Fox R, Zhen D, Hamada J, van der Zwaag M, Lambrechts R, Jin H, Nilsen A, Cobb J, Pham T, Gray N, Ralle M, Duffy M, Schwanemann L, Rai P, Freed A, Wakeman K, Woltjer RL, Sibon OCM, Hayflick SJ. 4'-Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol Med 2019; 11:e10489. [PMID: 31660701 PMCID: PMC6895607 DOI: 10.15252/emmm.201910489] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.
Collapse
Affiliation(s)
- Suh Young Jeong
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Penelope Hogarth
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Andrew Placzek
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Allison M Gregory
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Rachel Fox
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Dolly Zhen
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Jeffrey Hamada
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | | | - Roald Lambrechts
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Haihong Jin
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Aaron Nilsen
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Jared Cobb
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Thao Pham
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Nora Gray
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Martina Ralle
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Megan Duffy
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Leila Schwanemann
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Puneet Rai
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Alison Freed
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Katrina Wakeman
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Randall L Woltjer
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Ody CM Sibon
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Susan J Hayflick
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
- Department of PediatricsOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
11
|
Krupenko SA, Horita DA. The Role of Single-Nucleotide Polymorphisms in the Function of Candidate Tumor Suppressor ALDH1L1. Front Genet 2019; 10:1013. [PMID: 31737034 PMCID: PMC6831610 DOI: 10.3389/fgene.2019.01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Folate (vitamin B9) is a common name for a group of coenzymes that function as carriers of chemical moieties called one-carbon groups in numerous biochemical reactions. The combination of these folate-dependent reactions constitutes one-carbon metabolism, the name synonymous to folate metabolism. Folate coenzymes and associated metabolic pathways are vital for cellular homeostasis due to their key roles in nucleic acid biosynthesis, DNA repair, methylation processes, amino acid biogenesis, and energy balance. Folate is an essential nutrient because humans are unable to synthesize this coenzyme and must obtain it from the diet. Insufficient folate intake can ultimately increase risk of certain diseases, most notably neural tube defects. More than 20 enzymes are known to participate in folate metabolism. Single-nucleotide polymorphisms (SNPs) in genes encoding for folate enzymes are associated with altered metabolism, changes in DNA methylation and modified risk for the development of human pathologies including cardiovascular diseases, birth defects, and cancer. ALDH1L1, one of the folate-metabolizing enzymes, serves a regulatory function in folate metabolism restricting the flux of one-carbon groups through biosynthetic processes. Numerous studies have established that ALDH1L1 is often silenced or strongly down-regulated in cancers. The loss of ALDH1L1 protein positively correlates with the occurrence of malignant tumors and tumor aggressiveness, hence the enzyme is viewed as a candidate tumor suppressor. ALDH1L1 has much higher frequency of non-synonymous exonic SNPs than most other genes for folate enzymes. Common SNPs at the polymorphic loci rs3796191, rs2886059, rs9282691, rs2276724, rs1127717, and rs4646750 in ALDH1L1 exons characterize more than 97% of Europeans while additional common variants are found in other ethnic populations. The effects of these SNPs on the enzyme is not clear but studies indicate that some coding and non-coding ALDH1L1 SNPs are associated with altered risk of certain cancer types and it is also likely that specific haplotypes define the metabolic response to dietary folate. This review discusses the role of ALDH1L1 in folate metabolism and etiology of diseases with the focus on non-synonymous coding ALDH1L1 SNPs and their effects on the enzyme structure/function, metabolic role and association with cancer.
Collapse
Affiliation(s)
- Sergey A. Krupenko
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David A. Horita
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Muraki N, Ishii K, Uchiyama S, Itoh SG, Okumura H, Aono S. Structural characterization of HypX responsible for CO biosynthesis in the maturation of NiFe-hydrogenase. Commun Biol 2019; 2:385. [PMID: 31646188 PMCID: PMC6802093 DOI: 10.1038/s42003-019-0631-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Several accessory proteins are required for the assembly of the metal centers in hydrogenases. In NiFe-hydrogenases, CO and CN- are coordinated to the Fe in the NiFe dinuclear cluster of the active center. Though these diatomic ligands are biosynthesized enzymatically, detail mechanisms of their biosynthesis remain unclear. Here, we report the structural characterization of HypX responsible for CO biosynthesis to assemble the active site of NiFe hydrogenase. CoA is constitutionally bound in HypX. Structural characterization of HypX suggests that the formyl-group transfer will take place from N10-formyl-THF to CoA to form formyl-CoA in the N-terminal domain of HypX, followed by decarbonylation of formyl-CoA to produce CO in the C-terminal domain though the direct experimental results are not available yet. The conformation of CoA accommodated in the continuous cavity connecting the N- and C-terminal domains will interconvert between the extended and the folded conformations for HypX catalysis.
Collapse
Affiliation(s)
- Norifumi Muraki
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Kentaro Ishii
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
| | - Susumu Uchiyama
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Satoru G. Itoh
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Hisashi Okumura
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Shigetoshi Aono
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| |
Collapse
|
13
|
Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem Biol Interact 2019; 302:149-155. [PMID: 30794800 DOI: 10.1016/j.cbi.2019.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is the enzyme in folate metabolism commonly downregulated in human cancers. One of the mechanisms of the enzyme downregulation is methylation of the promoter of the ALDH1L1 gene. Recent studies underscored ALDH1L1 as a candidate tumor suppressor and potential marker of aggressive cancers. In agreement with the ALDH1L1 loss in cancer, its re-expression leads to inhibition of proliferation and to apoptosis, but also affects migration and invasion of cancer cells through a specific folate-dependent mechanism involved in invasive phenotype. A growing body of literature evaluated the prognostic value of ALDH1L1 expression for cancer disease, the regulatory role of the enzyme in cellular proliferation, and associated metabolic and signaling cellular responses. Overall, there is a strong indication that the ALDH1L1 silencing provides metabolic advantage for tumor progression at a later stage when unlimited proliferation and enhanced motility become critical processes for the tumor expansion. Whether the ALDH1L1 loss is involved in tumor initiation is still an open question.
Collapse
|
14
|
Modeling of interactions between functional domains of ALDH1L1. Chem Biol Interact 2017; 276:23-30. [PMID: 28414156 DOI: 10.1016/j.cbi.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 11/20/2022]
Abstract
ALDH1L1, a member of the aldehyde dehydrogenase superfamily of enzymes, catalyzes the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. The enzyme is a tetramer of identical subunits, with each subunit consisting of three functional domains that originated from unrelated genes. The N- and C-terminal domains are catalytic, while the intermediate domain transfers the reaction intermediate from the N- to the C-terminal domain. The intermediate domain is an acyl carrier protein, possessing the covalently attached 4'-phosphopantetheine (4-PP) prosthetic group. This prosthetic group is known to function as a swinging arm transferring intermediates between enzymes in complex biosynthetic reactions. Here we have applied computer modeling using available structures of the three functional domains of ALDH1L1 to evaluate the extent of flexibility within the full-length protein. This approach allowed us to define positions of the 4-PP arm within the two catalytic domains and to predict N-terminal:intermediate and intermediate:C-terminal domain interfaces. Our models further suggested high degree of flexibility within the full-length enzyme.
Collapse
|
15
|
Lin CC, Chuankhayan P, Chang WN, Kao TT, Guan HH, Fun HK, Nakagawa A, Fu TF, Chen CJ. Structures of the hydrolase domain of zebrafish 10-formyltetrahydrofolate dehydrogenase and its complexes reveal a complete set of key residues for hydrolysis and product inhibition. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1006-21. [PMID: 25849409 PMCID: PMC4388273 DOI: 10.1107/s1399004715002928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/11/2015] [Indexed: 11/10/2022]
Abstract
10-Formyltetrahydrofolate dehydrogenase (FDH), which is composed of a small N-terminal domain (Nt-FDH) and a large C-terminal domain, is an abundant folate enzyme in the liver and converts 10-formyltetrahydrofolate (10-FTHF) to tetrahydrofolate (THF) and CO2. Nt-FDH alone possesses a hydrolase activity, which converts 10-FTHF to THF and formate in the presence of β-mercaptoethanol. To elucidate the catalytic mechanism of Nt-FDH, crystal structures of apo-form zNt-FDH from zebrafish and its complexes with the substrate analogue 10-formyl-5,8-dideazafolate (10-FDDF) and with the products THF and formate have been determined. The structures reveal that the conformations of three loops (residues 86-90, 135-143 and 200-203) are altered upon ligand (10-FDDF or THF) binding in the active site. The orientations and geometries of key residues, including Phe89, His106, Arg114, Asp142 and Tyr200, are adjusted for substrate binding and product release during catalysis. Among them, Tyr200 is especially crucial for product release. An additional potential THF binding site is identified in the cavity between two zNt-FDH molecules, which might contribute to the properties of product inhibition and THF storage reported for FDH. Together with mutagenesis studies and activity assays, the structures of zNt-FDH and its complexes provide a coherent picture of the active site and a potential THF binding site of zNt-FDH along with the substrate and product specificity, lending new insights into the molecular mechanism underlying the enzymatic properties of Nt-FDH.
Collapse
Affiliation(s)
- Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wen-Ni Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan City 701, Taiwan
| | - Tseng-Ting Kao
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan City 701, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hoong-Kun Fun
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tzu-Fun Fu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Institute of Biotechnology and University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan City 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
| |
Collapse
|
16
|
Krupenko NI, Holmes RS, Tsybovsky Y, Krupenko SA. Aldehyde dehydrogenase homologous folate enzymes: Evolutionary switch between cytoplasmic and mitochondrial localization. Chem Biol Interact 2014; 234:12-7. [PMID: 25549576 DOI: 10.1016/j.cbi.2014.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
Cytosolic and mitochondrial 10-formyltetrahydrofolate dehydrogenases are products of separate genes in vertebrates but only one such gene is present in invertebrates. There is a significant degree of sequence similarity between the two enzymes due to an apparent origin of the gene for the mitochondrial enzyme (ALDH1L2) from the duplication of the gene for the cytosolic enzyme (ALDH1L1). The primordial ALDH1L gene originated from a natural fusion of three unrelated genes, one of which was an aldehyde dehydrogenase. Such structural organization defined the catalytic mechanism of these enzymes, which is similar to that of aldehyde dehydrogenases. Here we report the analysis of ALDH1L1 and ALDH1L2 genes from different species and their phylogeny and evolution. We also performed sequence and structure comparison of ALDH1L enzymes possessing aldehyde dehydrogenase catalysis to those lacking this feature in an attempt to explain mechanistic differences between cytoplasmic ALDH1L1 and mitochondrial ALDH1L2 enzymes and to better understand their functional roles.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Department of Nutrition, UNC-Chapel Hill, UNC Nutrition Research Institute, Kannapolis, NC 28081, United States
| | - Roger S Holmes
- The Eskitis Institute for Drug Discovery and School of Natural Sciences, Griffith University, Nathan, 4111 Brisbane, Queensland, Australia
| | - Yaroslav Tsybovsky
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Sergey A Krupenko
- Department of Nutrition, UNC-Chapel Hill, UNC Nutrition Research Institute, Kannapolis, NC 28081, United States.
| |
Collapse
|
17
|
Vickery CR, Kosa NM, Casavant EP, Duan S, Noel JP, Burkart MD. Structure, biochemistry, and inhibition of essential 4'-phosphopantetheinyl transferases from two species of Mycobacteria. ACS Chem Biol 2014; 9:1939-44. [PMID: 24963544 PMCID: PMC4168790 DOI: 10.1021/cb500263p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
4′-Phosphopantetheinyl
transferases (PPTase) post-translationally
modify carrier proteins with a phosphopantetheine moiety, an essential
reaction in all three domains of life. In the bacterial genus Mycobacteria, the Sfp-type PPTase activates pathways necessary
for the biosynthesis of cell wall components and small molecule virulence
factors. We solved the X-ray crystal structures and biochemically
characterized the Sfp-type PPTases from two of the most prevalent
Mycobacterial pathogens, PptT of M. tuberculosis and
MuPPT of M. ulcerans. Structural analyses reveal
significant differences in cofactor binding and active site composition
when compared to previously characterized Sfp-type PPTases. Functional
analyses including the efficacy of Sfp-type PPTase-specific inhibitors
also suggest that the Mycobacterial Sfp-type PPTases can serve as
therapeutic targets against Mycobacterial infections.
Collapse
Affiliation(s)
- Christopher R. Vickery
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
- Jack
Skirball Center for Chemical Biology and Proteomics, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicolas M. Kosa
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Ellen P. Casavant
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Shiteng Duan
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P. Noel
- Howard Hughes Medical Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
- Jack
Skirball Center for Chemical Biology and Proteomics, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
18
|
Chang WN, Lee GH, Kao TT, Lin CY, Hsiao TH, Tsai JN, Chen BH, Chen YH, Wu HR, Tsai HJ, Fu TF. Knocking down 10-Formyltetrahydrofolate dehydrogenase increased oxidative stress and impeded zebrafish embryogenesis by obstructing morphogenetic movement. Biochim Biophys Acta Gen Subj 2014; 1840:2340-50. [PMID: 24747731 DOI: 10.1016/j.bbagen.2014.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/25/2014] [Accepted: 04/09/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Folate is an essential nutrient for cell survival and embryogenesis. 10-Formyltetrahydrofolate dehydrogenase (FDH) is the most abundant folate enzyme in folate-mediated one-carbon metabolism. 10-Formyltetrahydrofolate dehydrogenase converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2, the only pathway responsible for formate oxidation in methanol intoxication. 10-Formyltetrahydrofolate dehydrogenase has been considered a potential chemotherapeutic target because it was down-regulated in cancer cells. However, the normal physiological significance of 10-Formyltetrahydrofolate dehydrogenase is not completely understood, hampering the development of therapeutic drug/regimen targeting 10-Formyltetrahydrofolate dehydrogenase. METHODS 10-Formyltetrahydrofolate dehydrogenase expression in zebrafish embryos was knocked-down using morpholino oligonucleotides. The morphological and biochemical characteristics of fdh morphants were examined using specific dye staining and whole-mount in-situ hybridization. Embryonic folate contents were determined by HPLC. RESULTS The expression of 10-formyltetrahydrofolate dehydrogenase was consistent in whole embryos during early embryogenesis and became tissue-specific in later stages. Knocking-down fdh impeded morphogenetic movement and caused incorrect cardiac positioning, defective hematopoiesis, notochordmalformation and ultimate death of morphants. Obstructed F-actin polymerization and delayed epiboly were observed in fdh morphants. These abnormalities were reversed either by adding tetrahydrofolate or antioxidant or by co-injecting the mRNA encoding 10-formyltetrahydrofolate dehydrogenase N-terminal domain, supporting the anti-oxidative activity of 10-formyltetrahydrofolate dehydrogenase and the in vivo function of tetrahydrofolate conservation for 10-formyltetrahydrofolate dehydrogenase N-terminal domain. CONCLUSIONS 10-Formyltetrahydrofolate dehydrogenase functioned in conserving the unstable tetrahydrofolate and contributing to the intracellular anti-oxidative capacity of embryos, which was crucial in promoting proper cell migration during embryogenesis. GENERAL SIGNIFICANCE These newly reported tetrahydrofolate conserving and anti-oxidative activities of 10-formyltetrahydrofolate dehydrogenase shall be important for unraveling 10-formyltetrahydrofolate dehydrogenase biological significance and the drug development targeting 10-formyltetrahydrofolate dehydrogenase.
Collapse
Affiliation(s)
- Wen-Ni Chang
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Gang-Hui Lee
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tseng-Ting Kao
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cha-Ying Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tsun-Hsien Hsiao
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jen-Ning Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kao;hsiung 807, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Taipei 106, Taiwan
| | - Hsin-Ru Wu
- Department of Chemistry, Tamkang University, Taipei 106, Taiwan
| | - Huai-Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Fun Fu
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
19
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
20
|
Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 2012; 202:51-61. [PMID: 23219887 DOI: 10.1016/j.cbi.2012.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022]
Abstract
Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | | | | | | | | |
Collapse
|
21
|
Halavaty AS, Kim Y, Minasov G, Shuvalova L, Dubrovska I, Winsor J, Zhou M, Onopriyenko O, Skarina T, Papazisi L, Kwon K, Peterson SN, Joachimiak A, Savchenko A, Anderson WF. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1359-70. [PMID: 22993090 PMCID: PMC3447402 DOI: 10.1107/s0907444912029101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/26/2012] [Indexed: 05/13/2024]
Abstract
Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS(SA)), Vibrio cholerae (AcpS(VC)) and Bacillus anthracis (AcpS(BA)) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS(BA) is emphasized because of the two 3',5'-adenosine diphosphate (3',5'-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3',5'-ADP is bound as the 3',5'-ADP part of CoA in the known structures of the CoA-AcpS and 3',5'-ADP-AcpS binary complexes. The position of the second 3',5'-ADP has never been described before. It is in close proximity to the first 3',5'-ADP and the ACP-binding site. The coordination of two ADPs in AcpS(BA) may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ievgeniia Dubrovska
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - James Winsor
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Olena Onopriyenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Tatiana Skarina
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Leka Papazisi
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Keehwan Kwon
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Scott N. Peterson
- Center for Structural Genomics of Infectious Diseases, USA
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
- Computational Institute, University of Chicago, Chicago, IL 60637, USA
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases, USA
- University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, USA
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Stover PJ. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2012; 4:293-305. [PMID: 22353665 DOI: 10.1159/000334586] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Folate-mediated 1-carbon metabolism is a network of interconnected metabolic pathways necessary for the synthesis of purine nucleotides, thymidylate and the remethylation of homocysteine to methionine. Disruptions in this pathway influence both DNA synthesis and stability and chromatin methylation, and result from nutritional deficiencies and common gene variants. The mechanisms underlying folate-associated pathologies and developmental anomalies have yet to be established. This review focuses on the relationships among folate-mediated 1-carbon metabolism, chromatin methylation and human disease, and the role of gene-nutrient interactions in modifying epigenetic processes.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
|
24
|
Nair DR, Ghosh R, Manocha A, Mohanty D, Saran S, Gokhale RS. Two functionally distinctive phosphopantetheinyl transferases from amoeba Dictyostelium discoideum. PLoS One 2011; 6:e24262. [PMID: 21931666 PMCID: PMC3171403 DOI: 10.1371/journal.pone.0024262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/03/2011] [Indexed: 12/16/2022] Open
Abstract
The life cycle of Dictyostelium discoideum is proposed to be regulated by expression of small metabolites. Genome sequencing studies have revealed a remarkable array of genes homologous to polyketide synthases (PKSs) that are known to synthesize secondary metabolites in bacteria and fungi. A crucial step in functional activation of PKSs involves their post-translational modification catalyzed by phosphopantetheinyl transferases (PPTases). PPTases have been recently characterized from several bacteria; however, their relevance in complex life cycle of protozoa remains largely unexplored. Here we have identified and characterized two phosphopantetheinyl transferases from D. discoideum that exhibit distinct functional specificity. DiAcpS specifically modifies a stand-alone acyl carrier protein (ACP) that possesses a mitochondrial import signal. DiSfp in contrast is specific to Type I multifunctional PKS/fatty acid synthase proteins and cannot modify the stand-alone ACP. The mRNA of two PPTases can be detected during the vegetative as well as starvation-induced developmental pathway and the disruption of either of these genes results in non-viable amoebae. Our studies show that both PPTases play an important role in Dictyostelium biology and provide insight into the importance of PPTases in lower eukaryotes.
Collapse
Affiliation(s)
- Divya R Nair
- National Institute of Immunology, New Delhi, India
| | | | | | | | | | | |
Collapse
|
25
|
Enzymatic properties of ALDH1L2, a mitochondrial 10-formyltetrahydrofolate dehydrogenase. Chem Biol Interact 2011; 191:129-36. [PMID: 21238436 DOI: 10.1016/j.cbi.2011.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/06/2011] [Accepted: 01/08/2011] [Indexed: 12/13/2022]
Abstract
10-Formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1), an abundant cytosolic enzyme of folate metabolism, shares significant sequence similarity with enzymes of the aldehyde dehydrogenase (ALDH) family. The enzyme converts 10-formyltetrahydrofolate (10-fTHF) to tetrahydrofolate and CO(2) in an NADP(+)-dependent manner. The mechanism of this reaction includes three consecutive steps with the final occurring in an ALDH-homologous domain. We have recently identified a mitochondrial isoform of FDH (mtFDH), which is the product of a separate gene, ALDH1L2. Its overall identity to cytosolic FDH is about 74%, and the identity between the ALDH domains rises up to 79%. In the present study, human mtFDH was expressed in Escherichia coli, purified to homogeneity, and characterized. While the recombinant enzyme was capable of catalyzing the 10-fTHF hydrolase reaction, it did not produce detectable levels of ALDH activity. Despite the lack of typical ALDH catalysis, mtFDH was able to perform the characteristic 10-fTHF dehydrogenase reaction after reactivation by recombinant 4'-phosphopantetheinyl transferase (PPT) in the presence of coenzyme A. Using site-directed mutagenesis, it was determined that PPT modifies mtFDH specifically at Ser375. The C-terminal domain of mtFDH (residues 413-923) was also expressed in E. coli and characterized. This domain was found to exist as a tetramer and to catalyze an esterase reaction that is typical of other ALDH enzymes. Taken together, our studies suggest that ALDH1L2 has enzymatic properties similar to its cytosolic counterpart, although the inability to catalyze the ALDH reaction with short-chain aldehyde substrates remains an unresolved issue at present.
Collapse
|
26
|
Strickland KC, Holmes RS, Oleinik NV, Krupenko NI, Krupenko SA. Phylogeny and evolution of aldehyde dehydrogenase-homologous folate enzymes. Chem Biol Interact 2011; 191:122-8. [PMID: 21215736 DOI: 10.1016/j.cbi.2010.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.
Collapse
Affiliation(s)
- Kyle C Strickland
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
27
|
Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 2010; 30:57-81. [PMID: 20645850 DOI: 10.1146/annurev.nutr.012809.104810] [Citation(s) in RCA: 512] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recognition that mitochondria participate in folate-mediated one-carbon metabolism grew out of pioneering work beginning in the 1950s from the laboratories of D.M. Greenberg, C.G. Mackenzie, and G. Kikuchi. These studies revealed mitochondria as the site of oxidation of one-carbon donors such as serine, glycine, sarcosine, and dimethylglycine. Subsequent work from these laboratories and others demonstrated the participation of folate coenzymes and folate-dependent enzymes in these mitochondrial processes. Biochemical and molecular genetic approaches in the 1980s and 1990s identified many of the enzymes involved and revealed an interdependence of cytoplasmic and mitochondrial one-carbon metabolism. These studies led to the development of a model of eukaryotic one-carbon metabolism that comprises parallel cytosolic and mitochondrial pathways, connected by one-carbon donors such as serine, glycine, and formate. Sequencing of the human and other mammalian genomes has facilitated identification of the enzymes that participate in this intercompartmental one-carbon metabolism, and animal models are beginning to clarify the roles of the cytoplasmic and mitochondrial isozymes of these enzymes. Identifying the mitochondrial transporters for the one-carbon donors and elucidating how flux through these pathways is controlled are two areas ripe for exploration.
Collapse
Affiliation(s)
- Anne S Tibbetts
- Department of Chemistry and Biochemistry, and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
28
|
Krupenko NI, Dubard ME, Strickland KC, Moxley KM, Oleinik NV, Krupenko SA. ALDH1L2 is the mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 2010; 285:23056-63. [PMID: 20498374 DOI: 10.1074/jbc.m110.128843] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an abundant enzyme of folate metabolism. It converts 10-formyltetrahydrofolate to tetrahydrofolate and CO(2) in an NADP(+)-dependent reaction. We have identified a gene at chromosome locus 12q24.11 of the human genome, the product of which has 74% sequence similarity with cytosolic FDH. This protein has an extra N-terminal sequence of 22 amino acid residues, predicted to be a mitochondrial translocation signal. Transfection of COS-7 or A549 cell lines with a construct in which green fluorescent protein was introduced between the leader sequence and the rest of the putative mitochondrial FDH (mtFDH) has demonstrated mitochondrial localization of the fusion protein, suggesting that the identified gene encodes a mitochondrial enzyme. Purified pig liver mtFDH displayed dehydrogenase/hydrolase activities similar to cytosolic FDH. Real-time PCR performed on an array of human tissues has shown that although cytosolic FDH mRNA is highest in liver, kidney, and pancreas, mtFDH mRNA is most highly expressed in pancreas, heart, and brain. In contrast to the cytosolic enzyme, which is not detectable in cancer cells, the presence of mtFDH was demonstrated in several human cancer cell lines by conventional and real-time PCR and by Western blot. Analysis of genomes of different species indicates that the mitochondrial enzyme is a later evolutionary product when compared with the cytosolic enzyme. We propose that this novel mitochondrial enzyme is a likely source of CO(2) production from 10-formyltetrahydrofolate in mitochondria and plays an essential role in the distribution of one-carbon groups between the cytosolic and mitochondrial compartments of the cell.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chang WN, Lin HC, Fu TF. Zebrafish 10-formyltetrahydrofolate dehydrogenase is similar to its mammalian isozymes for its structural and catalytic properties. Protein Expr Purif 2010; 72:217-22. [PMID: 20381623 DOI: 10.1016/j.pep.2010.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 11/29/2022]
Abstract
10-Formyltetrahydrofolate dehydrogenase from zebrafish has been cloned and expressed in both Escherichia coli and yeast. In addition, the N-terminal and C-terminal domains have also been cloned and expressed. Each expressed protein was purified to homogeneity and structural and kinetic properties determined. These studies show that the zebrafish enzyme is structurally and catalytically very similar to the enzymes from mammalian sources, suggesting that zebrafish can be used to study the in vivo function of 10-formyltetrahydrofolate dehydrogenase.
Collapse
Affiliation(s)
- Wen-Ni Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
30
|
Strickland KC, Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Acyl carrier protein-specific 4'-phosphopantetheinyl transferase activates 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 2009; 285:1627-33. [PMID: 19933275 DOI: 10.1074/jbc.m109.080556] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4'-Phosphopantetheinyl transferases (PPTs) catalyze the transfer of 4'-phosphopantetheine (4-PP) from coenzyme A to a conserved serine residue of their protein substrates. In humans, the number of pathways utilizing the 4-PP post-translational modification is limited and may only require a single broad specificity PPT for all phosphopantetheinylation reactions. Recently, we have shown that one of the enzymes of folate metabolism, 10-formyltetrahydrofolate dehydrogenase (FDH), requires a 4-PP prosthetic group for catalysis. This moiety acts as a swinging arm to couple the activities of the two catalytic domains of FDH and allows the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. In the current study, we demonstrate that the broad specificity human PPT converts apo-FDH to holoenzyme and thus activates FDH catalysis. Silencing PPT by small interfering RNA in A549 cells prevents FDH modification, indicating the lack of alternative enzymes capable of accomplishing this transferase reaction. Interestingly, PPT-silenced cells demonstrate significantly reduced proliferation and undergo strong G(1) arrest, suggesting that the enzymatic function of PPT is essential and nonredundant. Our study identifies human PPT as the FDH-modifying enzyme and supports the hypothesis that mammals utilize a single enzyme for all phosphopantetheinylation reactions.
Collapse
Affiliation(s)
- Kyle C Strickland
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
31
|
Wallen JR, Mallett TC, Boles W, Parsonage D, Furdui CM, Karplus PA, Claiborne A. Crystal structure and catalytic properties of Bacillus anthracis CoADR-RHD: implications for flavin-linked sulfur trafficking. Biochemistry 2009; 48:9650-67. [PMID: 19725515 PMCID: PMC2758330 DOI: 10.1021/bi900887k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodanese homology domains (RHDs) play important roles in sulfur trafficking mechanisms essential to the biosynthesis of sulfur-containing cofactors and nucleosides. We have now determined the crystal structure at 2.10 A resolution for the Bacillus anthracis coenzyme A-disulfide reductase isoform (BaCoADR-RHD) containing a C-terminal RHD domain; this is the first structural representative of the multidomain proteins class of the rhodanese superfamily. The catalytic Cys44 of the CoADR module is separated by 25 A from the active-site Cys514' of the RHD domain from the complementary subunit. In stark contrast to the B. anthracis CoADR [Wallen, J. R., Paige, C., Mallett, T. C., Karplus, P. A., and Claiborne, A. (2008) Biochemistry 47, 5182-5193], the BaCoADR-RHD isoform does not catalyze the reduction of coenzyme A-disulfide, although both enzymes conserve the Cys-SSCoA redox center. NADH titrations have been combined with a synchrotron reduction protocol for examination of the structural and redox behavior of the Cys44-SSCoA center. The synchrotron-reduced (Cys44 + CoASH) structure reveals ordered binding for the adenosine 3'-phosphate 5'-pyrophosphate moiety of CoASH, but the absence of density for the pantetheine arm indicates that it is flexible within the reduced active site. Steady-state kinetic analyses with the alternate disulfide substrates methyl methanethiolsulfonate (MMTS) and 5,5'-dithiobis(2-nitrobenzoate) (DTNB), including the appropriate Cys --> Ser mutants, demonstrate that MMTS reduction occurs within the CoADR active site. NADH-dependent DTNB reduction, on the other hand, requires communication between Cys44 and Cys514', and we propose that reduction of the Cys44-SSCoA disulfide promotes the transfer of reducing equivalents to the RHD, with the swinging pantetheine arm serving as a ca. 20 A bridge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Al Claiborne
- To whom correspondence should be addressed. Tel.: (336) 716-3914; Fax: (336) 777-3242
| |
Collapse
|
32
|
Krupenko SA. FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 2009; 178:84-93. [PMID: 18848533 PMCID: PMC2664990 DOI: 10.1016/j.cbi.2008.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO(2) in a NADP(+)-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1-310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400-902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to classes 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311-399), which is a structural and functional homolog of carrier proteins possessing a 4'-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO(2).
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
33
|
Mun JA, Doh E, Min H. In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde. Nutr Res Pract 2008; 2:195-9. [PMID: 20016718 PMCID: PMC2788200 DOI: 10.4162/nrp.2008.2.4.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/30/2008] [Accepted: 11/26/2008] [Indexed: 12/23/2022] Open
Abstract
Alcoholism has been associated with folate deficiency in humans and laboratory animals. Previous study showed that ethanol feeding reduces the dehydrogenase and hydrolase activity of 10-formyltetrahydrofolate dehydrogenase (FDH) in rat liver. Hepatic ethanol metabolism generates acetaldehyde and acetate. The mechanisms by which ethanol and its metabolites produce toxicity within the liver cells are unknown. We purified FDH from rat liver and investigated the effect of ethanol, acetaldehyde and acetate on the enzyme in vitro. Hepatic FDH activity was not reduced by ethanol or acetate directly. However, acetaldehyde was observed to reduce the dehydrogenase activity of FDH in a dose- and time-dependent manner with an apparent IC50 of 4 mM, while the hydrolase activity of FDH was not affected by acetaldehyde in vitro. These results suggest that the inhibition of hepatic FDH dehydrogenase activity induced by acetadehyde may play a role in ethanol toxicity.
Collapse
Affiliation(s)
- Ju-Ae Mun
- Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| | | | | |
Collapse
|
34
|
Mechanism and substrate recognition of human holo ACP synthase. ACTA ACUST UNITED AC 2008; 14:1243-53. [PMID: 18022563 PMCID: PMC2148441 DOI: 10.1016/j.chembiol.2007.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/11/2007] [Accepted: 10/15/2007] [Indexed: 11/20/2022]
Abstract
Mammals utilize a single phosphopantetheinyl transferase for the posttranslational modification of at least three different apoproteins: the carrier protein components of cytosolic and mitochondrial fatty acid synthases and the aminoadipate semialdehyde reductase involved in lysine degradation. We determined the crystal structure of the human phosphopantetheinyl transferase, a eukaryotic phosphopantetheinyl transferase characterized, complexed with CoA and Mg(2+), and in ternary complex with CoA and ACP. The involvement of key residues in ligand binding and catalysis was confirmed by mutagenesis and kinetic analysis. Human phosphopantetheinyl transferase exhibits an alpha/beta fold and 2-fold pseudosymmetry similar to the Sfp phosphopantetheinyl transferase from Bacillus subtilis. Although the bound ACP exhibits a typical four-helix structure, its binding is unusual in that it is facilitated predominantly by hydrophobic interactions. A detailed mechanism is proposed describing the substrate binding and catalytic process.
Collapse
|
35
|
Abstract
Tetrahydrofolate (THF) polyglutamates are a family of cofactors that carry and chemically activate one-carbon units for biosynthesis. THF-mediated one-carbon metabolism is a metabolic network of interdependent biosynthetic pathways that is compartmentalized in the cytoplasm, mitochondria, and nucleus. One-carbon metabolism in the cytoplasm is required for the synthesis of purines and thymidylate and the remethylation of homocysteine to methionine. One-carbon metabolism in the mitochondria is required for the synthesis of formylated methionyl-tRNA; the catabolism of choline, purines, and histidine; and the interconversion of serine and glycine. Mitochondria are also the primary source of one-carbon units for cytoplasmic metabolism. Increasing evidence indicates that folate-dependent de novo thymidylate biosynthesis occurs in the nucleus of certain cell types. Disruption of folate-mediated one-carbon metabolism is associated with many pathologies and developmental anomalies, yet the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be established. This chapter focuses on our current understanding of mammalian folate-mediated one-carbon metabolism, its cellular compartmentation, and knowledge gaps that limit our understanding of one-carbon metabolism and its regulation.
Collapse
Affiliation(s)
- Jennifer T Fox
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|