1
|
Dias-Solange D, Le MT, Gottipati K, Choi KH. Structure of coxsackievirus cloverleaf RNA and 3C pro dimer establishes the RNA-binding mechanism of enterovirus protease 3C pro. SCIENCE ADVANCES 2025; 11:eads6862. [PMID: 40073119 PMCID: PMC11900867 DOI: 10.1126/sciadv.ads6862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
In positive-strand RNA viruses, the genome serves as a template for both protein translation and negative-strand RNA synthesis. Enteroviruses use the cloverleaf RNA structure at the 5' end of the genome to balance these two processes. Cloverleaf acts as a promoter for RNA synthesis and forms a complex with viral 3CD protein, the precursor to 3Cpro protease, and 3Dpol polymerase. The interaction between cloverleaf and 3CD is mediated by the 3Cpro domain, yet how 3Cpro promotes specific RNA-binding is not clear. We report the structure of coxsackievirus cloverleaf RNA-3Cpro complex, wherein two 3Cpro molecules interact with cloverleaf stem-loop D. 3Cpro dimer mainly recognizes the shape of the dsRNA helix through symmetric interactions, suggesting that 3Cpro is a previously undiscovered type of RNA binding protein. We show that 3CD protein also dimerizes on cloverleaf RNA and binds the RNA with higher affinity than 3Cpro. The structure provides insight into the RNA-binding mechanism of 3Cpro or 3CD with other cis-acting replication elements.
Collapse
Affiliation(s)
- Dimagi Dias-Solange
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - My Tra Le
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Keerthi Gottipati
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kyung H. Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Ma ZH, Nawal Bahoussi A, Tariq Shah P, Guo YY, Dong L, Wu C, Xing L. Phylogeographic dynamics and molecular characteristics of Enterovirus 71 in China. Front Microbiol 2023; 14:1182382. [PMID: 37275165 PMCID: PMC10235518 DOI: 10.3389/fmicb.2023.1182382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Enterovirus 71 (EV71) and coxsackievirus (CV-A16) are the major etiological agents of hand, foot and mouth disease (HFMD). This report reviewed the full-length genomic sequences of EV71 identified in different provinces of China between 1998 and 2019 (a total of 312) in addition to eight worldwide reference genomes to address the genomic evolution and genetic events. The main prevalent EV71 strians in China are C4 genotypes, co-circulating with a few A, B5, C1, and C2 subgenotypes. A new emerging subgenotype in China was identified and classified as B6 genotype. Phylogeographic analysis revealed multiple branches, where a Jiangsu strain 2006-52-9 (GenBank ID: KP266579.1) was linked to different subgenotypes through multiple long mutant branches, including the CV-A16 viruses through the A genotype. Furthermore, identification of 28 natural recombination events suggests that the emergence of new genotypes are associated with intratypic recombination involving EV71 strains and intertypic recombination between EV71 and CV-A16 strains. Compared with the structural proteins, the non-structural proteins of EV71 seem to be highly variable with the highest variable regions of peptidase C3 (3C protein), P2A, and the N-terminus of RNA-dependent RNA polymerase. This study updates the phylogenetic and phylogeographic information of EV71 and provides clues to the emergence of new genotypes of EV71 based on genetics.
Collapse
Affiliation(s)
- Zi-Hui Ma
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | | | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
3
|
Pierce DM, Hayward C, Rowlands DJ, Stonehouse NJ, Herod MR. Insights into Polyprotein Processing and RNA-Protein Interactions in Foot-and-Mouth Disease Virus Genome Replication. J Virol 2023; 97:e0017123. [PMID: 37154761 DOI: 10.1128/jvi.00171-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus, which infects cloven-hoofed animals to cause foot-and-mouth disease (FMD). The positive-sense RNA genome contains a single open reading frame, which is translated as a polyprotein that is cleaved by viral proteases to produce the viral structural and nonstructural proteins. Initial processing occurs at three main junctions to generate four primary precursors; Lpro and P1, P2, and P3 (also termed 1ABCD, 2BC, and 3AB1,2,3CD). The 2BC and 3AB1,2,3CD precursors undergo subsequent proteolysis to generate the proteins required for viral replication, including the enzymes 2C, 3Cpro, and 3Dpol. These precursors can be processed through both cis and trans (i.e., intra- and intermolecular proteolysis) pathways, which are thought to be important for controlling virus replication. Our previous studies suggested that a single residue in the 3B3-3C junction has an important role in controlling 3AB1,2,3CD processing. Here, we use in vitro based assays to show that a single amino acid substitution at the 3B3-3C boundary increases the rate of proteolysis to generate a novel 2C-containing precursor. Complementation assays showed that while this amino acid substitution enhanced production of some nonenzymatic nonstructural proteins, those with enzymatic functions were inhibited. Interestingly, replication could only be supported by complementation with mutations in cis acting RNA elements, providing genetic evidence for a functional interaction between replication enzymes and RNA elements. IMPORTANCE Foot-and-mouth disease virus (FMDV) is responsible for foot-and-mouth disease (FMD), an important disease of farmed animals, which is endemic in many parts of the world and can results in major economic losses. Replication of the virus occurs within membrane-associated compartments in infected cells and requires highly coordinated processing events to produce an array of nonstructural proteins. These are initially produced as a polyprotein that undergoes proteolysis likely through both cis and trans alternative pathways (i.e., intra- and intermolecular proteolysis). The role of alternative processing pathways may help coordination of viral replication by providing temporal control of protein production and here we analyze the consequences of amino acid substitutions that change these pathways in FMDV. Our data suggest that correct processing is required to produce key enzymes for replication in an environment in which they can interact with essential viral RNA elements. These data further the understanding of RNA genome replication.
Collapse
Affiliation(s)
- Danielle M Pierce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Connor Hayward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
5
|
Watkins CL, Kempf BJ, Beaucourt S, Barton DJ, Peersen OB. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases. J Biol Chem 2020; 295:10624-10637. [PMID: 32493771 PMCID: PMC7397104 DOI: 10.1074/jbc.ra120.013906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Indexed: 01/23/2023] Open
Abstract
Picornaviral RNA-dependent RNA polymerases (RdRPs) have low replication fidelity that is essential for viral fitness and evolution. Their global fold consists of the classical "cupped right hand" structure with palm, fingers, and thumb domains, and these RdRPs also possess a unique contact between the fingers and thumb domains. This interaction restricts movements of the fingers, and RdRPs use a subtle conformational change within the palm domain to close their active sites for catalysis. We have previously shown that this core RdRP structure and mechanism provide a platform for polymerases to fine-tune replication rates and fidelity to optimize virus fitness. Here, we further elucidated the structural basis for differences in replication rates and fidelity among different viruses by generating chimeric RdRPs from poliovirus and coxsackievirus B3. We designed these chimeric polymerases by exchanging the fingers, pinky finger, or thumb domains. The results of biochemical, rapid-quench, and stopped-flow assays revealed that differences in biochemical activity map to individual modular domains of this polymerase. We found that the pinky finger subdomain is a major regulator of initiation and that the palm domain is the major determinant of catalytic rate and nucleotide discrimination. We further noted that thumb domain interactions with product RNA regulate translocation and that the palm and thumb domains coordinately control elongation complex stability. Several RdRP chimeras supported the growth of infectious poliovirus, providing insights into enterovirus species-specific protein-protein interactions required for virus replication.
Collapse
Affiliation(s)
- Colleen L Watkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Interaction of the intrinsically disordered C-terminal domain of the sesbania mosaic virus RNA-dependent RNA polymerase with the viral protein P10 in vitro: modulation of the oligomeric state and polymerase activity. Arch Virol 2019; 164:971-982. [PMID: 30721364 DOI: 10.1007/s00705-019-04163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
The RNA-dependent RNA polymerase (RdRp) of sesbania mosaic virus (SeMV) was previously shown to interact with the viral protein P10, which led to enhanced polymerase activity. In the present investigation, the equilibrium dissociation constant for the interaction between the two proteins was determined to be 0.09 µM using surface plasmon resonance, and the disordered C-terminal domain of RdRp was shown to be essential for binding to P10. The association with P10 brought about a change in the oligomeric state of RdRp, resulting in reduced aggregation and increased polymerase activity. Interestingly, unlike the wild-type RdRp, C-terminal deletion mutants (C del 43 and C del 72) were found to exist predominantly as monomers and were as active as the RdRp-P10 complex. Thus, either the deletion of the C-terminal disordered domain or its masking by binding to P10 results in the activation of polymerase activity. Further, deletion of the C-terminal 85 residues of RdRp resulted in complete loss of activity. Mutation of a conserved tyrosine (RdRp Y480) within motif E, located between 72 and 85 residues from the C-terminus of RdRp, rendered the protein inactive, demonstrating the importance of motif E in RNA synthesis in vitro.
Collapse
|
7
|
Shengjuler D, Chan YM, Sun S, Moustafa IM, Li ZL, Gohara DW, Buck M, Cremer PS, Boehr DD, Cameron CE. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain. Structure 2017; 25:1875-1886.e7. [PMID: 29211985 PMCID: PMC5728361 DOI: 10.1016/j.str.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses.
Collapse
Affiliation(s)
- Djoshkun Shengjuler
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yan Mei Chan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Simou Sun
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhen-Lu Li
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Paul S Cremer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Huang PN, Jheng JR, Arnold JJ, Wang JR, Cameron CE, Shih SR. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication. PLoS Pathog 2017; 13:e1006375. [PMID: 28545059 PMCID: PMC5435352 DOI: 10.1371/journal.ppat.1006375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR) in host cells. This study found that enterovirus A71 (EVA71) utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1), a key endoplasmic reticulum protein (ER) involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs) on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice). These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity. Positive-strand RNA viruses are adept at hijacking host cell machinery to promote viral propagation, including the formation of RCs containing viral and host proteins on intracellular membranes to facilitate virion assembly and avoid detection by host defense mechanisms. However, the processes by which RCs are assembled, as well as the host proteins involved, have not been fully elucidated as yet. Here, we show that the endoplasmic reticulum (ER) protein UGGT1, a key regulator of the UPR host defense mechanism, co-precipitates with the 3D polymerase of EVA71 to facilitate RC formation, enhance viral RNA synthesis, and promote viral replication. Knockout of Uggt1 reduced viral pathogenicity in animal studies. These findings highlight the role to which viruses can hijack key host proteins to promote viral replication, and may serve as the basis for the development of novel anti-viral strategies.
Collapse
Affiliation(s)
- Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Rong Jheng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Yee PTI, Laa Poh C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development. Virology 2017; 506:121-129. [PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
10
|
Chan YM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure 2016; 24:509-517. [PMID: 27050688 DOI: 10.1016/j.str.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The 3C protein is a master regulator of the picornaviral infection cycle, responsible for both cleaving viral and host proteins, and interacting with genomic RNA replication elements. Here we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to show that 3C is conformationally dynamic across multiple timescales. Binding of peptide and RNA lead to structural dynamics changes at both the protease active site and the RNA-binding site, consistent with these sites being dynamically coupled. Indeed, binding of RNA influences protease activity, and likewise, interactions at the active site affect RNA binding. We propose that RNA and peptide binding re-shapes the conformational energy landscape of 3C to regulate subsequent functions, including formation of complexes with other viral proteins. The observed channeling of the 3C energy landscape may be important for regulation of the viral infection cycle.
Collapse
Affiliation(s)
- Yan M Chan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Yee PTI, Tan KO, Othman I, Poh CL. Identification of molecular determinants of cell culture growth characteristics of Enterovirus 71. Virol J 2016; 13:194. [PMID: 27894305 PMCID: PMC5126835 DOI: 10.1186/s12985-016-0645-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hand, foot and mouth disease is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. EV-A71 infection is associated with high fever, rashes and ulcers but more severe symptoms such as cardiopulmonary failure and death have been reported. The lack of vaccines highlighted the urgency of developing preventive agents against EV-A71. The molecular determinants of virulent phenotypes of EV-A71 is unclear. It remains to be investigated if specific molecular determinants would affect the cell culture growth characteristics of the EV-A71 fatal strain in Rhabdomyosarcoma (RD) cells. RESULTS In this study, several genetically modified sub-genotype B4 EV-A71 mutants were constructed by site-directed mutations at positions 158, 475, 486, 487 and 5262 or through partial deletion of the 5'-NTR region (∆ 11 bp from nt 475 to 486) to generate a deletion mutant (PD). EV-A71 mutants 475 and PD caused minimal cytopathic effects, produced lowest viral RNA copy number, viral particles as well as minimal amount of viral protein (VP1) in RD cells when compared to mutants 158, 486, 487 and 5262. CONCLUSIONS The molecular determinants of virulent phenotypes of EV-A71 sub-genotype B4 strain 41 (5865/Sin/000009) were found to differ from the C158 molecular determinant reported for the fatal EV-A71 sub-genotype B1 strain (clinical isolate 237). The site-directed mutations (SDM) introduced at various sites of the cDNA affected growth of the various mutants when compared to the wild type. Lowest viral RNA copy number, minimal number of plaques formed, higher infectious doses required for 50% lethality of RD cells and much reduced VP1 of the EV-A71 sub-genotype B4 strain 41 genome was attained in mutants carrying SDM at position 475 and through partial deletion of 11 bp at the 5'-NTR region.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500 Malaysia
| | - Kuan Onn Tan
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500 Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500 Malaysia
| |
Collapse
|
12
|
Yee PTI, Poh CL. Development of Novel Vaccines against Enterovirus-71. Viruses 2015; 8:v8010001. [PMID: 26729152 PMCID: PMC4728561 DOI: 10.3390/v8010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Virology Research Group, Vice Chancellor's Office, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| | - Chit Laa Poh
- Virology Research Group, Vice Chancellor's Office, Sunway University, Bandar Sunway, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
13
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
14
|
Kempf BJ, Barton DJ. Picornavirus RNA polyadenylation by 3D(pol), the viral RNA-dependent RNA polymerase. Virus Res 2015; 206:3-11. [PMID: 25559071 PMCID: PMC4801031 DOI: 10.1016/j.virusres.2014.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 11/06/2022]
Abstract
Picornaviral RdRPs are responsible for the polyadenylation of viral RNA. Reiterative transcription mechanisms occur during replication of poly(A) tails. Conserved RdRP structures influence the size of poly(A) tails. Common features of picornavirus RdRPs and telomerase reverse transcriptase. Poly(A) tails are a telomere of picornavirus RNA genomes.
Poly(A) tails are functionally important features of all picornavirus RNA genomes. Some viruses have genomes with relatively short poly(A) tails (encephalomyocarditis virus) whereas others have genomes with longer poly(A) tails (polioviruses and rhinoviruses). Here we review the polyadenylation of picornavirus RNA as it relates to the structure and function of 3Dpol. Poliovirus 3Dpol uses template-dependent reiterative transcription mechanisms as it replicates the poly(A) tails of viral RNA (Steil et al., 2010). These mechanisms are analogous to those involved in the polyadenylation of vesicular stomatitis virus and influenza virus mRNAs. 3Dpol residues intimately associated with viral RNA templates and products regulate the size of poly(A) tails in viral RNA (Kempf et al., 2013). Consistent with their ancient evolutionary origins, picornavirus 3Dpol and telomerase reverse transcriptase (TERT) share structural and functional features. Structurally, both 3Dpol and TERT assume a “right-hand” conformation with thumb, palm and fingers domains encircling templates and products. Functionally, both 3Dpol and TERT use template-dependent reiterative transcription mechanisms to synthesize repetitive sequences: poly(A) tails in the case of picornavirus RNA genomes and DNA telomeres in the case of eukaryotic chromosomes. Thus, picornaviruses and their eukaryotic hosts (humans and animals) maintain the 3′ ends of their respective genomes via evolutionarily related mechanisms.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
15
|
Sun Y, Guo Y, Lou Z. Formation and working mechanism of the picornavirus VPg uridylylation complex. Curr Opin Virol 2014; 9:24-30. [PMID: 25240314 DOI: 10.1016/j.coviro.2014.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 02/05/2023]
Abstract
The initiation of picornavirus replication is featured by the uridylylation of viral protein genome-linked (VPg). In this process, viral RNA-dependent RNA polymerase (RdRp) catalyzes two uridine monophosphate (UMP) molecules to the hydroxyl group of the third tyrosine residue of VPg. Subsequently, the uridylylated VPg (VPg-pUpU) functions as the protein primer to initiate the replication of the viral genome. Although a large body of functional and structural works has been performed to define individual snapshots for particular stages of the VPg uridylylation process, the formation, dynamics and mechanism of the whole VPg uridylylation complex still requires further elucidation. We would like to provide an overview of the current knowledge of the picornaviral VPg uridylylation complex in this paper.
Collapse
Affiliation(s)
- Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; School of Medicine and MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhiyong Lou
- School of Medicine and MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Wang D, Fang L, Wei D, Zhang H, Luo R, Chen H, Li K, Xiao S. Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon. J Virol 2014; 88:10252-8. [PMID: 24920812 PMCID: PMC4136334 DOI: 10.1128/jvi.00869-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/04/2014] [Indexed: 11/20/2022] Open
Abstract
NEMO (NF-κB essential modulator) is a bridging adaptor indispensable for viral activation of interferon (IFN) antiviral response. Herein, we show that hepatitis A virus (HAV) 3C protease (3Cpro) cleaves NEMO at the Q304 residue, negating its signaling adaptor function and abrogating viral induction of IFN-β synthesis via the retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5) and Toll-like receptor 3 (TLR3) pathways. NEMO cleavage and IFN antagonism, however, were lost upon ablation of the catalytic activity of 3Cpro. These data describe a novel immune evasion mechanism of HAV.
Collapse
Affiliation(s)
- Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dahai Wei
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Govind K, Bakshi A, Savithri HS. Interaction of Sesbania mosaic virus (SeMV) RNA-dependent RNA polymerase (RdRp) with the p10 domain of polyprotein 2a and its implications in SeMV replication. FEBS Open Bio 2014; 4:362-9. [PMID: 24918050 PMCID: PMC4050190 DOI: 10.1016/j.fob.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
SeMV RdRp strongly interacts with p10 domain of polyprotein 2a. C-terminal disordered domain of RdRp is required for interaction with p10. p10 acts as a positive regulator of RdRp activity.
Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp–p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, CΔ43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp.
Collapse
Key Words
- 3AT, 3 amino-1,2,4 triazol
- CP, coat protein
- IPTG, isopropyl-1thio-β-d-galactopyranoside
- LB, Luria Bertani broth
- LacZ, β-galactosidase
- MEL1, α-galactosidase
- MP, movement protein
- Ni–NTA, nickel–nitrilo tri-acetic acid
- ONPG, ortho-nitrophenyl-β-galactoside
- PBST, phosphate buffered saline with 0.1% TWEEN 20
- Pro, protease
- Protein-protein interactions
- RNA-dependent RNA polymerase (RdRp)
- RdRp, RNA-dependent RNA polymerase
- Replication
- SD, synthetic dropout
- SeMV, Sesbania mosaic virus
- Sesbania mosaic virus
- Sobemovirus
- VPg, viral protein genome linked
- Y2H, yeast two hybrid
Collapse
Affiliation(s)
- Kunduri Govind
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Bakshi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
18
|
Gingras R, Mekhssian K, Fenwick C, White PW, Thibeault D. Human rhinovirus VPg uridylylation AlphaScreen for high-throughput screening. ACTA ACUST UNITED AC 2013; 19:259-69. [PMID: 23813021 DOI: 10.1177/1087057113494805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an obligate step for picornaviruses to replicate their genome, the small viral peptide VPg must first be specifically conjugated with uridine nucleotides at a conserved tyrosine hydroxyl group. The resulting VPg-pUpU serves as the primer for genome replication. The uridylylation reaction requires the coordinated activity of many components, including the viral polymerase, a conserved internal RNA stem loop structure, and additional viral proteins. Formation of this complex and the resulting conjugation reaction catalyzed by the polymerase, offers a number of biochemical targets for inhibition of an essential process in the viral life cycle. Therefore, an assay recapitulating uridylylation would provide multiple opportunities for discovering potential antiviral agents. Our goal was to identify inhibitors of human rhinovirus (HRV) VPg uridylylation, which might ultimately be useful to reduce or prevent HRV-induced lower airway immunologic inflammatory responses, a major cause of asthma and chronic obstructive pulmonary disease exacerbations. We have reconstituted the complex uridylylation reaction in an AlphaScreen suitable for high-throughput screening, in which a rabbit polyclonal antiserum specific for uridylylated VPg serves as a key reagent. Assay results were validated by quantitative mass spectrometric detection of uridylylation.
Collapse
Affiliation(s)
- Rock Gingras
- 1Biological Sciences Department, Boehringer Ingelheim (Canada) Ltd., Laval, QC, Canada
| | | | | | | | | |
Collapse
|
19
|
Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer VPg: implication for a trans mechanism of VPg uridylylation. J Virol 2013; 87:5755-68. [PMID: 23487447 PMCID: PMC3648134 DOI: 10.1128/jvi.02733-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Picornavirus RNA replication is initiated by VPg uridylylation, during which the hydroxyl group of the third tyrosine residue of the virally encoded protein VPg is covalently linked to two UMP molecules by RNA-dependent RNA polymerase (RdRp; also known as 3D(pol)). We previously identified site 311, located at the base of the palm domain of the enterovirus 71 (EV71) RdRp, to be the site for EV71 VPg binding and uridylylation. Here we report the crystal structure of EV71 3D(pol) complexed with VPg. VPg was anchored at the bottom of the palm domain of the 3D(pol) molecule and exhibited an extended V-shape conformation. The corresponding interface on 3D(pol) was mainly formed by residues within site 311 and other residues in the palm and finger domains. Mutations of the amino acids of 3D(pol) involved in the VPg interaction (3DL319A, 3DD320A, and 3DY335A) significantly disrupted VPg binding to 3D(pol), resulting in defective VPg uridylylation. In contrast, these mutations did not affect the RNA elongation activity of 3D(pol). In the context of viral genomic RNA, mutations that abolished VPg uridylylation activity were lethal for EV71 replication. Further in vitro analysis showed that the uridylylation activity was restored by mixing VPg-binding-defective and catalysis-defective mutants, indicating a trans mechanism for EV71 VPg uridylylation. Our results, together with previous results of other studies, demonstrate that different picornaviruses use distinct binding sites for VPg uridylylation.
Collapse
|
20
|
van der Heden van Noort GJ, Schein CH, Overkleeft HS, van der Marel GA, Filippov DV. A general synthetic method toward uridylylated picornavirus VPg proteins. J Pept Sci 2013; 19:333-6. [PMID: 23606631 DOI: 10.1002/psc.2508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 01/29/2023]
Abstract
Small proteins called viral protein genome-linked (VPg), attached to the 5'-end of the viral RNA genome are found as common structure in the large family of picornaviruses. The replication of these viruses is primed by this VPg protein linked to a single uridylyl residue. We report a general procedure to obtain such nucleoproteins employing a pre-uridylylated tyrosine building block in an on-line solid phase-based approach.
Collapse
|
21
|
Abstract
VPg uridylylation is essential for picornavirus RNA replication. The VPg uridylylation reaction consists of the binding of VPg to 3D polymerase (3D(pol)) and the transfer of UMP by 3D(pol) to the hydroxyl group of the third amino acid Tyr of VPg. Previous studies suggested that different picornaviruses employ distinct mechanisms during VPg binding and uridylylation. Here, we report a novel site (Site-311, located at the base of the palm domain of EV71 3D(pol)) that is essential for EV71 VPg uridylylation as well as viral replication. Ala substitution of amino acids (T313, F314, and I317) at Site-311 reduced the VPg uridylylation activity of 3D(pol) by >90%. None of the Site-311 mutations affected the RNA elongation activity of 3D(pol), which indicates that Site-311 does not directly participate in RNA polymerization. However, mutations that abrogated VPg uridylylation significantly reduced the VPg binding ability of 3D(pol), which suggests that Site-311 is a potential VPg binding site on enterovirus 71 (EV71) 3D(pol). Mutation of a polymerase active site in 3D(pol) and Site-311 in 3D(pol) remarkably enables trans complementation to restore VPg uridylylation. In contrast, two distinct Site-311 mutants do not cause trans complementation in vitro. These results indicate that Site-311 is a VPg binding site that stabilizes the VPg molecule during the VPg uridylylation process and suggest a two-molecule model for 3D(pol) during EV71 VPg uridylylation, such that one 3D(pol) presents the hydroxyl group of Tyr3 of VPg to the polymerase active site of another 3D(pol), which in turn catalyzes VPg→VPg-pU conversion. For genome-length RNA, the Site-311 mutations that reduced VPg uridylylation were lethal for EV71 replication, which indicates that Site-311 is a potential antiviral target.
Collapse
|
22
|
Abstract
The genomic RNA of poliovirus and closely related picornaviruses perform template and non-template functions during viral RNA replication. The non-template functions are mediated by cis-active RNA sequences that bind viral and cellular proteins to form RNP complexes. The RNP complexes mediate temporally dynamic, long-range interactions in the viral genome and ensure the specificity of replication. The 5' cloverleaf (5' CL)-RNP complex serves as a key cis-active element in all of the non-template functions of viral RNA. The 5'CL-RNP complex is proposed to interact with the cre-RNP complex during VPgpUpU synthesis, the 3'NTR-poly(A) RNP complex during negative-strand initiation and the 30 end negative-strand-RNP complex during positive-strand initiation. Co-ordinating these long-range interactions is important in regulating each step in the replication cycle.
Collapse
Affiliation(s)
- Sushma A Ogram
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | | |
Collapse
|
23
|
Kortus MG, Kempf BJ, Haworth KG, Barton DJ, Peersen OB. A template RNA entry channel in the fingers domain of the poliovirus polymerase. J Mol Biol 2012; 417:263-78. [PMID: 22321798 PMCID: PMC3325025 DOI: 10.1016/j.jmb.2012.01.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 01/10/2023]
Abstract
Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.
Collapse
Affiliation(s)
- Matthew G. Kortus
- Department of Biochemistry & Molecular Biology, Colorado State University, 1870 Campus Delivery, Colorado State University, Fort Collins, CO80523-1870
| | - Brian J. Kempf
- Department of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Building RC-1 North, Room 9116, 12800 East 19th Avenue, MS8333, Aurora, CO 80045
| | - Kevin G. Haworth
- Department of Biochemistry & Molecular Biology, Colorado State University, 1870 Campus Delivery, Colorado State University, Fort Collins, CO80523-1870
| | - David J. Barton
- Department of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Building RC-1 North, Room 9116, 12800 East 19th Avenue, MS8333, Aurora, CO 80045
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, 1870 Campus Delivery, Colorado State University, Fort Collins, CO80523-1870
| |
Collapse
|
24
|
Promyelocytic leukemia isoform IV confers resistance to encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol 2011; 85:13164-73. [PMID: 21994459 DOI: 10.1128/jvi.05808-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promyelocytic leukemia (PML) protein is the organizer of nuclear matrix-associated nuclear bodies (NBs), and its conjugation to the small ubiquitin-like modifier (SUMO) is required for the formation of these structures. Several alternatively spliced PML transcripts from a single PML gene lead to the production of seven PML isoforms (PML isoform I [PMLI] to VII [PMLVII]), which all share a N-terminal region that includes the RBCC (RING, B boxes, and a α-helical coiled-coil) motif but differ in the C-terminal region. This diversity of PML isoforms determines the specific functions of each isoform. There is increasing evidence implicating PML in host antiviral defense and suggesting various strategies involving PML to counteract viral production. We reported that mouse embryonic fibroblasts derived from PML knockout mice are more sensitive than wild-type cells to infection with encephalomyocarditis virus (EMCV). Here, we show that stable expression of PMLIV or PMLIVa inhibited viral replication and protein synthesis, leading to a substantial reduction of EMCV multiplication. This protective effect required PMLIV SUMOylation and was not observed with other nuclear PML isoforms (I, II, III, V, and VI) or with the cytoplasmic PMLVII. We demonstrated that only PMLIV interacted with EMCV 3D polymerase (3Dpol) and sequestered it within PML NBs. The C-terminal region specific to PMLIV was required for both interaction with 3Dpol and the antiviral properties. Also, depletion of PMLIV by RNA interference significantly boosted EMCV production in interferon-treated cells. These findings indicate the mechanism by which PML confers resistance to EMCV. They also reveal a new pathway mediating the antiviral activity of interferon against EMCV.
Collapse
|
25
|
Tellez AB, Wang J, Tanner EJ, Spagnolo JF, Kirkegaard K, Bullitt E. Interstitial contacts in an RNA-dependent RNA polymerase lattice. J Mol Biol 2011; 412:737-50. [PMID: 21839092 DOI: 10.1016/j.jmb.2011.07.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/06/2011] [Accepted: 07/21/2011] [Indexed: 11/16/2022]
Abstract
Catalytic activities can be facilitated by ordered enzymatic arrays that co-localize and orient enzymes and their substrates. The purified RNA-dependent RNA polymerase from poliovirus self-assembles to form two-dimensional lattices, possibly facilitating the assembly of viral RNA replication complexes on the cytoplasmic face of intracellular membranes. Creation of a two-dimensional lattice requires at least two different molecular contacts between polymerase molecules. One set of polymerase contacts, between the "thumb" domain of one polymerase and the back of the "palm" domain of another, has been previously defined. To identify the second interface needed for lattice formation and to test its function in viral RNA synthesis, we used a hybrid approach of electron microscopic and biochemical evaluation of both wild-type and mutant viral polymerases to evaluate computationally generated models of this second interface. A unique solution satisfied all constraints and predicted a two-dimensional structure formed from antiparallel arrays of polymerase fibers that use contacts from the flexible amino-terminal region of the protein. Enzymes that contained mutations in this newly defined interface did not form lattices and altered the structure of wild-type lattices. When reconstructed into virus, mutations that disrupt lattice assembly exhibited growth defects, synthetic lethality or both, supporting the function of the oligomeric lattice in infected cells. Understanding the structure of polymerase lattices within the multimeric RNA-dependent RNA polymerase complex should facilitate antiviral drug design and provide a precedent for other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Andres B Tellez
- Department of Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
26
|
Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity. J Mol Biol 2011; 410:159-81. [PMID: 21575642 PMCID: PMC3114172 DOI: 10.1016/j.jmb.2011.04.078] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/27/2011] [Accepted: 04/30/2011] [Indexed: 02/02/2023]
Abstract
The viral RNA-dependent RNA polymerase (RdRp) is essential for multiplication of all RNA viruses. The sequence diversity of an RNA virus population contributes to its ability to infect the host. This diversity emanates from errors made by the RdRp during RNA synthesis. The physical basis for RdRp fidelity is unclear but is linked to conformational changes occurring during the nucleotide-addition cycle. To understand RdRp dynamics that might influence RdRp function, we have analyzed all-atom molecular dynamics simulations on the nanosecond timescale of four RdRps from the picornavirus family that exhibit 30–74% sequence identity. Principal component analysis showed that the major motions observed during the simulations derived from conserved structural motifs and regions of known function. The dynamics of residues participating in the same biochemical property, for example, RNA binding, nucleotide binding or catalysis, were correlated even when spatially distant on the RdRp structure. The conserved and correlated dynamics of functional structural elements suggest coevolution of dynamics with structure and function of the RdRp. Crystal structures of all picornavirus RdRps exhibit a template–nascent RNA duplex channel too small to fully accommodate duplex RNA. Simulations revealed opening and closing motions of the RNA and nucleoside triphosphate channels, which might be relevant to nucleoside triphosphate entry, inorganic pyrophosphate exit and translocation. A role for nanosecond timescale dynamics in RdRp fidelity is supported by the altered dynamics of the high-fidelity G64S derivative of PV RdRp relative to wild-type enzyme.
Collapse
|
27
|
Cameron CE, Oh HS, Moustafa IM. Expanding knowledge of P3 proteins in the poliovirus lifecycle. Future Microbiol 2010; 5:867-81. [PMID: 20521933 PMCID: PMC2904470 DOI: 10.2217/fmb.10.40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Poliovirus is the most extensively studied member of the order Picornavirales, which contains numerous medical, veterinary and agricultural pathogens. The picornavirus genome encodes a single polyprotein that is divided into three regions: P1, P2 and P3. P3 proteins are known to participate more directly in genome replication, for example by containing the viral RNA-dependent RNA polymerase (RdRp or 3Dpol), among several other proteins and enzymes. We will review recent data that provide new insight into the structure, function and mechanism of P3 proteins and their complexes, which are required for initiation of genome replication. Replication of poliovirus genomes occurs within macromolecular complexes, containing viral RNA, viral proteins and host-cell membranes, collectively referred to as replication complexes. P2 proteins clearly contribute to interactions with the host cell that are required for virus multiplication, including formation of replication complexes. We will discuss recent data that suggest a role for P3 proteins in formation of replication complexes. Among the least understood steps of the poliovirus lifecycle is encapsidation of genomic RNA. We will also describe data that suggest a role for P3 proteins in this step.
Collapse
Affiliation(s)
- Craig E Cameron
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
28
|
Spagnolo JF, Rossignol E, Bullitt E, Kirkegaard K. Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. RNA (NEW YORK, N.Y.) 2010; 16:382-93. [PMID: 20051491 PMCID: PMC2811667 DOI: 10.1261/rna.1955410] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Few antivirals are effective against positive-strand RNA viruses, primarily because the high error rate during replication of these viruses leads to the rapid development of drug resistance. One of the favored current targets for the development of antiviral compounds is the active site of viral RNA-dependent RNA polymerases. However, like many subcellular processes, replication of the genomes of all positive-strand RNA viruses occurs in highly oligomeric complexes on the cytosolic surfaces of the intracellular membranes of infected host cells. In this study, catalytically inactive polymerases were shown to participate productively in functional oligomer formation and catalysis, as assayed by RNA template elongation. Direct protein transduction to introduce either active or inactive polymerases into cells infected with mutant virus confirmed the structural role for polymerase molecules during infection. Therefore, we suggest that targeting the active sites of polymerase molecules is not likely to be the best antiviral strategy, as inactivated polymerases do not inhibit replication of other viruses in the same cell and can, in fact, be useful in RNA replication complexes. On the other hand, polymerases that could not participate in functional RNA replication complexes were those that contained mutations in the amino terminus, leading to altered contacts in the folded polymerase and mutations in a known polymerase-polymerase interaction in the two-dimensional protein lattice. Thus, the functional nature of multimeric arrays of RNA-dependent RNA polymerase supplies a novel target for antiviral compounds and provides a new appreciation for enzymatic catalysis on membranous surfaces within cells.
Collapse
Affiliation(s)
- Jeannie F Spagnolo
- 1Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The RNA-dependent RNA-polymerase, 3Dpol, is an essential component in the picornavirus genome for the replication of single stranded RNA. However, transgenic expression of 3Dpol in mice has antiviral effects. Here, we discuss the structure and function of 3Dpol during picornavirus replication, we review the evidence and consequence of a host immune response to epitopes in 3Dpol after picornavirus infection, highlight data showing the antiviral effects of transgenic 3Dpol from Theiler's murine encephalomyelitis virus (TMEV), and discuss potential mechanisms by which 3Dpol is causing this antiviral effect in mice.
Collapse
|
30
|
Ferrer-Orta C, Agudo R, Domingo E, Verdaguer N. Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Curr Opin Struct Biol 2009; 19:752-8. [PMID: 19914060 DOI: 10.1016/j.sbi.2009.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
RNA-dependent RNA polymerases (RdRPs) play central roles in both transcription and viral genome replication. In picornaviruses, these functions are catalyzed by the virally encoded RdRP, termed 3D. Polymerase 3D also catalyzes the covalent linkage of UMP to a tyrosine on the small protein VPg. Uridylylated VPg then serves as a protein primer for the initiation of RNA synthesis. Seven different crystal structures of foot-and-mouth disease virus (FMDV) 3D catalytic complexes have enhanced our understanding of template and primer recognition, VPg uridylylation, and rNTP binding and catalysis. Such structural information is providing new insights into the fidelity of RNA replication, and for the design of antiviral compounds.
Collapse
Affiliation(s)
- Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri i Reixac 10, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:495-517. [PMID: 19781674 PMCID: PMC2783963 DOI: 10.1016/j.bbagrm.2009.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 02/08/2023]
Abstract
The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.
Collapse
Affiliation(s)
- Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
32
|
Transgenic expression of the 3D polymerase inhibits Theiler's virus infection and demyelination. J Virol 2009; 83:12279-89. [PMID: 19759133 DOI: 10.1128/jvi.00664-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The RNA-dependent RNA polymerase 3D(pol) is required for the elongation of positive- and negative-stranded picornavirus RNA. During the course of investigating the effect of the transgenic expression of viral genes on the host immune response, we evaluated the viral load present in the host after infection. To our surprise, we found that 3D transgenic expression in genetically susceptible FVB mice led to substantially lower viral loads after infection with Theiler's murine encephalomyelitis virus (TMEV). As a result, spinal cord damage caused by chronic viral infection in the central nervous system was reduced in FVB mice that expressed 3D. This led to the preservation of large-diameter axons and motor function in these mice. The 3D transgene also lowered early viral loads when expressed in FVB-D(b) mice resistant to persistent TMEV infection. The protective effect of 3D transgenic expression was not altered in FVB-Rag(-/-).3D mice that are deficient in T and B cells, thus ruling out a mechanism by which the overexpression of 3D enhanced the adaptive immune clearance of the virus. Understanding how endogenously overexpressed 3D polymerase inhibits viral replication may lead to new strategies for targeting therapies to all picornaviruses.
Collapse
|
33
|
Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants. J Virol 2009; 83:9370-87. [PMID: 19587035 DOI: 10.1128/jvi.02076-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A poliovirus (PV) mutant (termed GG), which is incapable of producing 3AB, VPg, and 3CD proteins due to a defective cleavage site between the 3B and 3C proteins, replicated, producing 3BC-linked RNA rather than the VPg-linked RNA produced by the wild type (WT). GG PV RNA is quasi-infectious. The yield of infectious GG PV relative to replicated RNA is reduced by almost 5 logs relative to that of WT PV. Proteolytic activity required for polyprotein processing is normal for the GG mutant. 3BC-linked RNA can be encapsidated as efficiently as VPg-linked RNA. However, a step after genome replication but preceding virus assembly that is dependent on 3CD and/or 3AB proteins limits production of infectious GG PV. This step may involve release of replicated genomes from replication complexes. A pseudorevertant (termed EG) partially restored cleavage at the 3B-3C cleavage site. The reduced rate of formation of 3AB and 3CD caused corresponding reductions in the observed rate of genome replication and infectious virus production by EG PV without impacting the final yield of replicated RNA or infectious virus relative to that of WT PV. Using EG PV, we showed that genome replication and encapsidation were distinct steps in the multiplication cycle. Ectopic expression of 3CD protein reversed the genome replication phenotype without alleviating the infectious-virus production phenotype. This is the first report of a trans-complementable function for 3CD for any picornavirus. This observation supports an interaction between 3CD protein and viral and/or host factors that is critical for genome replication, perhaps formation of replication complexes.
Collapse
|
34
|
Claridge JK, Headey SJ, Chow JYH, Schwalbe M, Edwards PJ, Jeffries CM, Venugopal H, Trewhella J, Pascal SM. A picornaviral loop-to-loop replication complex. J Struct Biol 2009; 166:251-62. [PMID: 19268541 PMCID: PMC7172786 DOI: 10.1016/j.jsb.2009.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/30/2009] [Accepted: 02/21/2009] [Indexed: 11/28/2022]
Abstract
Picornaviruses replicate their RNA genomes through a highly conserved mechanism that involves an interaction between the principal viral protease (3C(pro)) and the 5'-UTR region of the viral genome. The 3C(pro) catalytic site is the target of numerous replication inhibitors. This paper describes the first structural model of a complex between a picornaviral 3C(pro) and a region of the 5'-UTR, stem-loop D (SLD). Using human rhinovirus as a model system, we have combined NMR contact information, small-angle X-ray scattering (SAXS) data, and previous mutagenesis results to determine the shape, position and relative orientation of the 3C(pro) and SLD components. The results clearly identify a 1:1 binding stoichiometry, with pronounced loops from each molecule providing the key binding determinants for the interaction. Binding between SLD and 3C(pro) induces structural changes in the proteolytic active site that is positioned on the opposite side of the protease relative to the RNA/protein interface, suggesting that subtle conformational changes affecting catalytic activity are relayed through the protein.
Collapse
Affiliation(s)
- Jolyon K Claridge
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pathak HB, Oh HS, Goodfellow IG, Arnold JJ, Cameron CE. Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation. J Biol Chem 2008; 283:30677-88. [PMID: 18779320 DOI: 10.1074/jbc.m806101200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5' ends of all picornaviral RNAs are linked covalently to the genome-encoded peptide, VPg (or 3B). VPg linkage is thought to occur in two steps. First, VPg serves as a primer for production of diuridylylated VPg (VPg-pUpU) in a reaction catalyzed by the viral polymerase that is templated by an RNA element (oriI). It is currently thought that the viral 3AB protein is the source of VPg in vivo. Second, VPg-pUpU is transferred to the 3' end of plus- and/or minus-strand RNA and serves as primer for production of full-length RNA. Nothing is known about the mechanism of transfer. We present biochemical and biological evidence refuting the use of 3AB as the donor for VPg uridylylation. Our data are consistent with precursors 3BC and/or 3BCD being employed for uridylylation. This conclusion is supported by in vitro uridylylation of these proteins, the ability of a mutant replicon incapable of producing processed VPg to replicate in HeLa cells and cell-free extracts and corresponding precursor processing profiles, and the demonstration of 3BC-linked RNA in mutant replicon-transfected cells. These data permit elaboration of our model for VPg uridylylation to include the use of precursor proteins and invoke a possible mechanism for location of the diuridylylated, VPg-containing precursor at the 3' end of plus- or minus-strand RNA for production of full-length RNA. Finally, determinants of VPg uridylylation efficiency suggest formation and/or collapse or release of the uridylylated product as the rate-limiting step in vitro depending upon the VPg donor employed.
Collapse
Affiliation(s)
- Harsh B Pathak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
36
|
Amero CD, Arnold JJ, Moustafa IM, Cameron CE, Foster MP. Identification of the oriI-binding site of poliovirus 3C protein by nuclear magnetic resonance spectroscopy. J Virol 2008; 82:4363-70. [PMID: 18305026 PMCID: PMC2293054 DOI: 10.1128/jvi.02087-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 02/21/2008] [Indexed: 12/17/2022] Open
Abstract
Replication of picornaviral genomes requires recognition of at least three cis-acting replication elements: oriL, oriI, and oriR. Although these elements lack an obvious consensus sequence or structure, they are all recognized by the virus-encoded 3C protein. We have studied the poliovirus 3C-oriI interaction in order to begin to decipher the code of RNA recognition by picornaviral 3C proteins. oriI is a stem-loop structure that serves as the template for uridylylation of the peptide primer VPg by the viral RNA-dependent RNA polymerase. In this report, we have used nuclear magnetic resonance (NMR) techniques to study 3C alone and in complex with two single-stranded RNA oligonucleotides derived from the oriI stem. The (1)H-(15)N spectra of 3C recorded in the presence of these RNAs revealed site-specific chemical shift perturbations. Residues that exhibit significant perturbations are primarily localized in the amino terminus and in a highly conserved loop between residues 81 and 89. In general, the RNA-binding site defined in this study is consistent with predictions based on biochemical and mutagenesis studies. Although some residues implicated in RNA binding by previous studies are perturbed in the 3C-RNA complex reported here, many are unique. These studies provide unique site-specific insight into residues of 3C that interact with RNA and set the stage for detailed structural investigation of the 3C-RNA complex by NMR. Interpretation of our results in the context of an intact oriI provides insight into the architecture of the picornavirus VPg uridylylation complex.
Collapse
Affiliation(s)
- C D Amero
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 201 Althouse Laboratory, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|