1
|
Ballasy N, Apantaku I, Dean W, Hemberger M. Off to a good start: The importance of the placental exchange surface - Lessons from the mouse. Dev Biol 2025; 517:248-264. [PMID: 39491740 DOI: 10.1016/j.ydbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The role of the chorio-allantoic placenta as the critical nutrient- and oxygen-supplying organ to nourish the demands of the fetus has been well recognized. This function relies on the successful establishment of the placental feto-maternal exchange unit, or interhaemal barrier, across which all nutrients as well as waste products must pass to cross from the maternal to the fetal blood circulation, or vice versa, respectively. As a consequence, defects in the establishment of this elaborate interface lead to fetal growth retardation or even embryonic lethality, depending on the severity of the defect. Beyond this essential role, however, it has also emerged that the functionality of the feto-maternal interface dictates the proper development of specific embryonic organs, with tightest links observed to the formation of the heart. In this article, we build on the foundational strength of the mouse as experimental model in which the placental causality of embryonic defects can be genetically proven. We discuss in detail the formation of the interhaemal barrier that makes up the labyrinth layer of the murine placenta, including insights into drivers of its formation and the interdependence of the cell types that make up this essential interface, from in vivo and in vitro data using mouse trophoblast stem cells. We highlight mouse genetic tools that enable the elucidation of cause-effect relationships between defects driven by either the trophoblast cells of the placenta or by embryonic cell types. We specifically emphasize gene knockouts for which a placental causality of embryonic heart defects has been demonstrated. This in-depth perspective provides much-needed insights while highlighting remaining gaps in knowledge that are essential for gaining a better understanding of the multi-facetted roles of the placenta in setting us up for a healthy start in life well beyond nutritional support alone.
Collapse
Affiliation(s)
- Noura Ballasy
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ifeoluwa Apantaku
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Dept. of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
2
|
A differentiation roadmap of murine placentation at single-cell resolution. Cell Discov 2023; 9:30. [PMID: 36928215 PMCID: PMC10020559 DOI: 10.1038/s41421-022-00513-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/25/2022] [Indexed: 03/18/2023] Open
Abstract
The placenta is one of the most important yet least understood organs. Due to the limitations of conventional research approaches, we are still far from a comprehensive understanding of mouse placentation, especially regarding the differentiation of trophoblast lineages at the early developmental stage. To decipher cell compositions and developmental processes, we systematically profile the single-cell transcriptomes of trophoblast cells from extraembryonic tissues (embryonic day 7.5 (E7.5) and E8.5) and placentae (E9.5-E14.5) at one-day intervals. We identify distinct trophoblast cell types during mouse placentation, including unreported progenitor cells and intermediate precursor cells. An updated differentiation roadmap of mouse trophoblast lineages is presented following systematic transcriptome analyses. Based on transcriptomic regulatory network inference, we specify transcription factors responsible for the regulation of dynamic developmental processes during lineage diversification. We map lineage differentiation trajectories and find that sinusoid trophoblast giant cells arise from the subpopulation of ectoplacental cone cells. We provide a comprehensive single-cell data resource to shed light on future mechanistic studies of the gene regulatory networks governing hemochorial placentation.
Collapse
|
3
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
4
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
5
|
Read JE, Cabrera-Sharp V, Kitscha P, Cartwright JE, King PJ, Fowkes RC, de Mestre AM. Glial Cells Missing 1 Regulates Equine Chorionic Gonadotrophin Beta Subunit via Binding to the Proximal Promoter. Front Endocrinol (Lausanne) 2018; 9:195. [PMID: 29755409 PMCID: PMC5932191 DOI: 10.3389/fendo.2018.00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Equine chorionic gonadotrophin (eCG) is a placental glycoprotein critical for early equine pregnancy and used therapeutically in a number of species to support reproductive activity. The factors in trophoblast that transcriptionally regulate eCGβ-subunit (LHB), the gene which confers the hormones specificity for the receptor, are not known. The aim of this study was to determine if glial cells missing 1 regulates LHB promoter activity. Here, studies of the LHB proximal promoter identified four binding sites for glial cells missing 1 (GCM1) and western blot analysis confirmed GCM1 was expressed in equine chorionic girdle (ChG) and surrounding tissues. Luciferase assays demonstrated endogenous activity of the LHB promoter in BeWo choriocarcinoma cells with greatest activity by a proximal 335 bp promoter fragment. Transactivation studies in COS7 cells using an equine GCM1 expression vector showed GCM1 could transactivate the proximal 335 bp LHB promoter. Chromatin immunoprecipitation using primary ChG trophoblast cells showed GCM1 to preferentially bind to the most proximal GCM1-binding site over site 2. Mutation of site 1 but not site 2 resulted in a loss of endogenous promoter activity in BeWo cells and failure of GCM1 to transactivate the promoter in COS-7 cells. Together, these data show that GCM1 binds to site 1 in the LHB promoter but also requires the upstream segment of the LHB promoter between -119 bp and -335 bp of the translation start codon for activity. GCM1 binding partners, ETV1, ETV7, HOXA13, and PITX1, were found to be differentially expressed in the ChG between days 27 and 34 and are excellent candidates for this role. In conclusion, GCM1 was demonstrated to drive the LHB promoter, through direct binding to a predicted GCM1-binding site, with requirement for another factor(s) to bind the proximal promoter to exert this function. Based on these findings, we hypothesize that ETV7 and HOXA13 act in concert with GCM1 to initiate LHB transcription between days 30 and 31, with ETV1 partnering with GCM1 to maintain transcription.
Collapse
Affiliation(s)
- Jordan E. Read
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Victoria Cabrera-Sharp
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Phoebe Kitscha
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Judith E. Cartwright
- St. Georges Medical School, Molecular and Clinical Sciences Research Institute, University of London, London, United Kingdom
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Robert C. Fowkes
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Amanda M. de Mestre
- Department Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- *Correspondence: Amanda M. de Mestre,
| |
Collapse
|
6
|
Imakawa K, Nakagawa S. The Phylogeny of Placental Evolution Through Dynamic Integrations of Retrotransposons. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:89-109. [PMID: 28110755 DOI: 10.1016/bs.pmbts.2016.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trophoblasts, a major constituent of the placenta, are known to express genes derived from various endogenous retroviruses (ERVs) as well as LTR retrotransposons. However, the evolutionary significance of ERV-derived genes involved in placental development has not been well characterized. In this review, we catalog the diverse morphology of placental structure among mammalian species with note of counterintuitive developments. We then detail the history of ancient placenta development with paternally expressed gene 10 (Peg10/Sirh1), Peg11/Sirh2, and Sirh7/Ldoc1 as LTR retrotransposons, followed by independent captures of ERV-env-related genes such as Syncytin-1, -2, -A, -B, -Rum1, and Fematrin-1 responsible for trophoblast cell fusion, resulting in multinucleate syncytiotrophoblast formation, and possibly morphological diversification of placentas. Because the endogenization of retroviral infections has occurred multiple times independently in different mammalian lineages, and some use the same molecules in their transcriptional activation, we speculate that ERV gene variants integrated into mammalian genomes in a locus-specific manner have replaced the genes previously responsible for cell fusion. Moreover, ERVs also work as transcriptional regulators of various genes such as interferon (IFN)-stimulated genes. The "baton pass" hypothesis suggests that evolutionary events caused by multiple successive retrotransposon integrations, possibly resulting in effective fusogenic activity, downstream gene transcription in a temporal and spatial manner, and/or increased diversity of placental structures.
Collapse
Affiliation(s)
- K Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Japan.
| | - S Nakagawa
- Biomedical Informatics Laboratory, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
7
|
Baines K, Renaud S. Transcription Factors That Regulate Trophoblast Development and Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:39-88. [DOI: 10.1016/bs.pmbts.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Contribution of Syncytins and Other Endogenous Retroviral Envelopes to Human Placenta Pathologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:111-162. [DOI: 10.1016/bs.pmbts.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Rahat B, Thakur S, Hamid A, Bagga R, Kaur J. Association of aberrant methylation at promoter regions of tumor suppressor genes with placental pathologies. Epigenomics 2016; 8:767-787. [PMID: 27337502 DOI: 10.2217/epi.16.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
AIM The resemblance between invasive behavior of cancer cells and placental trophoblasts and the role of aberrant epigenetic regulation in cancer development is well known. METHODS We analyzed the role of promoter region CpG-methylation and H3K9/27me3 of tumor suppressor genes in normal and pathological pregnancies and utilized their CpG-methylation data to search for fetal DNA epigenetic marker in maternal blood. RESULTS CpG and H3K9/27-methylation associated decreased expression of RASSF1A and APC and increased expression of P16, RB1 and PRKCDBP was observed with advancing normal gestation. Gestational trophoblastic diseases and preeclampsia revealed gene-specific epigenetic deregulation of candidate tumor suppressor genes. Furthermore, APC and PRKCDBP showed the potential to act as fetal DNA epigenetic markers, similar to RASSF1A. CONCLUSION Deregulation of methylation of tumor suppressor genes contributes to the development of preeclampsia and gestational trophoblastic diseases. APC and PRKCDBP may act as fetal DNA epigenetic markers for prenatal diagnosis.
Collapse
Affiliation(s)
- Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rashmi Bagga
- Department of Obstetrics & Gynecology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
10
|
Genbacev O, Larocque N, Ona K, Prakobphol A, Garrido-Gomez T, Kapidzic M, Bárcena A, Gormley M, Fisher SJ. Integrin α4-positive human trophoblast progenitors: functional characterization and transcriptional regulation. Hum Reprod 2016; 31:1300-14. [PMID: 27083540 DOI: 10.1093/humrep/dew077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION What are the functional characteristics and transcriptional regulators of human trophoblast progenitor cells (TBPCs)? SUMMARY ANSWER TBPC lines established from the human smooth chorion by cell sorting for integrin α4 expressed markers of stemness and trophoblast (TB) stage-specific antigens, invaded Matrigel substrates and contributed to the cytotrophoblasts (CTBs) layer of smooth chorion explants with high-mobility group protein HMGI-C (HMGA2) and transcription factor GATA-4 (GATA4) controlling their progenitor state and TB identity. WHAT IS KNOWN ALREADY Previously, we reported the derivation of TBPC lines by trypsinization of colonies that formed in cultures of chorionic mesenchyme cells that were treated with an activin nodal inhibitor. Microarray analyses showed that, among integrins, α4 was most highly expressed, and identified HMGA2 and GATA4 as potential transcriptional regulators. STUDY DESIGN, SIZE, DURATION The aim of this study was to streamline TBPC derivation across gestation. High-cell surface expression of integrin α4 enabled the use of a fluorescence-activated cell sorter (FACS) approach for TBPC isolation from the human smooth chorion (n = 6 lines). To confirm their TBPC identity, we profiled their expression of stemness and TB markers, and growth factor receptors. At a functional level, we assayed their invasive capacity (n = 3) and tropism for the CTB layer of the smooth chorion (n = 3). At a molecular level, we studied the roles of HMGA2 and GATA4. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Cells were enzymatically disassociated from the human smooth chorion across gestation. FACS was used to isolate the integrin α4-positive population. In total, we established six TBPC lines, two per trimester. Their identity was determined by immunolocalization of a suite of antigens. Function was assessed via Matrigel invasion and co-culture with explants of the human smooth chorion. An siRNA approach was used to down-regulate HMGA2 and GATA4 expression and the results were confirmed by immunoblotting and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The endpoints analyzed included proliferation, as determined by 5-bromo-2'-deoxyuridine (BrDU) incorporation, and the expression of stage-specific antigens and hormones, as determined by qRT-PCR and immunostaining approaches. MAIN RESULTS AND THE ROLE OF CHANCE As with the original cell lines, the progenitors expressed a combination of human embryonic stem cell and TB markers. Upon differentiation, they primarily formed CTBs, which were capable of Matrigel invasion. Co-culture of the cells with smooth chorion explants enabled their migration through the mesenchyme after which they intercalated within the chorionic CTB layer. Down-regulation of HMGA2 showed that this DNA-binding protein governed their self-renewal. Both HMGA2 and GATA4 had pleitropic effects on the cells' progenitor state and TB identity. LIMITATIONS, REASONS FOR CAUTION This study supported our hypothesis that TBPCs from the chorionic mesenchyme can contribute to the subpopulation of CTBs that reside in the smooth chorion. In the absence of in vivo data, which is difficult to obtain in humans, the results have the limitations common to all in vitro studies. WIDER IMPLICATIONS OF THE FINDINGS The accepted view is that progenitors reside among the villous CTB subpopulation. Here, we show that TBPCs also reside in the mesenchymal layer of the smooth chorion throughout gestation. We theorize that they can contribute to the CTB layer in this region. This phenomenon may be particularly important in pathological situations when CTBs of the smooth chorion might provide a functional reserve for CTBs of the placenta proper. STUDY FUNDING/COMPETING INTERESTS Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award P50HD055764. O.G., N.L., K.O., A.P., T.G.-G., M.K., A.B., M.G. have nothing to disclose. S.J.F. received licensing fees and royalties from SeraCare Life Sciences for trisomic TBPC lines that were derived according to the methods described in this manuscript. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- O Genbacev
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - N Larocque
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Ona
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - A Prakobphol
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - T Garrido-Gomez
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics and Gynecology, Fundacion IVI, Instituto Universitario IVI, School of Medicine, Universidad de Valencia, INCLIVA, Valencia, Spain
| | - M Kapidzic
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - A Bárcena
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - M Gormley
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - S J Fisher
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Abstract
A placenta as we know now is a relatively new invention in mammals. Data accumulated indicates that a major cell type of the placenta is trophoblast, in which elevated expression of genes derived from various endogenous retroviruses (ERVs) as well as LTR retrotransposons is seen. However, evolutionally significance of ERV expression in placental development has not been well characterized or sorted out. In this review, we describe diversity of placental structures among mammalian species, of which morphological and cells types are far more diverse than those expected from the lines of mammalian orders. We then describe paternally expressed gene 10 (Peg10/Sirh1) and Peg11/Sirh2 as ERVs associated with ancient placenta development, followed by env-related genes such as Syncytin-1, -2, -A, -B, -Rum1, and Fematrin-1 responsible for trophoblast cells fusion, resulting in multinucleate syncytiotrophoblast formation. Because the endogenization of retroviral infections has occurred multiple times in different mammalian lineages, and some of them use similar molecules in their transcriptional activation, we speculate that ERV gene variants integrated into mammalian genomes in a locus specific manner have replaced the genes previously responsible for cell fusion. The role of cell fusion achieved by multiple successive ERV integrations is now called ''baton pass'' hypothesis, possibly resulting in increased trophoblast cell fusion, morphological diversity in placental structures, and survivability of fetuses and/or reproductive advantage in placental mammals.
Collapse
Affiliation(s)
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine
| | - Kazuya Kusama
- Animal Resource Science Center, The University of Tokyo
| |
Collapse
|
12
|
Imakawa K, Nakagawa S, Miyazawa T. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 2015; 20:771-88. [PMID: 26442811 DOI: 10.1111/gtc.12278] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/14/2015] [Indexed: 12/23/2022]
Abstract
It is well accepted that numerous RNAs derived from endogenous retroviruses (ERVs) are expressed in mammalian reproductive structures, particularly in the uterus, trophoblast, and placenta. Syncytin 1 and syncytin 2 in humans and syncytin A and syncytin B in mice are membrane proteins originating from Env genes of ERVs. These ERVs are involved in the fusion of trophoblast cells, resulting in multinucleated syncytiotrophoblast formation. Evidence accumulated indicates that syncytin-like fusogenic proteins are expressed in the placenta of rabbits, dogs/cats, ruminant ungulates, tenrecs, and opossums. The syncytin genes so far characterized are known to be endogenized to the host genome only within the past 12-80 million years, more recently than the appearance of mammalian placentas, estimated to be 160-180 million years ago. We speculate that ERVs including syncytin-like gene variants integrated into mammalian genomes in a locus-specific manner have replaced the genes previously responsible for cell fusion. We therefore propose the 'baton pass' hypothesis, in which multiple successive ERV variants 'take over' cell-fusion roles, resulting in increased trophoblast cell fusion, morphological variations in placental structures, and enhanced reproductive success in placental mammals.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - So Nakagawa
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
13
|
Imakawa K, Bai R, Fujiwara H, Kusama K. Conceptus implantation and placentation: molecules related to epithelial-mesenchymal transition, lymphocyte homing, endogenous retroviruses, and exosomes. Reprod Med Biol 2015; 15:1-11. [PMID: 29259417 DOI: 10.1007/s12522-015-0215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023] Open
Abstract
Processes of conceptus implantation and placentation, unique to mammalian reproduction, have been extensively studied. It was once thought that processes of these events varied greatly, notably between invasive and noninvasive modes of implantation and/or placentation. Regardless of the mode of implantation, however, physiological and biochemical processes in conceptus implantation to the maternal endometrium including the kinds of gene expression and their products are now considered not to differ so much. Recent progress has identified that in addition to the hormones, cytokines, proteases and cell adhesion molecules classically characterized, epithelial-mesenchymal transition, molecules related to lymphocyte homing, the expression of endogenous retroviruses and possibly exosomes are all required for the progression of conceptus implantation to placentation. In this review, therefore, new findings related to these events are integrated into the context of conceptus implantation to the maternal endometrium.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Rulan Bai
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medicine Science Kanazawa University 920-1192 Kanazawa Japan
| | - Kazuya Kusama
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| |
Collapse
|
14
|
Soncin F, Natale D, Parast MM. Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci 2014; 72:1291-302. [PMID: 25430479 DOI: 10.1007/s00018-014-1794-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/01/2022]
Abstract
The mouse is often used as a model for understanding human placentation and offers multiple advantages, including the ability to manipulate gene expression in specific compartments and to derive trophoblast stem cells, which can be maintained or differentiated in vitro. Nevertheless, there are numerous differences between the mouse and human placentas, only the least of which are structural. This review aims to compare mouse and human placentation, with a focus on signaling pathways involved in trophoblast lineage-specific differentiation.
Collapse
Affiliation(s)
- Francesca Soncin
- Department of Pathology, Sanford Consortium for Regenerative Medicine, University of California San Diego, 9500 Gilman Drive, MC 0695, La Jolla, CA, 92093, USA,
| | | | | |
Collapse
|
15
|
Role of the vasohibin family in the regulation of fetoplacental vascularization and syncytiotrophoblast formation. PLoS One 2014; 9:e104728. [PMID: 25184477 PMCID: PMC4153575 DOI: 10.1371/journal.pone.0104728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023] Open
Abstract
Vasohibin-1 (VASH1) and vasohibin-2 (VASH2), the 2 members of the vasohibin family, have been identified as novel regulators of angiogenesis. VASH1 ceases angiogenesis, whereas VASH2 stimulates sprouting. Here we characterized their functional role in the placenta. Immunohistochemical analysis of human placental tissue clarified their distinctive localization; VASH1 in endothelial cells and VASH2 in trophoblasts. We then used a mouse model to explore their function. Wild-type, Vash1(−/−), and Vash2(−/−) mice on a C57BL6 background were used in their first pregnancy. As expected, the fetal vascular area was increased in the Vash1(−/−) mice, whereas it was decreased in the Vash2(−/−) mice relative to wild-type. In addition, we noticed that the Vash2(−/−) mice at 18.5dpc displayed thinner villi of the labyrinth and larger maternal lacunae. Careful observation by an electron microscopy revealed that the syncytiotrophoblast formation was defective in the Vash2(−/−) mice. To test the possible involvement of VASH2 in the syncytiotrophoblast formation, we examined the fusion of BeWo cells, a human trophoblastoid choriocarcinoma cell line. The forskolin treatment induced the fusion of BeWo cells, and the knockdown of VASH2 expression significantly inhibited this cell fusion. Conversely, the overexpression of VASH2 by the infection with adenovirus vector encoding human VASH2 gene significantly increased the fusion of BeWo cells. Glial cell missing-1 and endogenous retrovirus envelope glycoprotein Syncytin 1 and Syncytin 2 are known to be involved in the fusion of trophoblasts. However, VASH2 did not alter their expression in BeWo cells. These results indicate that VASH1 and VASH2 showed distinctive localization and opposing function on the fetoplacental vascularization. Moreover, our study shows for the first time that VASH2 expressed in trophoblasts is involved in the regulation of cell fusion for syncytiotrophoblast formation.
Collapse
|
16
|
Tache V, Ciric A, Moretto-Zita M, Li Y, Peng J, Maltepe E, Milstone DS, Parast MM. Hypoxia and trophoblast differentiation: a key role for PPARγ. Stem Cells Dev 2013; 22:2815-24. [PMID: 23767827 DOI: 10.1089/scd.2012.0596] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tissue oxygen tension regulates differentiation of multiple types of stem cells. In the placenta, hypoxia has been associated with abnormal trophoblast differentiation and placental insufficiency syndromes of preeclampsia (PE) and intrauterine growth restriction (IUGR). Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor involved in many cellular processes, including differentiation. We have previously shown that PPARγ-null trophoblast stem (TS) cells show a defect in differentiation to labyrinthine trophoblast, instead differentiating preferentially to trophoblast giant cells (TGC). Since PPARγ is known to be regulated by hypoxia in adipose tissue, we hypothesized that there may be a link between oxygen tension, PPARγ expression, and trophoblast differentiation. We found that hypoxia reduced PPARγ expression by a mechanism independent of both hypoxia-inducible factor (HIF) and histone deacetylases (HDACs). In addition, PPARγ partially rescued hypoxia-induced inhibition of labyrinthine differentiation in wild-type TS cells but was not required for hypoxia-induced inhibition of TGC differentiation. Finally, we show that induction of labyrinthine trophoblast differentiation by HDAC inhibitor treatment is independent of both PPARγ and Gcm1. We propose a model with two pathways for labyrinthine trophoblast differentiation of TS cells, one of which is dependent on PPARγ and inhibited by hypoxia. Since hypoxia is associated with PE and IUGR, we propose that PPARγ may at least partially mediate hypoxia-induced placental insufficiency and as such may be a promising therapeutic target for these disorders.
Collapse
Affiliation(s)
- Veronique Tache
- 1 Department of Obstetrics and Gynecology, University of California , Davis, Sacramento, California
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Na KH, Lee HJ, Choi JH, Eun JW, Nam SW, Yoon TK, Kim GJ. Dynamic alterations in integrin α4 expression by hypoxia are involved in trophoblast invasion during early implantation. J Cell Biochem 2012; 113:685-94. [DOI: 10.1002/jcb.23398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Genbacev O, Donne M, Kapidzic M, Gormley M, Lamb J, Gilmore J, Larocque N, Goldfien G, Zdravkovic T, McMaster MT, Fisher SJ. Establishment of human trophoblast progenitor cell lines from the chorion. Stem Cells 2011; 29:1427-36. [PMID: 21755573 PMCID: PMC3345889 DOI: 10.1002/stem.686] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Placental trophoblasts are key determinants of in utero development. Mouse trophoblast (TB) stem cells, which were first derived over a decade ago, are a powerful cell culture model for studying their self-renewal or differentiation. Our attempts to isolate an equivalent population from the trophectoderm of human blastocysts generated colonies that quickly differentiated in vitro. This finding suggested that the human placenta has another progenitor niche. Here, we show that the chorion is one such site. Initially, we immunolocalized pluripotency factors and TB fate determinants in the early gestation placenta, amnion, and chorion. Immunoreactive cells were numerous in the chorion. We isolated these cells and plated them in medium containing fibroblast growth factor which is required for human embryonic stem cell self-renewal, and an inhibitor of activin/nodal signaling. Colonies of polarized cells with a limited lifespan emerged. Trypsin dissociation yielded continuously self-replicating monolayers. Colonies and monolayers formed the two major human TB lineages-multinucleate syncytiotrophoblasts and invasive cytotrophoblasts (CTBs). Transcriptional profiling experiments revealed the factors associated with the self-renewal or differentiation of human chorionic TB progenitor cells (TBPCs). They included imprinted genes, NR2F1/2, HMGA2, and adhesion molecules that were required for TBPC differentiation. Together, the results of these experiments suggested that the chorion is one source of epithelial CTB progenitors. These findings explain why CTBs of fully formed chorionic villi have a modest mitotic index and identify the chorionic mesoderm as a niche for TBPCs that support placental growth.
Collapse
Affiliation(s)
- Olga Genbacev
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The role of placental homeobox genes in human fetal growth restriction. J Pregnancy 2011; 2011:548171. [PMID: 21547091 PMCID: PMC3087155 DOI: 10.1155/2011/548171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/17/2011] [Indexed: 12/04/2022] Open
Abstract
Fetal growth restriction (FGR) is an adverse pregnancy outcome associated with significant perinatal and paediatric morbidity and mortality, and an increased risk of chronic disease later in adult life. One of the key causes of adverse pregnancy outcome is fetal growth restriction (FGR). While a number of maternal, fetal, and environmental factors are known causes of FGR, the majority of FGR cases remain idiopathic. These idiopathic FGR pregnancies are frequently associated with placental insufficiency, possibly as a result of placental maldevelopment. Understanding the molecular mechanisms of abnormal placental development in idiopathic FGR is, therefore, of increasing importance. Here, we review our understanding of transcriptional control of normal placental development and abnormal placental development associated with human idiopathic FGR. We also assess the potential for understanding transcriptional control as a means for revealing new molecular targets for the detection, diagnosis, and clinical management of idiopathic FGR.
Collapse
|
20
|
Lin FY, Chang CW, Cheong ML, Chen HC, Lee DY, Chang GD, Chen H. Dual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation. Nucleic Acids Res 2010; 39:848-61. [PMID: 20855292 PMCID: PMC3035457 DOI: 10.1093/nar/gkq838] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glial cells missing homolog 1 (GCM1) is a transcription factor essential for placental development. GCM1 promotes syncytiotrophoblast formation and placental vasculogenesis by activating fusogenic and proangiogenic gene expression in placenta. GCM1 activity is regulated by multiple post-translational modifications. The cAMP/PKA-signaling pathway promotes CBP-mediated GCM1 acetylation and stabilizes GCM1, whereas hypoxia-induced GSK-3β-mediated phosphorylation of Ser322 causes GCM1 ubiquitination and degradation. How and whether complex modifications of GCM1 are coordinated is not known. Here we show that the interaction of GCM1 and dual-specificity phosphatase 23 (DUSP23) is enhanced by PKA-dependent phosphorylation of GCM1 on Ser269 and Ser275. The recruitment of DUSP23 reverses GSK-3β-mediated Ser322 phosphorylation, which in turn promotes GCM1 acetylation, stabilization and activation. Supporting a central role in coordinating GCM1 modifications, knockdown of DUSP23 suppressed GCM1 target gene expression and placental cell fusion. Our study identifies DUSP23 as a novel factor that promotes placental cell fusion and reveals a complex regulation of GCM1 activity by coordinated phosphorylation, dephosphorylation and acetylation.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Graduate Institute of Biochemical Sciences, National Taiwan University, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Weinländer K, Naschberger E, Lehmann MH, Tripal P, Paster W, Stockinger H, Hohenadl C, Stürzl M. Guanylate binding protein-1 inhibits spreading and migration of endothelial cells through induction of integrin alpha4 expression. FASEB J 2008; 22:4168-78. [PMID: 18697840 DOI: 10.1096/fj.08-107524] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human guanylate binding protein-1 (GBP-1) is a large GTPase that is induced by inflammatory cytokines and acts antiangiogenically through the inhibition of endothelial cell proliferation and migration. In this study, we detected that GBP-1-expressing cells show a significantly reduced spreading and migration on fibronectin matrices. Investigating possible mechanisms of these effects, we found that integrin alpha(4) (ITGA4) was consistently up-regulated at both the RNA and protein level in GBP-1-expressing cell cultures. Inhibition of cell spreading and migration by GBP-1 was dependent on the binding of ITGA4 to fibronectin. The inflammatory cytokines IL-1beta and TNF-alpha induced ITGA4 expression in HUVECs and inhibited spreading and migration. Knockdown of GBP-1 by shRNA abrogated inflammatory cytokine induced ITGA4 expression and restored spreading and migration capabilities of the cells. These results show that inhibition of endothelial cell spreading and migration by inflammatory cytokines is mediated by GBP-1 through induction of ITGA4 expression. Endothelial cell migration is a key process during angiogenesis. Therefore, ITGA4 may be a novel molecular target to modulate angiogenesis in human disease.
Collapse
Affiliation(s)
- Kristina Weinländer
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schubert SW, Abendroth A, Kilian K, Vogler T, Mayr B, Knerr I, Hashemolhosseini S. bZIP-Type transcription factors CREB and OASIS bind and stimulate the promoter of the mammalian transcription factor GCMa/Gcm1 in trophoblast cells. Nucleic Acids Res 2008; 36:3834-46. [PMID: 18495750 PMCID: PMC2441803 DOI: 10.1093/nar/gkn306] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the master regulators of placental cell fusion in mammals leading to multi-nucleated syncytiotrophoblasts is the transcription factor GCMa. Recently, we proved that the cAMP-driven protein kinase A signaling pathway is fundamental for up-regulation of GCMa transcript levels and protein stability. Here, we show that Transducer of Regulated CREB activity (TORC1), the human co-activator of cAMP response element-binding protein (CREB), but not a dominant-negative CREB mutant, significantly up-regulates the GCMa promoter. We identified potential cAMP response element (CRE)-binding sites within the GCMa promoter upstream of the transcriptional start site. Only the CRE site at -1337 interacted strongly with CREB in promoter mapping experiments. The characterization of GCMa promoter mutants and additional bZIP-type family members demonstrated that also old astrocyte specifically-induced substance (OASIS) is able to stimulate GCMa transcription. Knockdown of endogenous CREB or OASIS in BeWo cells decreased endogenous GCMa mRNA level and activity. Overexpression of TORC1 or OASIS in choriocarcinoma cells led to placental cell fusion, accompanied by placental expression of gap junction forming protein connexin-43. Further, we show that CREB expression is replaced by OASIS expression around E12.5 suggesting that a sequential order of bZIP-type family members ensures a high rate of GCMa transcription throughout placentation.
Collapse
Affiliation(s)
- Steffen Wolfgang Schubert
- Institut für Biochemie, Emil-Fischer-Zentrum, Kinder- und Jugendklinik and Nikolaus-Fiebiger-Zentrum, Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|