1
|
Banu K, Lin Q, Basgen JM, Planoutene M, Wei C, Reghuvaran AC, Tian X, Shi H, Garzon F, Garzia A, Chun N, Cumpelik A, Santeusanio AD, Zhang W, Das B, Salem F, Li L, Ishibe S, Cantley LG, Kaufman L, Lemley KV, Ni Z, He JC, Murphy B, Menon MC. AMPK mediates regulation of glomerular volume and podocyte survival. JCI Insight 2021; 6:e150004. [PMID: 34473647 PMCID: PMC8525649 DOI: 10.1172/jci.insight.150004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Herein, we report that Shroom3 knockdown, via Fyn inhibition, induced albuminuria with foot process effacement (FPE) without focal segmental glomerulosclerosis (FSGS) or podocytopenia. Interestingly, knockdown mice had reduced podocyte volumes. Human minimal change disease (MCD), where podocyte Fyn inactivation was reported, also showed lower glomerular volumes than FSGS. We hypothesized that lower glomerular volume prevented the progression to podocytopenia. To test this hypothesis, we utilized unilateral and 5/6th nephrectomy models in Shroom3-KD mice. Knockdown mice exhibited less glomerular and podocyte hypertrophy after nephrectomy. FYN-knockdown podocytes had similar reductions in podocyte volume, implying that Fyn was downstream of Shroom3. Using SHROOM3 or FYN knockdown, we confirmed reduced podocyte protein content, along with significantly increased phosphorylated AMPK, a negative regulator of anabolism. AMPK activation resulted from increased cytoplasmic redistribution of LKB1 in podocytes. Inhibition of AMPK abolished the reduction in glomerular volume and induced podocytopenia in mice with FPE, suggesting a protective role for AMPK activation. In agreement with this, treatment of glomerular injury models with AMPK activators restricted glomerular volume, podocytopenia, and progression to FSGS. Glomerular transcriptomes from MCD biopsies also showed significant enrichment of Fyn inactivation and Ampk activation versus FSGS glomeruli. In summary, we demonstrated the important role of AMPK in glomerular volume regulation and podocyte survival. Our data suggest that AMPK activation adaptively regulates glomerular volume to prevent podocytopenia in the context of podocyte injury.
Collapse
Affiliation(s)
- Khadija Banu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qisheng Lin
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John M Basgen
- Morphometry and Stereology Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Marina Planoutene
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anand C Reghuvaran
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuefei Tian
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hongmei Shi
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Felipe Garzon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Nicholas Chun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arun Cumpelik
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew D Santeusanio
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Li
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shuta Ishibe
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lloyd G Cantley
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lewis Kaufman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin V Lemley
- Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barbara Murphy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Hilzenrat G, Pandžić E, Yang Z, Nieves DJ, Goyette J, Rossy J, Ma Y, Gaus K. Conformational States Control Lck Switching between Free and Confined Diffusion Modes in T Cells. Biophys J 2020; 118:1489-1501. [PMID: 32097620 PMCID: PMC7091564 DOI: 10.1016/j.bpj.2020.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
T cell receptor phosphorylation by Lck is an essential step in T cell activation. It is known that the conformational states of Lck control enzymatic activity; however, the underlying principles of how Lck finds its substrate over the plasma membrane remain elusive. Here, single-particle tracking is paired with photoactivatable localization microscopy to observe the diffusive modes of Lck in the plasma membrane. Individual Lck molecules switched between free and confined diffusion in both resting and stimulated T cells. Lck mutants locked in the open conformation were more confined than Lck mutants in the closed conformation. Further confinement of kinase-dead versions of Lck suggests that Lck confinement was not caused by phosphorylated substrates. Our data support a model in which confined diffusion of open Lck results in high local phosphorylation rates, and inactive, closed Lck diffuses freely to enable long-range distribution over the plasma membrane.
Collapse
Affiliation(s)
- Geva Hilzenrat
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia; Commonwealth Scientific and Industry Research Organization (CSIRO), Manufacturing, Clayton, Victoria, Australia
| | - Elvis Pandžić
- BioMedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Zhengmin Yang
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Daniel J Nieves
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia; Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Jérémie Rossy
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
| | - Yuanqing Ma
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Oncogenic KRas mobility in the membrane and signaling response. Semin Cancer Biol 2019; 54:109-113. [DOI: 10.1016/j.semcancer.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
|
5
|
Ouyang M, Wan R, Qin Q, Peng Q, Wang P, Wu J, Allen M, Shi Y, Laub S, Deng L, Lu S, Wang Y. Sensitive FRET Biosensor Reveals Fyn Kinase Regulation by Submembrane Localization. ACS Sens 2019; 4:76-86. [PMID: 30588803 DOI: 10.1021/acssensors.8b00896] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fyn kinase plays crucial roles in hematology and T cell signaling; however, there are currently limited tools to visualize the dynamic Fyn activity in live cells. Here we developed and characterized a highly sensitive Fyn biosensor based on fluorescence resonance energy transfer (FRET) to monitor Fyn kinase activity in live cells. Our results show that Fyn kinase activity can be induced in both mouse embryonic fibroblasts (MEFs) and T cells by ligand engagement. Two different motifs were further introduced to target the biosensor at the cellular membrane microdomains in MEFs, revealing that the Fyn-tagged biosensor had 70% greater response to growth factor stimulation than the Lyn-tagged version. This suggests that the plasma membrane microdomains can be categorized into different functional subdomains. Further experiments show that while the membrane accessibility is necessary for Fyn activation, the localization of Fyn outside of its microdomains causes its hyperactivity, indicating that membrane microdomains provide a suppressive microenvironment for Fyn regulation in MEFs. Interestingly, a relatively high Fyn activity can be observed at perinuclear regions, further supporting the notion that the membrane microenvironment has a significant impact on the local molecular functions. Our work hence highlights a novel Fyn FRET biosensor for live cell imaging and its application in revealing an intricate submembrane regulation of Fyn in live MEFs.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Rongxue Wan
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qin Qin
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Qin Peng
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Pengzhi Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Jenny Wu
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Molly Allen
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Yiwen Shi
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Shannon Laub
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Shaoying Lu
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Ballek O, Valečka J, Dobešová M, Broučková A, Manning J, Řehulka P, Stulík J, Filipp D. TCR Triggering Induces the Formation of Lck-RACK1-Actinin-1 Multiprotein Network Affecting Lck Redistribution. Front Immunol 2016; 7:449. [PMID: 27833610 PMCID: PMC5081367 DOI: 10.3389/fimmu.2016.00449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023] Open
Abstract
The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 s after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck, which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1-Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4+ T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck.
Collapse
Affiliation(s)
- Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Jan Valečka
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Martina Dobešová
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Adéla Broučková
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - Pavel Řehulka
- Faculty of Military Health Sciences, Institute of Molecular Pathology , Hradec Králové , Czech Republic
| | - Jiří Stulík
- Faculty of Military Health Sciences, Institute of Molecular Pathology , Hradec Králové , Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR , Prague , Czech Republic
| |
Collapse
|
7
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res 2015; 2015:395371. [PMID: 26539553 PMCID: PMC4619936 DOI: 10.1155/2015/395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
The Lck interacting protein Tip of Herpesvirus saimiri is responsible for T-cell transformation both in vitro and in vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human and Aotus sp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.
Collapse
|
9
|
Signaling by Fyn-ADAP via the Carma1-Bcl-10-MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nat Immunol 2013; 14:1127-36. [PMID: 24036998 PMCID: PMC3855032 DOI: 10.1038/ni.2708] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022]
Abstract
Inflammation is a critical component of the immune response. However, acute or chronic inflammation can be highly destructive. Uncontrolled inflammation forms the basis for allergy, asthma, and multiple autoimmune disorders. Here, we identify a signaling pathway that is exclusively responsible for inflammatory cytokine production but not for cytotoxicity. Recognition of H60+ or CD137L+ tumor cells by murine NK cells led to efficient cytotoxicity and inflammatory cytokine production. Both of these effector functions required Lck, Fyn, PI(3)K-p85α, PI(3)K-p110δ, and PLC-γ2. However, the complex of Fyn and the adapter ADAP exclusively regulated inflammatory cytokine production but not cytotoxicity in NK cells. This unique function of ADAP required a Carma1-Bcl10-MAP3K7 signaling axis. Our results identify molecules that can be targeted to regulate inflammation without compromising NK cell cytotoxicity.
Collapse
|
10
|
Lymphocyte cell kinase activation mediates neuroprotection during ischemic preconditioning. J Neurosci 2012; 32:7278-86. [PMID: 22623673 DOI: 10.1523/jneurosci.6273-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying preconditioning (PC), a powerful endogenous neuroprotective phenomenon, remain to be fully elucidated. Once identified, these endogenous mechanisms could be manipulated for therapeutic gain. We investigated whether lymphocyte cell kinase (Lck), a member of the Src kinases family, mediates PC. We used both in vitro primary cortical neurons and in vivo mouse cerebral focal ischemia models of preconditioning, cellular injury, and neuroprotection. Genetically engineered mice deficient in Lck, gene silencing using siRNA, and pharmacological approaches were used. Cortical neurons preconditioned with sublethal exposure to NMDA or oxygen glucose deprivation (OGD) exhibited enhanced Lck kinase activity, and were resistant to injury on subsequent exposure to lethal levels of NMDA or OGD. Lck gene silencing using siRNA abolished tolerance against both stimuli. Lck-/- mice or neurons isolated from Lck-/- mice did not exhibit PC-induced tolerance. An Lck antagonist administered to wild-type mice significantly attenuated the neuroprotective effect of PC in the mouse focal ischemia model. Using pharmacological and gene silencing strategies, we also showed that PKCε is an upstream regulator of Lck, and Fyn is a downstream target of Lck. We have discovered that Lck plays an essential role in PC in both cellular and animal models of stroke. Our data also show that the PKCε-Lck-Fyn axis is a key mediator of PC. These findings provide new opportunities for stroke therapy development.
Collapse
|
11
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
12
|
Ballek O, Broučková A, Manning J, Filipp D. A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts. Immunol Lett 2012; 142:64-74. [PMID: 22281390 DOI: 10.1016/j.imlet.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Lck is the principal signal-generating tyrosine kinase of the T cell activation mechanism. We have previously demonstrated that induced Lck activation outside of lipid rafts (LR) results in the rapid translocation of a fraction of Lck to LR. While this translocation predicates the subsequent production of IL-2, the mechanism underpinning this process is unknown. Here, we describe the main attributes of this translocating pool of Lck. Using fractionation of Brij58 lysates, derived from primary naive non-activated CD4(+) T cells, we show that a significant portion of Lck is associated with high molecular weight complexes representing a special type of detergent-resistant membranes (DRMs) of relatively high density and sensitivity to laurylmaltoside, thus called heavy DRMs. TcR/CD4 coaggregation-mediated activation resulted in the redistribution of more than 50% of heavy DRM-associated Lck to LR in a microtubular network-dependent fashion. Remarkably, in non-activated CD4(+) T-cells, only heavy DRM-associated Lck is phosphorylated on its activatory tyrosine 394 and this pool of Lck is found to be membrane confined with CD45 phosphatase. These data are the first to illustrate a lipid microdomain-based mechanism concentrating the preactivated pool of cellular Lck and supporting its high stoichiometry of colocalization with CD45 in CD4(+) T cells. They also provide a new structural framework to assess the mechanism underpinning the compartmentalization of critical signaling elements and regulation of spatio-temporal delivery of Lck function during the T cell proximal signaling.
Collapse
Affiliation(s)
- Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | | | | | | |
Collapse
|
13
|
The effects of membrane compartmentalization of csk on TCR signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:367-76. [PMID: 21167217 DOI: 10.1016/j.bbamcr.2010.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/16/2010] [Accepted: 12/06/2010] [Indexed: 12/29/2022]
Abstract
The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described "heavy rafts" or non-raft membrane. Our data show that only Csk targeted into "classical" raft but not to "heavy raft" or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.
Collapse
|
14
|
Dong S, Corre B, Nika K, Pellegrini S, Michel F. T cell receptor signal initiation induced by low-grade stimulation requires the cooperation of LAT in human T cells. PLoS One 2010; 5:e15114. [PMID: 21152094 PMCID: PMC2994893 DOI: 10.1371/journal.pone.0015114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive. Methodology/Principal Findings We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement. Conclusions/Significance Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.
Collapse
Affiliation(s)
- Shen Dong
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Béatrice Corre
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Konstantina Nika
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Levental I, Grzybek M, Simons K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 2010; 49:6305-16. [PMID: 20583817 DOI: 10.1021/bi100882y] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that biological membranes can be laterally subdivided into domains enriched in specific lipid and protein components and that these domains may be involved in the regulation of a number of vital cellular processes. An example is membrane rafts, which are lipid-mediated domains dependent on preferential association between sterols and sphingolipids and inclusive of a specific subset of membrane proteins. While the lipid and protein composition of rafts has been extensively characterized, the structural details determining protein partitioning to these domains remain unresolved. Here, we review evidence suggesting that post-translation modification by saturated lipids recruits both peripheral and transmembrane proteins to rafts, while short, unsaturated, and/or branched hydrocarbon chains prevent raft association. The most widely studied group of raft-associated proteins are glycophosphatidylinositol-anchored proteins (GPI-AP), and we review a variety of evidence supporting raft-association of these saturated lipid-anchored extracellular peripheral proteins. For transmembrane and intracellular peripheral proteins, S-acylation with saturated fatty acids mediates raft partitioning, and the dynamic nature of this modification presents an exciting possibility of enzymatically regulated raft association. The other common lipid modifications, that is, prenylation and myristoylation, are discussed in light of their likely role in targeting proteins to nonraft membrane regions. Finally, although the association between raft affinity and lipid modification is well-characterized, we discuss several open questions regarding regulation and remodeling of these post-translational modifications as well as their role in transbilayer coupling of membrane domains.
Collapse
Affiliation(s)
- Ilya Levental
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | | | | |
Collapse
|
16
|
Johnson SA, Stinson BM, Go MS, Carmona LM, Reminick JI, Fang X, Baumgart T. Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1427-35. [PMID: 20230780 DOI: 10.1016/j.bbamem.2010.03.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/08/2010] [Accepted: 03/05/2010] [Indexed: 11/15/2022]
Abstract
Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma membrane vesicles, obtained by chemically induced blebbing from cultured cells, were observed to reversibly phase segregate at temperatures significantly below 37 degrees C. In this contribution, we compare the temperature dependence of fluid phase segregation in HeLa and rat basophilic leukemia (RBL) cells. We find an essentially monotonic temperature dependence of the number of phase-separated vesicles in both cell types. We also observe a strikingly broad distribution of phase transition temperatures in both cell types. The binding of peripheral proteins, such as cholera toxin subunit B (CTB), as well as Annexin V, is observed to modulate phase transition temperatures, indicating that peripheral protein binding may be a regulator for lateral heterogeneity in vivo. The partitioning of numerous signal protein anchors and full length proteins is investigated. We find Lo phase partitioning for several proteins assumed in the literature to be membrane raft associated, but observe deviations from this expectation for other proteins, including caveolin-1.
Collapse
Affiliation(s)
- S A Johnson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228:9-22. [PMID: 19290918 DOI: 10.1111/j.1600-065x.2008.00745.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src-family kinases p56(lck) (Lck) and p59(fyn) (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function.
Collapse
Affiliation(s)
- Robert J Salmond
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
18
|
Differential impact of the CD45 juxtamembrane wedge on central and peripheral T cell receptor responses. Proc Natl Acad Sci U S A 2009; 106:546-51. [PMID: 19129486 DOI: 10.1073/pnas.0811647106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cooperative activity of protein tyrosine kinases and phosphatases plays a central role in regulation of T cell receptor (TCR) signal strength. Perturbing this balance, and thus the threshold for TCR signals, has profound impacts on T cell development and function. We previously generated mice containing a point mutation in the juxtamembrane wedge of the receptor-like protein tyrosine phosphatase CD45. Demonstrating the critical negative regulatory function of the wedge, the CD45 E613R (WEDGE) mutation led to a lymphoproliferative disorder (LPD) and a lupus-like autoimmune syndrome. Using genetic, cellular, and biochemical approaches, we now demonstrate that the CD45 wedge influences T cell development and function. Consistent with increased TCR signal strength, WEDGE mice have augmented positive selection and enhanced sensitivity to the CD4-mediated disease experimental autoimmune encephalitis (EAE). These correspond with hyperresponsive calcium and pERK responses to TCR stimulation in thymocytes, but surprisingly, not in peripheral T cells, where these responses are actually depressed. Together, the data support a role for the CD45 wedge in regulation of T cell responses in vivo and suggest that its effects depend on cellular context.
Collapse
|