1
|
Naeem F, Aqeel M, Zahid MA, Babar MM, Shah FA, Agouni A, Malik SZ. The effects of ondansetron on diabetes and high-fat diet-induced liver disease: a critical role for protein tyrosine phosphatase 1B. Front Pharmacol 2025; 16:1565628. [PMID: 40356976 PMCID: PMC12066537 DOI: 10.3389/fphar.2025.1565628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The escalating prevalence of diabetes and non-alcoholic fatty liver disease (NAFLD) has intensified the search for effective therapeutic interventions. The current study investigates the potential of ondansetron, a Food and Drug Administration (FDA)-approved drug for conditions like nausea and vomiting, as a novel treatment option for these metabolic disorders. Methods A multifaceted approach, encompassing computational analyses, in vitro enzyme inhibition assays, and in vivo experiments in a high-fat diet (HFD)-induced disease model in rats were employed. Results Computational studies, including pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulations, revealed the strong binding affinity of ondansetron to the allosteric site of protein tyrosine phosphatase 1B (PTP1B), a key regulator of insulin and lipid homeostasis. The in vitro enzyme inhibition assay further confirmed ondansetron's ability to directly inhibit PTP1B activity. Animal experiments demonstrated ondansetron's antihyperglycemic effects, reducing blood glucose levels and improving insulin sensitivity in HFD-fed rats. The drug also exhibited hepatoprotective properties, mitigating liver damage and improving tissue architecture. Additionally, ondansetron's anti-inflammatory and antioxidant activities were evident in its ability to reduce pro-inflammatory markers and oxidative stress in the liver. Discussion These therapeutic effects position ondansetron as a promising candidate for further investigation in clinical settings for the treatment of diabetes and NAFLD and, hence, support the use of the drug repurposing approach for addressing the growing burden of metabolic diseases.
Collapse
Affiliation(s)
- Fawad Naeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Maryam Aqeel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
2
|
Franklin Z, Hull C, Delibegovic M, Platt B. Pharmacological PTP1B inhibition rescues motor learning, neuroinflammation, and hyperglycaemia in a mouse model of Alzheimer's disease. Exp Neurol 2025; 385:115115. [PMID: 39672227 DOI: 10.1016/j.expneurol.2024.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Patients with Alzheimer's Disease (AD) frequently suffer from comorbidities such as type 2 diabetes mellitus (T2DM), accompanied by shared common pathologies such as increased inflammation and impaired glucose homeostasis. Beta-secretase 1 (BACE1), the rate limiting enzyme in AD associated beta-amyloid (Aβ) production, is also implicated in metabolic dysfunction and can increase central and peripheral protein levels of protein tyrosine phosphatase 1B (PTP1B). PTP1B is a validated target in diabetes and obesity, and is a neuroinflammatory regulator involved in degenerative processes. This study investigated the effects of the PTP1B inhibitor, trodusquemine (MSI-1436) on the cognitive and metabolic phenotypes of the neuronal human BACE1 knock-in (PLB4) mouse, a co-morbidity model of AD and T2DM, and their wild-type (PLBWT) controls. METHODS Five-month-old male PLB4 and PLBWT mice received PTP1B inhibitor treatment (1 mg/kg intraperitoneal injection; 5 weeks). Activity and spatial habituation (Phenotyper), motor learning (RotaRod), glucose tolerance, and brain and liver molecular analyses were analysed following treatment. RESULTS Inhibition of PTP1B improved motor learning alongside glucose tolerance in PLB4 mice, without affecting body weight/adiposity. MSI-1436 treatment led to lower protein levels of amyloid precursor protein (APP), reduced astrogliosis and restoration of the endoplasmic chaperone immunoglobulin heavy chain binding protein (BIP) in the brain, alongside decreased insulin receptor substrate-1 (IRS1) and dipeptidyl peptidase-4 (DPP4) proteins in the liver. CONCLUSION We provide evidence that neuronal BACE1 contributes to neuroinflammation and hyperglycaemia in PLB4 mice, and this can be partially rescued by PTP1B inhibition. Targeting PTP1B may therefore offer an attractive therapeutic approach to ameliorate co-morbidity associated pathologies in AD and T2DM.
Collapse
Affiliation(s)
- Zara Franklin
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Claire Hull
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mirela Delibegovic
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, UK; Aberdeen Cardiovascular and Diabetes Centre, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Ojo OA, Adegboyega AE, Taiwo OA, Olowosoke CB, Johnson GI, Umedum NL, Onuh K, Adeduro MN, Nwobodo VO, Elekan AO, Alemika TE, Johnson TO. Lead optimization of Allium sativum L. compounds for PTP1B inhibition in diabetes treatment: in silico molecular docking and dynamics simulation. J Biomol Struct Dyn 2025; 43:2262-2276. [PMID: 38109128 DOI: 10.1080/07391102.2023.2294179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has been identified as a promising drug target for the development of diabetes medications via an inhibition mechanism. Using a computational approach, this study investigates the binding mechanism of lead optimized natural compounds from Allium sativum against the human PTP1B. The molecular docking, induced-fit docking, and binding free energy calculations were analyzed using Schrödinger Suite 2021-2. MD simulation, and gene enrichment analysis was achieved via the Desmond module of Schrödinger to identify best compounds as inhibitors against PTP1B in diabetes management. The docking scores of the lead optimized compounds were good; 5280443_121 from apigenin had the best binding score of -9.345 kcal/mol, followed by 5280443_129 with a binding score of -9.200 kcal/mol, and 5280863_177 from kaempferol had a binding score of -8.528 kcal/mol, followed by 5280863_462 with a binding score of -8.338 kcal/mol. The top two lead optimized compounds, docked better than the standard PTP1B inhibitor (-7.155 kcal/mol), suggesting them as potent inhibitors than the standard PTP1B inhibitor. The outcomes of the induced-fit docking were consistent with the increased binding affinity used in the Glide computation of the five conformed poses between the derivatives (5280443_121, 5280443_129, 5280863_177, and 5280863_462) and the protein (PTP1B). Based on the binding fee energies (MM-GBSA), the lead optimized compounds from kaempferol exhibited more stability than those from apigenin. In the pharmacophore development, all the models exhibit good results across the different metrics. The best performing model with five of five matches on a 1.34 and 1.33 phase score was DDRRR_1, DDRRR_2, and DDDRR_1. The average BEDROC value (= 160.9) was 1, while the average EF 1% value across all models was 101. There were no substantial conformational modifications during the MD simulation process, indicating that the apigenin derivatives (5280443_121) was stable in the protein's active site in 100 ns. IGF1R, EGFR, INSR, PTPN1, SRC, JAK2, GRB2, BCAR1, and IRS1 are among the 11 potential targets found in the protein-protein interaction (PPI) of A. sativum against PTP1B that may be important in A. sativum's defense against PTP1B. Sixty-four (64) pathways were found by KEGG pathway enrichment analysis to be potentially involved in the anti-PTP1B of A. sativum. Consequently, data obtained indicates the effectiveness of the in silico studies in identifying potential lead compounds in A. sativum against PTP1B target.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Bowen University SDG 03 (Good Health and Wellbeing Research Group), Iwo, Nigeria
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Abayomi Emmanuel Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
- Jaris Computational Biology Centre, Jos, Nigeria
| | | | - Christopher Busayo Olowosoke
- Department of Biotechnology, Federal University of Technology, Ondo, Nigeria
- Department of Biotechnology, Chrisland University, Abeokuta, Nigeria
| | - Grace Inioluwa Johnson
- Jaris Computational Biology Centre, Jos, Nigeria
- College of Health Sciences, University of Jos, Jos, Nigeria
| | - Ngozi Lillian Umedum
- Department of Organic and Medicinal Chemistry, Nnamdi Azikwe University, Akwa, Anambra, Nigeria
| | - Kingsley Onuh
- Department of Biotechnology, Nigerian Defence Academy, Kaduna
| | - Mary Nneka Adeduro
- Department of Pharmaceutical Chemistry, Univervisty of Lagos, Lagos, Nigeria
| | | | - Ayodele O Elekan
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | | | - Titilayo Omolara Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
- Jaris Computational Biology Centre, Jos, Nigeria
| |
Collapse
|
4
|
Bennett AM, Tiganis T. Protein Tyrosine Phosphatases in Metabolism: A New Frontier for Therapeutics. Annu Rev Physiol 2025; 87:301-324. [PMID: 39531392 DOI: 10.1146/annurev-physiol-022724-105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The increased prevalence of chronic metabolic disorders, including obesity and type 2 diabetes and their associated comorbidities, are among the world's greatest health and economic challenges. Metabolic homeostasis involves a complex interplay between hormones that act on different tissues to elicit changes in the storage and utilization of energy. Such processes are mediated by tyrosine phosphorylation-dependent signaling, which is coordinated by the opposing actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Perturbations in the functions of PTPs can be instrumental in the pathophysiology of metabolic diseases. The goal of this review is to highlight key advances in our understanding of how PTPs control body weight and glucose metabolism, as well as their contributions to obesity and type 2 diabetes. The emerging appreciation of the integrated functions of PTPs in metabolism, coupled with significant advances in pharmaceutical strategies aimed at targeting this class of enzymes, marks the advent of a new frontier in combating metabolic disorders.
Collapse
Affiliation(s)
- Anton M Bennett
- Yale Center for Molecular and Systems Metabolism, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
5
|
Raza I, Sohail A, Muneer H, Fayyaz H, Uddin Z, Almars AI, Aggad WS, Almohaimeed HM, Ullah I. Viscosol Treatment Ameliorates Insulin-Mediated Regulation of Dyslipidemia, Hepatic Steatosis, and Lipid Metabolism by Targeting PTP1B in Type-2 Diabetic Mice Model. Int J Endocrinol 2024; 2024:3914332. [PMID: 39759127 PMCID: PMC11698613 DOI: 10.1155/ije/3914332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM. Numerous studies claimed the anti-inflammatory, hypoglycemic, hepatoprotective, and hypolipidemic activities of Dodonaea viscosa. Previously, we generated the high-fat diet (HFD)-low dose streptozotocin (STZ)-induced diabetic male mice model and treated it with a PTP1B inhibitor (5, 7-dihydroxy-3, 6-dimethoxy-2- (4-methoxy-3- (3-methyl-2-enyl) phenyl)-4H-chromen-4-one), isolated from Dodonaea viscosa. In the current study, we aimed to investigate the De novo lipogenesis, adipocyte differentiation, augmentation of lipoproteins clearance, fatty acid uptake, antilipolysis activity, and hepatic steatosis of PTP1B inhibition in adipose and liver tissues of the HFD-STZ-induced diabetic mice model. We found the retrieval of normal morphology of adipocytes and hepatocytes in the compound-treated group. The biochemical parameters showed the gradual reduction of LDL, VLDL, TC, and TG in the serum of the compound-treated group. To further test our hypothesis, real-time PCR was performed, and data revealed the reduction of PTP1B and other inflammatory markers in both tissues, showing enhanced expression of insulin signaling markers (INSR, IRS1, IRS2, and PI3K). Our compound upregulated the adipogenic (PPARγ), lipogenic (SREBP1c, FAS, ACC, and DGAT2), lipoprotein clearance (LPL, LDLR, and VLDLR), fatty acid uptake (CD36 and FATP1), and lipid droplet forming (FSP27 and perilipin-1) markers expressions in adipocytes and downregulated in hepatocytes. Furthermore, we found elevated cholesterol efflux (in adipose and liver) and decreased lipolysis in adipocytes and elevated in hepatocytes. Hence, we can conclude that our compound protects the adipocytes from abrupt lipolysis and stimulates adipocyte differentiation. In addition, it plays a hepatic protective role by shifting clearance and uptake of lipoproteins and fatty acids to the peripheral tissues and retrieving the fatty liver condition.
Collapse
Affiliation(s)
- Idrees Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Aamir Sohail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hamza Muneer
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hajra Fayyaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waheeb S. Aggad
- Division of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
6
|
Barbut D, Perni M, Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ AGING 2024; 10:62. [PMID: 39702521 DOI: 10.1038/s41514-024-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The development of anti-aging drugs is challenged by both the apparent complexity of the physiological mechanisms involved in aging and the likelihood that many of these mechanisms remain unknown. As a consequence, the development of anti-aging compounds based on the rational targeting of specific pathways has fallen short of the goal. To date, the most impressive compound is rapamycin, a natural bacterial product initially identified as an antifungal, and only subsequently discovered to have anti-aging properties. In this review, we focus on two aminosterols from the dogfish shark, Squalus acanthias, that we discovered initially as broad-spectrum anti-microbial agents. This review is the first to gather together published studies conducted both in vitro and in numerous vertebrate species to demonstrate that these compounds target aging pathways at the cellular level and provide benefits in multiple aging-associated conditions in relevant animal models and in humans. The dogfish aminosterols should be recognized as potential anti-aging drugs.
Collapse
Affiliation(s)
- Denise Barbut
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michele Perni
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michael Zasloff
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA.
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA.
| |
Collapse
|
7
|
Darwish R, Alcibahy Y, Bucheeri S, Albishtawi A, Tama M, Shetty J, Butler AE. The Role of Hypothalamic Microglia in the Onset of Insulin Resistance and Type 2 Diabetes: A Neuro-Immune Perspective. Int J Mol Sci 2024; 25:13169. [PMID: 39684879 DOI: 10.3390/ijms252313169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Yasmine Alcibahy
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Shahd Bucheeri
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Ashraf Albishtawi
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Jeevan Shetty
- Department of Biochemistry, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Alexandra E Butler
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| |
Collapse
|
8
|
Sun Y, Dinenno FA, Tang P, Kontaridis MI. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: from mechanisms to therapeutics. Front Cardiovasc Med 2024; 11:1445739. [PMID: 39238503 PMCID: PMC11374623 DOI: 10.3389/fcvm.2024.1445739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Frank A Dinenno
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Peiyang Tang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
10
|
Read NE, Wilson HM. Recent Developments in the Role of Protein Tyrosine Phosphatase 1B (PTP1B) as a Regulator of Immune Cell Signalling in Health and Disease. Int J Mol Sci 2024; 25:7207. [PMID: 39000313 PMCID: PMC11241678 DOI: 10.3390/ijms25137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.
Collapse
Affiliation(s)
- Neve E Read
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather M Wilson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
11
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
12
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Shao S, Sun M, Ma X, Jiang J, Tian J, Zhang J, Ye F, Li S. Novel phenanthrene/bibenzyl trimers from the tubers of Bletilla striata attenuate neuroinflammation via inhibition of NF-κB signaling pathway. Chin J Nat Med 2024; 22:441-454. [PMID: 38796217 DOI: 10.1016/s1875-5364(24)60641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 05/28/2024]
Abstract
Five novel (9,10-dihydro) phenanthrene and bibenzyl trimers, as well as two previously identified biphenanthrenes and bibenzyls, were isolated from the tubers of Bletilla striata. Their structures were elucidated through comprehensive analyses of NMR and HRESIMS spectroscopic data. The absolute configurations of these compounds were determined by calculating rotational energy barriers and comparison of experimental and calculated ECD curves. Compounds 5b and 6 exhibited inhibitory effects on LPS-induced NO production in BV-2 cells, with IC50 values of 12.59 ± 0.40 and 15.59 ± 0.83 μmol·L-1, respectively. A mechanistic study suggested that these compounds may attenuate neuroinflammation by reducing the activation of the AKT/IκB/NF-κB signaling pathway. Additionally, compounds 3a, 6, and 7 demonstrated significant PTP1B inhibitory activities, with IC50 values of 1.52 ± 0.34, 1.39 ± 0.11, and 1.78 ± 0.01 μmol·L-1, respectively. Further investigation revealed that compound 3a might inhibit LPS-induced PTP1B overexpression and NF-κB activation, thereby mitigating the neuroinflammatory response in BV-2 cells.
Collapse
Affiliation(s)
- Siyuan Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mohan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xianjie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianwei Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinying Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianjun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuai Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
14
|
Zhou X, Hao R, Zhu X, Tan X, Li D. Isoleucine‐restricted diets improve high‐fat diet‐induced nonalcoholic fatty liver disease via regulating insulin resistance and gut microbiota. FOOD FRONTIERS 2024; 5:893-906. [DOI: 10.1002/fft2.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
AbstractObesity, caused by a long‐term high‐fat diet, is a risk factor for insulin resistance and nonalcoholic fatty liver disease (NAFLD). The gut microbiota plays an important role in NAFLD development by producing lipopolysaccharides (LPS). Isoleucine (ILE), as one of the branched‐chain amino acids (BCAAs), has a negative effect on glucose and lipid metabolism in obese mice. Therefore, we speculated that isoleucine‐restricted diets could prevent high‐fat diet‐induced insulin resistance and NAFLD. For this purpose, 30 C57BL/6J mice received a control check diet (CK), a high‐fat diet (HFD), and a isoleucine‐restricted diet (IR) for 12 weeks, respectively. The current study revealed that IR diets reversed HFD‐induced weight gain, increased fasting glucose levels, and lipid metabolism disorder. Furthermore, IR diets attenuated HFD‐induced hepatic inflammation by regulating the LPS/TLR4/NF‐κB signaling pathway. Moreover, hepatic insulin resistance and gluconeogenesis disorder were significantly improved by IR diets. In addition, IR diets reshaped HFD‐induced gut microbiota imbalance, reflected in decreasing the proportion of Proteobacteria phylum and LPS contents. Taken together, our studies support that restricting isoleucine in high‐fat diets was a novel means of preventing obesity‐induced NAFLD and insulin resistance.
Collapse
Affiliation(s)
- Xing Zhou
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering Shandong Agricultural University Taian People's Republic of China
| | - Rili Hao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering Shandong Agricultural University Taian People's Republic of China
| | - Xiangyang Zhu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering Shandong Agricultural University Taian People's Republic of China
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering Shandong Agricultural University Taian People's Republic of China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering Shandong Agricultural University Taian People's Republic of China
| |
Collapse
|
15
|
Deng W, Yi P, Xiong Y, Ying J, Lin Y, Dong Y, Wei G, Wang X, Hua F. Gut Metabolites Acting on the Gut-Brain Axis: Regulating the Functional State of Microglia. Aging Dis 2024; 15:480-502. [PMID: 37548933 PMCID: PMC10917527 DOI: 10.14336/ad.2023.0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
The gut-brain axis is a communication channel that mediates a complex interplay of intestinal flora with the neural, endocrine, and immune systems, linking gut and brain functions. Gut metabolites, a group of small molecules produced or consumed by biochemical processes in the gut, are involved in central nervous system regulation via the highly interconnected gut-brain axis affecting microglia indirectly by influencing the structure of the gut-brain axis or directly affecting microglia function and activity. Accordingly, pathological changes in the central nervous system are connected with changes in intestinal metabolite levels as well as altered microglia function and activity, which may contribute to the pathological process of each neuroinflammatory condition. Here, we discuss the mechanisms by which gut metabolites, for instance, the bile acids, short-chain fatty acids, and tryptophan metabolites, regulate the structure of each component of the gut-brain axis, and explore the important roles of gut metabolites in the central nervous system from the perspective of microglia. At the same time, we highlight the roles of gut metabolites affecting microglia in the pathogenesis of neurodegenerative diseases and neurodevelopmental disorders. Understanding the relationship between microglia, gut microbiota, neuroinflammation, and neurodevelopmental disorders will help us identify new strategies for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wenze Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yanhong Xiong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yao Dong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| |
Collapse
|
16
|
Ge X, Hu M, Zhou M, Fang X, Chen X, Geng D, Wang L, Yang X, An H, Zhang M, Lin D, Zheng M, Cui X, Wang Q, Wu Y, Zheng K, Huang XF, Yu Y. Overexpression of forebrain PTP1B leads to synaptic and cognitive impairments in obesity. Brain Behav Immun 2024; 117:456-470. [PMID: 38336024 DOI: 10.1016/j.bbi.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity has reached pandemic proportions and is a risk factor for neurodegenerative diseases, including Alzheimer's disease. Chronic inflammation is common in obese patients, but the mechanism between inflammation and cognitive impairment in obesity remains unclear. Accumulative evidence shows that protein-tyrosine phosphatase 1B (PTP1B), a neuroinflammatory and negative synaptic regulator, is involved in the pathogenesis of neurodegenerative processes. We investigated the causal role of PTP1B in obesity-induced cognitive impairment and the beneficial effect of PTP1B inhibitors in counteracting impairments of cognition, neural morphology, and signaling. We showed that obese individuals had negative relationship between serum PTP1B levels and cognitive function. Furthermore, the PTP1B level in the forebrain increased in patients with neurodegenerative diseases and obese cognitive impairment mice with the expansion of white matter, neuroinflammation and brain atrophy. PTP1B globally or forebrain-specific knockout mice on an obesogenic high-fat diet showed enhanced cognition and improved synaptic ultrastructure and proteins in the forebrain. Specifically, deleting PTP1B in leptin receptor-expressing cells improved leptin synaptic signaling and increased BDNF expression in the forebrain of obese mice. Importantly, we found that various PTP1B allosteric inhibitors (e.g., MSI-1436, well-tolerated in Phase 1 and 1b clinical trials for obesity and type II diabetes) prevented these alterations, including improving cognition, neurite outgrowth, leptin synaptic signaling and BDNF in both obese cognitive impairment mice and a neural cell model of PTP1B overexpression. These findings suggest that increased forebrain PTP1B is associated with cognitive decline in obesity, whereas inhibition of PTP1B could be a promising strategy for preventing neurodegeneration induced by obesity.
Collapse
Affiliation(s)
- Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221006, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, NSW 2522, Australia
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221006, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huimei An
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing 10096, China
| | - Meng Zhang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing 10096, China
| | - Danhong Lin
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, NSW 2522, Australia.
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
17
|
Zhang X, Bao J, Zhang Y, Wang X. Alpha-Linolenic Acid Ameliorates Cognitive Impairment and Liver Damage Caused by Obesity. Diabetes Metab Syndr Obes 2024; 17:981-995. [PMID: 38435630 PMCID: PMC10909331 DOI: 10.2147/dmso.s434671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
Background Obesity is a growing global problem that causes various complications such as diabetes, cognitive dysfunction, cardiovascular diseases, and hepatobiliary disease. Alpha-linolenic acid (ALA) has been reported to exhibit multiple pharmaceutical effects. This study aimed to explore the effects of ALA on obesity-induced adipose tissue accumulation, cognitive impairment, inflammation, and colonic mucosal barrier integrity. Methods Mice were fed with high-fat diet (HFD) and were treated with ALA (60 or 100 mg/kg). Body weight, adipose tissue, serum glucose and lipid levels, glucose resistance, and insulin resistance were measured. Cognitive ability was analyzed using the behavior tests. PTP1B and IRS/p-AKT/p-GSK3β/p-Tau signaling were examined to evaluate inflammation and synaptogenesis. Colon mucosal barrier integrity was examined by Alcian blue staining and expression of the tight junction proteins. The production of pro-inflammatory cytokines and liver damages were evaluated. 3T3-L1 cells were used for in vitro experiments. Cell viability, migration and invasion were detected. The levels of ROS, iron, and ferrous ions were measured to assess ferroptosis. Metabolomic analysis of adipose tissues was performed. Results ALA treatment prevented HFD-induced adipose tissue accumulation, improved glucose and lipid homeostasis and metabolism. Administration of ALA repressed the HFD-induced increase in insulin levels and insulin resistance index. Serum and colon levels of pro-inflammatory cytokines were decreased after ALA treatment. ALA elevated mitochondrial content in brown adipose tissues. ALA ameliorated obesity-induced cognitive impairment and hippocampal inflammation, enhanced colon mucosa integrity. ALA treatment ameliorated HFD-induced liver damage and lipid accumulation and inhibited differentiation of preadipocyte 3T3-L1 cells into mature adipocytes and induces ferroptosis. Metabolomic analysis suggested that ALA may target the glycerolipid metabolism pathway to ameliorate obesity. Knockdown of AGPAT2 abolished the protective effects of ALA. Conclusion ALA treatment suppressed adipose accumulation in adipocytes, improved cognitive ability and colon integrity, and alleviated liver damage by modulating the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2).
Collapse
Affiliation(s)
- Xian Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| |
Collapse
|
18
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Qasem B, Dąbrowska A, Króliczewski J, Łyczko J, Marycz K. Trodusquemine (MSI-1436) Restores Metabolic Flexibility and Mitochondrial Dynamics in Insulin-Resistant Equine Hepatic Progenitor Cells (HPCs). Cells 2024; 13:152. [PMID: 38247843 PMCID: PMC10814577 DOI: 10.3390/cells13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Equine metabolic syndrome (EMS) is a significant global health concern in veterinary medicine. There is increasing interest in utilizing molecular agents to modulate hepatocyte function for potential clinical applications. Recent studies have shown promising results in inhibiting protein tyrosine phosphatase (PTP1B) to maintain cell function in various models. In this study, we investigated the effects of the inhibitor Trodusquemine (MSI-1436) on equine hepatic progenitor cells (HPCs) under lipotoxic conditions. We examined proliferative activity, glucose uptake, and mitochondrial morphogenesis. Our study found that MSI-1436 promotes HPC entry into the cell cycle and protects them from palmitate-induced apoptosis by regulating mitochondrial dynamics and biogenesis. MSI-1436 also increases glucose uptake and protects HPCs from palmitate-induced stress by reorganizing the cells' morphological architecture. Furthermore, our findings suggest that MSI-1436 enhances 2-NBDG uptake by increasing the expression of SIRT1, which is associated with liver insulin sensitivity. It also promotes mitochondrial dynamics by modulating mitochondria quantity and morphotype as well as increasing the expression of PINK1, MFN1, and MFN2. Our study provides evidence that MSI-1436 has a positive impact on equine hepatic progenitor cells, indicating its potential therapeutic value in treating EMS and insulin dysregulation.
Collapse
Affiliation(s)
- Badr Qasem
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (B.Q.); (A.D.); (J.K.)
| | - Agnieszka Dąbrowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (B.Q.); (A.D.); (J.K.)
| | - Jarosław Króliczewski
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (B.Q.); (A.D.); (J.K.)
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (B.Q.); (A.D.); (J.K.)
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
20
|
Song Q, Ma H, Zhu L, Qi Z, Lan Z, Liu K, Zhang H, Wang K, Wang N. Upregulation of PTPN1 aggravates endotoxemia-induced cardiac dysfunction through inhibiting mitophagy. Int Immunopharmacol 2024; 126:111315. [PMID: 38043267 DOI: 10.1016/j.intimp.2023.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVES To investigate the role of protein tyrosine phosphatase non-receptor type 1 (PTPN1) in mitophagy during sepsis and its underlying mechanisms and determine the therapeutic potential of PTPN1 inhibitors in endotoxemia-induced cardiac dysfunction. METHODS A mouse model of endotoxemia was established by administering an intraperitoneal injection of lipopolysaccharide (LPS). The therapeutic effect of targeting PTPN1 was evaluated using its inhibitor Claramine (CLA). Mitochondrial structure and function as well as the expression of mitophagy-related proteins were evaluated. Rat H9c2 cardiomyocytes were exposed to mouse RAW264.7 macrophage-derived conditioned medium. Cryptotanshinone, a specific p-STAT3 (Y705) inhibitor, was used to confirm the role of STAT3 in PTPN1-mediated mitophagy following LPS exposure. Electrophoretic mobility shift and dual luciferase reporter assays were performed to discern the mechanisms by which STAT3 regulated the expression of PINK1 and PRKN. RESULTS CLA alleviated LPS-induced myocardial damage, cardiac dysfunction, and mitochondrial injury and dysfunction in the mouse heart. PTPN1 upregulation exacerbated LPS-induced mitochondrial injury and dysfunction in H9c2 cardiomyocytes, but inhibited LPS-induced mitophagy. LPS promoted the interaction between PTPN1 and STAT3 and reduced STAT3 phosphorylation at Tyr705 (Y705), which was required to inhibit mitophagy by PTPN1. Upon LPS stimulation, PTPN1 negatively regulated the transcription of PINK1 and PRKN through dephosphorylation of STAT3 at Y705. STAT3 regulated the transcription of PINK1 and PRKN by binding to STAT3-responsive elements in their promoters. CONCLUSION PTPN1 upregulation aggravates endotoxemia-induced cardiac dysfunction by impeding mitophagy through dephosphorylation of STAT3 at Y705 and negative regulation of PINK1 and PRKN transcription.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Lili Zhu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Zehong Qi
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Zijun Lan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - KangKai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
21
|
Chen Y, Zeng S, Jiao B, Zhang H, Li G, Zhang X, Hu X. Adherence to the Diabetes Risk Reduction Diet and Bladder Cancer Risk in the Prostate, Lung, Colorectal, Ovarian (PLCO) Cohort. Cancer Epidemiol Biomarkers Prev 2023; 32:1726-1733. [PMID: 37721479 DOI: 10.1158/1055-9965.epi-23-0690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND This study aimed to explore the relationship between diabetes risk reduction diet (DRRD) and bladder cancer risk in Prostate, Lung, Colorectal, Ovarian (PLCO) cohort. METHODS Data from 99,001 participants in the PLCO Cancer Screening Trial were analyzed using Cox proportional hazards regression models to estimate HRs and 95% confidence intervals (CI) for the association between DRRD score and bladder cancer incidence. Subgroup analyses were conducted to assess whether variables such as age, sex, body mass index, cigarette smoking status, and history of diabetes influenced the observed association. The DRRD score was formulated on the basis of nine nutrient intake indicators derived from the Dietary History Questionnaire. RESULTS During the median follow-up of 11.7 years, 761 new bladder cancer cases were identified. Participants with highest DRRD scores exhibited a reduced risk of bladder cancer compared with those in the lowest quartile (unadjusted analysis, HR, 0.65; 95% CI, 0.53-0.82); multivariable adjusted analysis, HR, 0.79; 95% CI, 0.64-0.98; Ptrend = 0.007). A similar risk reduction was seen solely in transitional cell carcinoma (HR, 0.79; 95% CI, 0.64-0.99; P = 0.007). In addition, the significant negative association between DRRD scores and bladder cancer risk persisted even after excluding participants with unique characteristics. CONCLUSIONS This large prospective population-based study suggests that adherence to a DRRD may contribute to the prevention of bladder cancer. IMPACT The DRRD could potentially mitigate bladder cancer risk, which warrants further validation in diverse populations.
Collapse
Affiliation(s)
- Yuanhao Chen
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Song Zeng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Binbin Jiao
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - He Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Gao Li
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Bartolomé RA, Martín-Regalado Á, Pintado-Berninches L, Robles J, Ramírez-González MÁ, Boukich I, Sanchez-Gómez P, Balyasnikova IV, Casal JI. Schnurri-3 drives tumor growth and invasion in cancer cells expressing interleukin-13 receptor alpha 2. Cell Death Dis 2023; 14:742. [PMID: 37963919 PMCID: PMC10645886 DOI: 10.1038/s41419-023-06255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Interleukin 13 receptor alpha 2 (IL13Rα2) is a relevant therapeutic target in glioblastoma (GBM) and other tumors associated with tumor growth and invasion. In a previous study, we demonstrated that protein tyrosine phosphatase 1B (PTP1B) is a key mediator of the IL-13/IL13Rα2 signaling pathway. PTP1B regulates cancer cell invasion through Src activation. However, PTP1B/Src downstream signaling mechanisms that modulate the invasion process remain unclear. In the present research, we have characterized the PTP1B interactome and the PTP1B-associated phosphoproteome after IL-13 treatment, in different cellular contexts, using proteomic strategies. PTP1B was associated with proteins involved in signal transduction, vesicle transport, and with multiple proteins from the NF-κB signaling pathway, including Tenascin-C (TNC). PTP1B participated with NF-κB in TNC-mediated proliferation and invasion. Analysis of the phosphorylation patterns obtained after PTP1B activation with IL-13 showed increased phosphorylation of the transcription factor Schnurri-3 (SHN3), a reported competitor of NF-κB. SHN3 silencing caused a potent inhibition in cell invasion and proliferation, associated with a down-regulation of the Wnt/β-catenin pathway, an extensive decline of MMP9 expression and the subsequent inhibition of tumor growth and metastasis in mouse models. Regarding clinical value, high expression of SHN3 was associated with poor survival in GBM, showing a significant correlation with the classical and mesenchymal subtypes. In CRC, SHN3 expression showed a preferential association with the mesenchymal subtypes CMS4 and CRIS-B. Moreover, SHN3 expression strongly correlated with IL13Rα2 and MMP9-associated poor prognosis in different cancers. In conclusion, we have uncovered the participation of SNH3 in the IL-13/IL13Rα2/PTP1B pathway to promote tumor growth and invasion. These findings support a potential therapeutic value for SHN3.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángela Martín-Regalado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura Pintado-Berninches
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Universidad Autónoma de Madrid. Cantoblanco, Madrid, Spain
| | - Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Protein Alternatives SL. Tres Cantos, Madrid, Spain
| | | | - Issam Boukich
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Protein Alternatives SL. Tres Cantos, Madrid, Spain
| | - Pilar Sanchez-Gómez
- Unidad Funcional de Investigación en Enfermedades Crónicas. Instituto de Salud Carlos III, Madrid, Spain
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Krug J, Bochenek ML, Gogiraju R, Laubert-Reh D, Lackner KJ, Münzel T, Wild PS, Espinola-Klein C, Schäfer K. Circulating Soluble EPCR Levels Are Reduced in Patients with Ischemic Peripheral Artery Disease and Associated with Markers of Endothelial and Vascular Function. Biomedicines 2023; 11:2459. [PMID: 37760900 PMCID: PMC10526050 DOI: 10.3390/biomedicines11092459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Endothelial dysfunction initiates cardiovascular pathologies, including peripheral artery disease (PAD). The pathophysiology of impaired new vessel formation in the presence of angiogenic stimuli, such as ischemia and inflammation, is unknown. We have recently shown in mice that reduced endothelial protein C receptor (EPCR) expression results in defective angiogenesis following experimental hindlimb ischemia. (2) Purpose: To determine soluble (s)EPCR levels in the plasma of patients with PAD and to compare them with the protein C activity and biomarkers of endothelial function, inflammation, and angiogenesis. (3) Methods and Results: Clinical tests of vascular function and immunoassays of plasma from patients with PAD stage II were compared to age- and sex-matched individuals with and without cardiovascular risk factors or PAD stage III/IV patients. sEPCR levels were significantly lower in PAD stage II patients compared to subjects with risk factors, but no PAD, and further decreased in PAD stage III/IV patients. Plasma protein C activity or levels of ADAM17, a mediator of EPCR shedding, did not differ. Significant associations between sEPCR and the ankle-brachial index (p = 0.0359), age (p = 0.0488), body mass index (p = 0.0110), and plasma sE-selectin levels (p = 0.0327) were observed. High-sensitive CRP levels and white blood cell counts were significantly elevated in PAD patients and associated with serum glucose levels, but not sEPCR. In contrast, plasma TNFα or IL1β levels did not differ. Circulating levels of VEGF were significantly elevated in PAD stage II patients (p = 0.0198), but not associated with molecular (sE-selectin) or functional (ankle-brachial index) markers of vascular health. (4) Conclusions: Our findings suggest that circulating sEPCR levels may be useful as biomarkers of endothelial dysfunction, including angiogenesis, in persons older than 35 years and that progressive loss of endothelial protein C receptors might be involved in the development and progression of PAD.
Collapse
Affiliation(s)
- Janina Krug
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany (M.L.B.); (R.G.); (D.L.-R.); (T.M.); (P.S.W.)
| | - Magdalena L. Bochenek
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany (M.L.B.); (R.G.); (D.L.-R.); (T.M.); (P.S.W.)
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany (M.L.B.); (R.G.); (D.L.-R.); (T.M.); (P.S.W.)
| | - Dagmar Laubert-Reh
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany (M.L.B.); (R.G.); (D.L.-R.); (T.M.); (P.S.W.)
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany (M.L.B.); (R.G.); (D.L.-R.); (T.M.); (P.S.W.)
| | - Philipp S. Wild
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany (M.L.B.); (R.G.); (D.L.-R.); (T.M.); (P.S.W.)
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
| | - Christine Espinola-Klein
- Department of Cardiology, Cardiology III, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany (M.L.B.); (R.G.); (D.L.-R.); (T.M.); (P.S.W.)
| |
Collapse
|
24
|
Kakehi S, Tamura Y, Ikeda SI, Kaga N, Taka H, Nishida Y, Kawamori R, Watada H. Physical inactivity induces insulin resistance in plantaris muscle through protein tyrosine phosphatase 1B activation in mice. Front Physiol 2023; 14:1198390. [PMID: 37389126 PMCID: PMC10300557 DOI: 10.3389/fphys.2023.1198390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Inactivity causes insulin resistance in skeletal muscle and exacerbates various lifestyle-related diseases. We previously found that 24-h hindlimb cast immobilization (HCI) of the predominantly slow-twitch soleus muscle increased intramyocellular diacylglycerol (IMDG) and insulin resistance by activation of lipin1, and HCI after a high-fat diet (HFD) further aggravated insulin resistance. Here, we investigated the effects of HCI on the fast-twitch-predominant plantaris muscle. HCI reduced the insulin sensitivity of plantaris muscle by approximately 30%, and HCI following HFD dramatically reduced insulin sensitivity by approximately 70% without significant changes in the amount of IMDG. Insulin-stimulated phosphorylation levels of insulin receptor (IR), IR substrate-1, and Akt were reduced in parallel with the decrease in insulin sensitivity. Furthermore, tyrosine phosphatase 1B (PTP1B), a protein known to inhibit insulin action by dephosphorylating IR, was activated, and PTP1B inhibition canceled HCI-induced insulin resistance. In conclusion, HCI causes insulin resistance in the fast-twitch-predominant plantaris muscle as well as in the slow-twitch-predominant soleus muscle, and HFD potentiates these effects in both muscle types. However, the mechanism differed between soleus and plantaris muscles, since insulin resistance was mediated by the PTP1B inhibition at IR in plantaris muscle.
Collapse
Affiliation(s)
- Saori Kakehi
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Shin-ichi Ikeda
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Naoko Kaga
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| |
Collapse
|
25
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
26
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
27
|
Liang C, Ndi C, Kjaerulff L, Semple S, Buirchell B, Coriani S, Møller BL, Staerk D. Characterization of Serrulatane Diterpenoids in Eremophila phyllopoda subsp. phyllopoda by Triple High-Resolution α-Glucosidase/PTP1B/Radical Scavenging Profiling, NMR Spectroscopy, DFT-GIAO NMR, and Electronic Circular Dichroism Calculations. JOURNAL OF NATURAL PRODUCTS 2023; 86:694-709. [PMID: 36880726 DOI: 10.1021/acs.jnatprod.2c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extracts of Eremophila phyllopoda subsp. phyllopoda showed α-glucosidase and PTP1B inhibitory activity with IC50 values of 19.6 and 13.6 μg/mL, respectively. High-resolution α-glucosidase/PTP1B/radical scavenging profiling was performed to establish a triple high-resolution inhibition profile that allowed direct pinpointing of the constituents responsible for one or more of the observed bioactivities. Subsequent targeted isolation and purification by analytical-scale HPLC led to the identification of 21 previously undescribed serrulatane diterpenoids, eremophyllanes A-U, as well as two known serrulatane diterpenoids, 1β-trihydroxyserrulatane (8) and 1α-trihydroxyserrulatane (10d), and five known furofuran lignans, (+)-piperitol (6), horsfieldin (7e), (-)-sesamin (9), (+)-sesamin (10h), and asarinin (10i). Their structures were elucidated by extensive analysis of HRMS and 1D and 2D NMR spectroscopic data. The relative configurations of the previously undescribed compounds were established by analysis of ROESY spectra as well as by DFT-GIAO NMR calculations followed by DP4+ probability analysis. The absolute configurations were determined by comparison of experimental and calculated ECD spectra. Serrulatane diterpenoids 7b and 14 exhibited α-glucosidase inhibitory activity with IC50 values of 28.4 and 64.2 μM, respectively, while 11, 12, 14, and 15 exhibited PTP1B inhibitory activity with IC50 values ranging from 16.6 to 104.6 μM. Hypothetical routes for formation of all identified serrulatane diterpenoids are proposed.
Collapse
Affiliation(s)
- Chao Liang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chi Ndi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Susan Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Como, Western Australia 6152, Australia
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
28
|
AL-Qabbaa SM, Qaboli SI, Alshammari TK, Alamin MA, Alrajeh HM, Almuthnabi LA, Alotaibi RR, Alonazi AS, Bin Dayel AF, Alrasheed NM, Alrasheed NM. Sitagliptin Mitigates Diabetic Nephropathy in a Rat Model of Streptozotocin-Induced Type 2 Diabetes: Possible Role of PTP1B/JAK-STAT Pathway. Int J Mol Sci 2023; 24:ijms24076532. [PMID: 37047505 PMCID: PMC10095069 DOI: 10.3390/ijms24076532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus. This study examined the therapeutic effects of sitagliptin, a dipeptidyl peptidase inhibitor, on DN and explored the underlying mechanism. Male Wistar albino rats (n = 12) were intraperitoneally administered a single dose of streptozotocin (30 mg/kg) to induce diabetes. Streptozotocin-treated and untreated rats (n = 12) were further divided into normal control, normal sitagliptin-treated control, diabetic control, and sitagliptin-treated diabetic groups (n = 6 in each). The normal and diabetic control groups received normal saline, whereas the sitagliptin-treated control and diabetic groups received sitagliptin (100 mg/kg, p.o.). We assessed the serum levels of DN and inflammatory biomarkers. Protein tyrosine phosphatase 1 B (PTP1B), phosphorylated Janus kinase 2 (P-JAK2), and phosphorylated signal transducer activator of transcription (P-STAT3) levels in kidney tissues were assessed using Western blotting, and kidney sections were examined histologically. Sitagliptin reduced DN and inflammatory biomarkers and the expression of PTP1B, p-JAK2, and p-STAT3 (p < 0.001) and improved streptozotocin-induced histological changes in the kidney. These results demonstrate that sitagliptin ameliorates inflammation by inhibiting DPP-4 and consequently modulating the PTP1B-related JAK/STAT axis, leading to the alleviation of DN.
Collapse
|
29
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
30
|
Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023; 12:cells12050769. [PMID: 36899905 PMCID: PMC10000584 DOI: 10.3390/cells12050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The hypothalamus, one of the major regulatory centers in the brain, controls various homeostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment. The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative stress due to senescence has the potential to alter the functioning of NSCs. Various studies have substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies to address obesity-induced comorbidities associated with brain aging. This review will summarize hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy for the treatment of obesity-induced cardiovascular conditions.
Collapse
|
31
|
Zhou C, Wu Q, Ye Z, Zhang Y, Zhang Y, Yang S, Liu M, He P, Qin X. Regular use of ibuprofen or paracetamol and incident type 2 diabetes: A prospective cohort study in the UK Biobank. DIABETES & METABOLISM 2022; 48:101388. [PMID: 36122870 DOI: 10.1016/j.diabet.2022.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The relation of regular ibuprofen or paracetamol use with the risk of type 2 diabetes (T2DM) remained undetermined. We aimed to evaluate the prospective association between regular ibuprofen or paracetamol use and incidence of T2DM. METHODS This cohort included 372,843 participants with available data of ibuprofen, paracetamol use and without diabetes at baseline from the UK Biobank. The primary outcome was incident T2DM. Cox proportional hazards models were applied to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for the risk of T2DM. RESULTS During a median of 12.1 years' follow-up, 11,527 (3.1%) participants developed T2DM. Overall, participants with regular use of paracetamol showed a significantly higher risk of incident T2DM (adjusted HR, 1.25; 95%CI: 1.19,1.31), compared with non-users. Moreover, a stronger positive association of paracetamol use with incident T2DM was found among those aged <60 years (vs. ≥60 years, P-interaction =0.008), free of cardiovascular diseases (CVD) (vs. CVD patients, P-interaction =0.01), and without the use of anti-hypertensive drugs (vs. users, P-interaction =0.016) at baseline. However, there was no significant association between regular use of ibuprofen (users vs. non-users; adjusted HR, 1.05; 95%CI: 0.99,1.12) and incident T2DM. More importantly, genetic risks of T2DM did not significantly modify the relations of ibuprofen, or paracetamol use with incident T2DM (Both P-interactions >0.05). CONCLUSIONS Regular use of paracetamol, but not ibuprofen, was associated with a significantly higher risk of incident T2DM among middle aged UK adults. Our current findings highlight the need for greater consideration in the clinical selection of paracetamol or ibuprofen.
Collapse
Affiliation(s)
- Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Qimeng Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
32
|
Phosphatase protector alpha4 (α4) is involved in adipocyte maintenance and mitochondrial homeostasis through regulation of insulin signaling. Nat Commun 2022; 13:6092. [PMID: 36241662 PMCID: PMC9568526 DOI: 10.1038/s41467-022-33842-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin signaling is mediated via a network of protein phosphorylation. Dysregulation of this network is central to obesity, type 2 diabetes and metabolic syndrome. Here we investigate the role of phosphatase binding protein Alpha4 (α4) that is essential for the serine/threonine protein phosphatase 2A (PP2A) in insulin action/resistance in adipocytes. Unexpectedly, adipocyte-specific inactivation of α4 impairs insulin-induced Akt-mediated serine/threonine phosphorylation despite a decrease in the protein phosphatase 2A (PP2A) levels. Interestingly, loss of α4 also reduces insulin-induced insulin receptor tyrosine phosphorylation. This occurs through decreased association of α4 with Y-box protein 1, resulting in the enhancement of the tyrosine phosphatase protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, adipocyte-specific knockout of α4 in male mice results in impaired adipogenesis and altered mitochondrial oxidation leading to increased inflammation, systemic insulin resistance, hepatosteatosis, islet hyperplasia, and impaired thermogenesis. Thus, the α4 /Y-box protein 1(YBX1)-mediated pathway of insulin receptor signaling is involved in maintaining insulin sensitivity, normal adipose tissue homeostasis and systemic metabolism.
Collapse
|
33
|
Suh SB, Lee N, Kim J, Kim S, Jang S, Park JK, Lee K, Choi SY, Kwon HJ, Lee CH. Metformin ameliorates olanzapine-induced obesity and glucose intolerance by regulating hypothalamic inflammation and microglial activation in female mice. Front Pharmacol 2022; 13:906717. [PMID: 36313357 PMCID: PMC9596779 DOI: 10.3389/fphar.2022.906717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Olanzapine (OLZ), a widely used second-generation antipsychotic drug, is known to cause metabolic side effects, including diabetes and obesity. Interestingly, OLZ-induced metabolic side effects have been demonstrated to be more profound in females in human studies and animal models. Metformin (MET) is often used as a medication for the metabolic side effects of OLZ. However, the mechanisms underlying OLZ-induced metabolic disturbances and their treatment remain unclear. Recent evidence has suggested that hypothalamic inflammation is a key component of the pathophysiology of metabolic disorders. On this background, we conducted this study with the following three objectives: 1) to investigate whether OLZ can independently induce hypothalamic microgliosis; 2) to examine whether there are sex-dependent differences in OLZ-induced hypothalamic microgliosis; and 3) to examine whether MET affects hypothalamic microgliosis. We found that administration of OLZ for 5 days induced systemic glucose intolerance and hypothalamic microgliosis and inflammation. Of note, both hypothalamic microglial activation and systemic glucose intolerance were far more evident in female mice than in male mice. The administration of MET attenuated hypothalamic microglial activation and prevented OLZ-induced systemic glucose intolerance and hypothalamic leptin resistance. Minocycline, a tetracycline derivative that prevents microgliosis, showed similar results when centrally injected. Our findings reveal that OLZ induces metabolic disorders by causing hypothalamic inflammation and that this inflammation is alleviated by MET administration.
Collapse
Affiliation(s)
- Sang Bum Suh
- University of Ulsan College of Medicine, Seoul, South Korea
| | - Nayoung Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jaedeok Kim
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Saeha Kim
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Sooyeon Jang
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jong Kook Park
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, South Korea
- *Correspondence: Chan Hee Lee,
| |
Collapse
|
34
|
Jaén M, Martín-Regalado Á, Bartolomé RA, Robles J, Casal JI. Interleukin 13 receptor alpha 2 (IL13Rα2): Expression, signaling pathways and therapeutic applications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188802. [PMID: 36152905 DOI: 10.1016/j.bbcan.2022.188802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Interleukin 13 receptor alpha 2 (IL13Rα2) is increasingly recognized as a relevant player in cancer invasion and metastasis. Despite being initially considered a decoy receptor for dampening the levels of interleukin 13 (IL-13) in diverse inflammatory conditions, accumulating evidences in the last decades indicate the capacity of IL13Rα2 for mediating IL-13 signaling in cancer cells. The biological reasons behind the expression of this receptor with such extremely high affinity for IL-13 in cancer cells remain unclear. Elevated expression of IL13Rα2 is commonly associated with invasion, late stage and cancer metastasis that results in poor prognosis for glioblastoma, colorectal or breast cancer, among others. The discovery of new mediators and effectors of IL13Rα2 signaling has been critical for deciphering its underlying molecular mechanisms in cancer progression. Still, many questions about the effects of inflammation, the cancer type and the tumor degree in the expression of IL13Rα2 remain largely uncharacterized. Here, we review and discuss the current status of the IL13Rα2 biology in cancer, with particular emphasis in the role of inflammation-driven expression and the regulation of different signaling pathways. As IL13Rα2 implications in cancer continue to grow exponentially, we highlight new targeted therapies recently developed for glioblastoma, colorectal cancer and other IL13Rα2-positive tumors.
Collapse
Affiliation(s)
- Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángela Martín-Regalado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
35
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
36
|
Puente-Ruiz SC, Jais A. Reciprocal signaling between adipose tissue depots and the central nervous system. Front Cell Dev Biol 2022; 10:979251. [PMID: 36200038 PMCID: PMC9529070 DOI: 10.3389/fcell.2022.979251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, various dietary and social factors led to the development of increased brain sizes alongside large adipose tissue stores. Complex reciprocal signaling mechanisms allow for a fine-tuned interaction between the two organs to regulate energy homeostasis of the organism. As an endocrine organ, adipose tissue secretes various hormones, cytokines, and metabolites that signal energy availability to the central nervous system (CNS). Vice versa, the CNS is a critical regulator of adipose tissue function through neural networks that integrate information from the periphery and regulate sympathetic nerve outflow. This review discusses the various reciprocal signaling mechanisms in the CNS and adipose tissue to maintain organismal energy homeostasis. We are focusing on the integration of afferent signals from the periphery in neuronal populations of the mediobasal hypothalamus as well as the efferent signals from the CNS to adipose tissue and its implications for adipose tissue function. Furthermore, we are discussing central mechanisms that fine-tune the immune system in adipose tissue depots and contribute to organ homeostasis. Elucidating this complex signaling network that integrates peripheral signals to generate physiological outputs to maintain the optimal energy balance of the organism is crucial for understanding the pathophysiology of obesity and metabolic diseases such as type 2 diabetes.
Collapse
|
37
|
Sun R, Sugiyama M, Wang S, Kuno M, Sasaki T, Hirose T, Miyata T, Kobayashi T, Tsunekawa T, Onoue T, Yasuda Y, Takagi H, Hagiwara D, Iwama S, Suga H, Arima H. Inflammation in VTA Caused by HFD Induces Activation of Dopaminergic Neurons Accompanied by Binge-like Eating. Nutrients 2022; 14:nu14183835. [PMID: 36145208 PMCID: PMC9502544 DOI: 10.3390/nu14183835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Binge eating is a characteristic symptom observed in obese individuals that is related to dysfunction of dopaminergic neurons (DNs). Intermittent administration of a high-fat diet (HFD) is reported to induce binge-like eating, but the underlying mechanisms remain unclear. We generated dopaminergic neuron specific IKKβ deficient mice (KO) to examine the effects of inflammation in DNs on binge-like eating under inflammatory conditions associated with HFD. After administration of HFD for 4 weeks, mice were fasted for 24 h, and then the consumption of HFD was measured for 2 h. We also evaluated that the mRNA expressions of inflammatory cytokines, glial markers, and dopamine signaling-related genes in the ventral tegmental area (VTA) and striatum. Moreover, insulin was administered intraventricularly to assess downstream signaling. The consumption of HFD was significantly reduced, and the phosphorylation of AKT in the VTA was significantly increased in female KO compared to wild-type (WT) mice. Analyses of mRNA expressions revealed that DNs activity and inflammation in the VTA were significantly decreased in female KO mice. Thus, our data suggest that HFD-induced inflammation with glial cell activation in the VTA affects DNs function and causes abnormal eating behaviors accompanied by insulin resistance in the VTA of female mice.
Collapse
Affiliation(s)
- Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-52-744-2142
| | - Sixian Wang
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Mitsuhiro Kuno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoyuki Sasaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomonori Hirose
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, Ichinomiya 491-8558, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8602, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
38
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
39
|
Cornejo PJ, Vergoni B, Ohanna M, Angot B, Gonzalez T, Jager J, Tanti JF, Cormont M. The Stress-Responsive microRNA-34a Alters Insulin Signaling and Actions in Adipocytes through Induction of the Tyrosine Phosphatase PTP1B. Cells 2022; 11:cells11162581. [PMID: 36010657 PMCID: PMC9406349 DOI: 10.3390/cells11162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic stresses alter the signaling and actions of insulin in adipocytes during obesity, but the molecular links remain incompletely understood. Members of the microRNA-34 (miR-34 family play a pivotal role in stress response, and previous studies showed an upregulation of miR-34a in adipose tissue during obesity. Here, we identified miR-34a as a new mediator of adipocyte insulin resistance. We confirmed the upregulation of miR-34a in adipose tissues of obese mice, which was observed in the adipocyte fraction exclusively. Overexpression of miR-34a in 3T3-L1 adipocytes or in fat pads of lean mice markedly reduced Akt activation by insulin and the insulin-induced glucose transport. This was accompanied by a decreased expression of VAMP2, a target of miR-34a, and an increased expression of the tyrosine phosphatase PTP1B. Importantly, PTP1B silencing prevented the inhibitory effect of miR-34a on insulin signaling. Mechanistically, miR-34a decreased the NAD+ level through inhibition of Naprt and Nampt, resulting in an inhibition of Sirtuin-1, which promoted an upregulation of PTP1B. Furthermore, the mRNA expression of Nampt and Naprt was decreased in adipose tissue of obese mice. Collectively, our results identify miR-34a as a new inhibitor of insulin signaling in adipocytes, providing a potential pathway to target to fight insulin resistance.
Collapse
Affiliation(s)
- Pierre-Jean Cornejo
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Bastien Vergoni
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mickaël Ohanna
- Université Côte d’Azur, Inserm, C3M, “Team Microenvironnement, Signalisation et Cancer”, 06204 Nice, France
| | - Brice Angot
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Teresa Gonzalez
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Aix Marseille Université, Inserm, INRAE, C2VN, 13385 Marseille, France
| | - Jennifer Jager
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Jean-François Tanti
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
| | - Mireille Cormont
- Université Côte d’Azur, Inserm, C3M, Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”, 06204 Nice, France
- Correspondence: ; Tel.: +33-4-89-15-38-31
| |
Collapse
|
40
|
Budi YP, Li YH, Huang C, Wang ME, Lin YC, Jong DS, Chiu CH, Jiang YF. The role of autophagy in high-fat diet-induced insulin resistance of adipose tissues in mice. PeerJ 2022; 10:e13867. [PMID: 35990905 PMCID: PMC9387522 DOI: 10.7717/peerj.13867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Aims Studies have observed changes in autophagic flux in the adipose tissue of type 2 diabetes patients with obesity. However, the role of autophagy in obesity-induced insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from adipose tissue to clarify whether altered autophagy-mediated HFD induces insulin resistance, and to elucidate the possible mechanisms in autophagy-regulated adipose insulin sensitivity. Methods Eight-week-old male C57BL/6 mice were fed with HFD to confirm the effect of HFD on autophagy and insulin signaling transduction from adipose tissue. Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50 nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and 24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy in insulin signaling transduction. Results The HFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon expression, and C/EBP homologous protein (CHOP) expression, yet the insulin capability to induce Akt (Ser473) and GSK3β (Ser9) phosphorylation were reduced. PHLPP1 and PTEN remain unchanged after CQ injection. In differentiated 3T3-L1 adipocytes treated with CQ, although the amount of phospho-Akt stimulated by insulin in the CQ-treated group was significantly lower, CHOP expressions and cleaved caspase-3 were increased and bafilomycin A1 induced less accumulation of LC3-II protein. Conclusion Long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not affect insulin signaling transduction via phosphatase expression but indirectly causes insulin resistance through ER stress or apoptosis.
Collapse
Affiliation(s)
- Yovita Permata Budi
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Mu-En Wang
- Department of Pathology, Duke University, North Carolina, Durham, United States of America
| | - Yi-Chun Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - De-Shien Jong
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
42
|
Sun M, Ma X, Shao S, Jiang J, Li J, Tian J, Zhang J, Li L, Ye F, Li S. Atropisomeric 9,10-dihydrophenanthrene/bibenzyl trimers with anti-inflammatory and PTP1B inhibitory activities from Bletilla striata. Org Biomol Chem 2022; 20:4736-4745. [PMID: 35612380 DOI: 10.1039/d2ob00489e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pairs of novel trimeric dihydrophenanthrene-bibenzyl-dihydrophenanthrene enantiomers (1 and2), the first examples of a dihydrophenanthrene dimer linked to a bibenzyl or dihydrophenanthrene through a C-O-C bond (3 and4), and a pair of rare polymers with a bibenzyl connected to C-8' of the dihydrophenanthro[b]furan moiety via a methylene (5), together with four known compounds (6-9) were isolated from the tubers of Bletilla striata. Their structures including the absolute configurations were determined using spectroscopic data analysis and ECD and NMR calculations, combined with the exciton chirality method or the reversed helicity rule. The atropisomerism of dihydrophenanthrenes and related polymers was considered based on their chiral optical properties, and QM torsion profile calculations, which revealed the racemic mixture form of the polymers. Compounds 4, 5b, 6a and 7b significantly inhibited the production of NO in LPS-induced BV-2 cells, with IC50 values ranging from 0.78 to 5.52 μM. Further mechanistic study revealed that 7b suppressed the expression of iNOS, and suppressed the phosphorylation of the p65 subunit to regulate the NF-κB signaling pathway. Furthermore, compounds 2b, 5a, 5b, 7a and 7b displayed significant protein tyrosine phosphatase 1B (PTP1B) inhibitory activities with IC50 values of 3.43-12.30 μM.
Collapse
Affiliation(s)
- Mohan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xianjie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Siyuan Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jianwei Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jiaan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jinying Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jianjun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuai Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
43
|
Sain A, Khamrai D, Kandasamy T, Naskar D. Targeting protein tyrosine phosphatase 1B in obesity-associated colon cancer: Possible role of sweet potato (Ipomoea batatas). Proteins 2022; 90:1346-1362. [PMID: 35119127 DOI: 10.1002/prot.26316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has emerged as one of the links between obesity and colon cancer (CC). Anti-obesity and anti-CC attributes of sweet potato (Ipomoea batatas) reported sparsely. Here, we aimed to study the potential of PTP1B as a target in CC, particularly in obese population. Expression and genomic alteration frequency of PTPN1 (PTP1B) were checked in CC. Interacting partners of PTP1B through STRING and hub genes through Cytoscape (MCODE) were identified. Hub genes were subjected to functional enrichment analyses (via Metascape), differential gene expression, copy number variation, and single nucleotide variation analyses (GSCA database). Cancer-related pathways and associated immune infiltrates of the hub genes were checked too. Eleven sweet potato-derived compounds selected through drug likeness (DL) and toxicity filters were explored via molecular docking (AutoDock Vina) to reveal the interactions with PTP1B. Genomic alteration frequency of the PTPN1 was highest in CC compared to all the other TCGA cancers, and a high expression (RNA and protein) is also observed in CC that correlated well to a poor overall survival (OS). Furthermore, PTP1B and related proteins were enriched in different biological processes and signaling pathways related to carcinogenesis including epithelial-mesenchymal transition. Overall, PTP1B identified as a potential target in obesity-linked CC and sweet potato might exert its protective action by targeting the PTP1B. Sweet potato compounds (e.g., pelargonidin and luteolin) interacted with the catalytic P loop and the WPD loop of the PTP1B. Furthermore, MD simulation study ascertained that luteolin has the highest affinity against the PTP1B, whereas pelargonidin and quercetin showed good binding affinity too, thus can be explored further.
Collapse
Affiliation(s)
- Arindam Sain
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Dipshikha Khamrai
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Debdut Naskar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|
44
|
Regulation of Nrf2 and NF-κB activities may contribute to the anti-inflammatory mechanism of xylopic acid. Inflammopharmacology 2022; 30:1835-1841. [PMID: 35260973 DOI: 10.1007/s10787-022-00950-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Xylopic acid (XA) is a kaurene diterpene which naturally exists in African plants such as Xylopia aethiopica. It has been established to exhibit acute and chronic anti-inflammatory activities from our earlier studies. This current work sets out to shed light on the potential molecular target(s) of xylopic acid. Selection of investigated targets (NF-κB, Nrf2 and PTP1B) was based on an unbiased approach, using the SPiDER in silico prediction tool, and a candidate approach, examining well-known anti-inflammatory targets. Reporter gene assays were used to test for altered NF-κB and Nrf2 activities in transfected HEK or CHO cells, respectively, and immunoblot and flow cytometric analyses examined protein expression of the Nrf2/NF-kB target genes HO-1 and VCAM-1 in HUVEC. An effect of XA on PTP1B activity assay was studied using an in vitro enzyme assay with recombinant human enzyme and pNPP as substrate as well as by looking at insulin receptor phosphorylation in HepG2 cells. XA at 30 µM significantly (p < 0.001) inhibited the NF-κB-dependent reporter gene expression and enhanced activation of Nrf2 in a concentration-dependent manner when compared to the control. XA also marginally increased HO-1 protein expression levels while expression of VCAM-1 was reduced to 70% in XA-treated endothelial cells. However, XA did not show any sign of inhibition of PTP1B or a related phosphatase. Our findings suggest that the anti-inflammatory mechanism of XA entails the inhibitory effect on NF-κB and an increased activity of Nrf2, accompanied by increased expression of HO-1 and reduced expression of VCAM-1.
Collapse
|
45
|
Kim HJ, Ryu KY, Kim YG, Kim MO, Lee JH, Song MK, Youn YJ, Pokhrel NK, Kim SH, Kim JY, Jung HJ, Kim WS, Hong CW, Kim HH, Lee Y. Myeloid-Specific PTP1B Deficiency Attenuates Inflammation-Induced and Ovariectomy-Induced Bone Loss in Mice by Inhibiting Osteoclastogenesis. J Bone Miner Res 2022; 37:505-514. [PMID: 34812548 DOI: 10.1002/jbmr.4478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022]
Abstract
The differentiation and activity of bone-resorbing osteoclasts are tightly regulated to maintain the homeostasis of healthy bones. In this study, the role of protein tyrosine phosphatase 1B (PTP1B) during osteoclastogenesis was studied in myeloid-specific Ptpn1-deficient (conditional knockout [cKO]) mice. The mRNA and protein expression of PTP1B increased during the formation of mature osteoclasts from mouse bone macrophages on stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). The Ptpn1 cKO mice exhibited increased femoral trabecular bone volume with a decreased number and activity of osteoclasts compared with control mice. The in vitro culture of osteoclast precursors corroborated the inhibition of osteoclastogenesis in cKO cells compared with control, with concomitantly decreased RANKL-dependent proliferation, lower osteoclast marker gene expression, reduced nuclear expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), diminished intracellular Ca2+ oscillations, and increased phosphorylation of proto-oncogene tyrosine-protein kinase Src on inhibitory tyrosine residue. In a ligature-induced periodontitis model, Ptpn1 cKO mice exhibited attenuated osteoclastogenesis and alveolar bone loss following the induction of inflammation. The Ptpn1-deficient mice were similarly protected from ovariectomy-induced bone loss compared with control mice. These results provide a novel regulatory role of PTP1B in osteoclastogenesis and suggest a potential as a therapeutic target for bone-lytic diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Ka-Young Ryu
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Myoung Ok Kim
- Department of Animal Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, South Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Min-Kyoung Song
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Nitin Kumar Pokhrel
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Sung-Hyun Kim
- Department of Bio-medical Analysis, Korea Polytechnic College, Chungnam, South Korea
| | - Jae-Young Kim
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hye-Jin Jung
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Woo-Shin Kim
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Youngkyun Lee
- Department of Biochemistry and Institute for Hard Tissue and Bone Regeneration, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
46
|
Khanal P, Patil BM. Reversal of insulin resistance by Ficus benghalensis bark in fructose-induced insulin-resistant rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114761. [PMID: 34678414 DOI: 10.1016/j.jep.2021.114761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bark of Ficus benghalensis L. (family: Moraceae), commonly known as Banyan is recorded as Nyagrodha in Ayurvedic Pharmacopeia of India to manage burning sensation, obesity, diabetes, bleeding disorders, thirst, skin diseases, wounds, and dysmenorrhoea. However, the effect of F. benghalensis bark over glycolysis, gluconeogenesis, and appetite regulation in insulin-resistant pathogenesis has not been reported yet. AIM OF THE STUDY The present study aimed to investigate the effect of hydroalcoholic extract of F. benghalensis bark in gluconeogenesis, glycolysis, and appetite regulation in fructose-induced insulin resistance in experimental rats. MATERIALS AND METHODS Male Wister rats were supplemented with fructose in drinking water (10% w/v for 42 days and 20% w/v for next 12 days; a total of 54 days); insulin resistance was confirmed via the elevated area under the curve of the glucose during oral glucose tolerance test after 54 days and was subjected with extract treatment for next 30 days. After 30 days of treatment, animals were fasted to perform oral glucose and insulin tolerance test to estimate glucose and insulin levels. The blood sample was collected for biochemical estimation and the liver homogenate was prepared to estimate hepatic enzymes and enzymatic and non-enzymatic anti-oxidant biomarkers followed by histopathological evaluation. Also, glycogen content was quantified in gastrocnemius muscle and liver homogenates. Further, reported bioactives from the F. benghalensis were retrieved from the ChEBI database and docked against hexokinase, phosphofructokinase, glucose-6-phosphatase, lactate dehydrogenase, and fructose-1,6-biphosphatase to identify the probable lead hits against the enzymes involved in gluconeogenesis. RESULTS Treatment with the F. benghalensis bark extract significantly increased the body weight and food intake and significantly decreased fructose supplemented water intake. Further, treatment with extract significantly increased the exogenous glucose clearance and well responded to the exogenous insulin. Further, extract treatment improved lipid metabolism, ameliorated plasma leptin, and multiple enzymatic and non-enzymatic antioxidant biomarkers. Likewise, it also improved gluconeogenesis mediated pathogenesis of non-alcoholic fatty liver injury. Additionally, molecular docking also identified mucusisoflavone A and B as lead hits in downregulating gluconeogenesis. CONCLUSION Hydroalcoholic extract of F. benghalensis bark may prevent insulin resistance by downregulating gluconeogenesis and improving the appetite in fructose-induced insulin-resistant rats.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi-590010, India.
| | - B M Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi-590010, India.
| |
Collapse
|
47
|
Nasrollahi Z, ShahaniPour K, Monajemi R, Ahadi AM. Abelmoschus esculentus (L.) Moench improved blood glucose, lipid, and down-regulated PPAR-α, PTP1B genes expression in diabetic rats. J Food Biochem 2022; 46:e14097. [PMID: 35102562 DOI: 10.1111/jfbc.14097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
Okra (Abelmoschus esculentus (L.) Moench) is one of the most important medicinal plants for the treatment of diabetes. Flavonoids are one of the most significant components of okra and are responsible for their antioxidant, anti-inflammatory, and anti-diabetic effects. The aim of this research was to investigate the effect of okra extract on biochemical parameters and expression of protein tyrosine phosphatase 1B (PTP1B) and Peroxisome proliferator-activated receptors (PPARs) genes in a model of streptozotocin-induced diabetic male Wistar rat. Rats were given oral dosages of okra extract, (75% ethanolic extract) (200-400 mg/kg) for eight weeks. Our findings indicate that okra extract and quercetin therapy may lower blood glucose (BS), insulin, Triglyceride (TG), Cholesterol (Cho), and glucose transporter protein type-4 (GLUT4) levels. PTP1B and Peroxisome proliferator-activated receptor alpha (PPAR-α), which are important regulators of glucose and lipid homeostasis, are similarly inhibited by okra extract. According to the findings, okra extract also has antioxidant properties. Our results support the anti-hyperglycemic and hypolipidemic properties of okra extract. As a result, it appears to play a crucial role in controlling diabetes. PRACTICAL APPLICATIONS: In this paper, we show that flavonoids in okra may help diabetes by inhibiting the PTP1B and PPAR-pathways. This is significant because little research has been done on the impact of flavonoid chemicals in A. esculentus on the expression of PTP1B and PPAR using traditional methods of diabetes treatment. Many of today's essential drugs (e.g., atropine, ephedrine, tubocurarine, digoxin, and reserpine) have been developed by studding traditional treatments. Plant-derived medications are still used as a prototype by chemists in an effort to develop more effective and less risky treatments (e.g., morphine, taxol, physostigmine, quinidine, and emetine.
Collapse
Affiliation(s)
- Zohreh Nasrollahi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Kahin ShahaniPour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
48
|
Yang X, Zheng M, Zhou M, Zhou L, Ge X, Pang N, Li H, Li X, Li M, Zhang J, Huang XF, Zheng K, Yu Y. Lentinan Supplementation Protects the Gut–Liver Axis and Prevents Steatohepatitis: The Role of Gut Microbiota Involved. Front Nutr 2022; 8:803691. [PMID: 35127789 PMCID: PMC8810540 DOI: 10.3389/fnut.2021.803691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota–gut–liver axis has emerged as an important player in developing nonalcoholic steatohepatitis (NASH), a type of nonalcoholic fatty liver disease (NAFLD). Higher mushroom intake is negatively associated with the prevalence of NAFLD. This study examined whether lentinan, an active ingredient in mushrooms, could improve NAFLD and gut microbiota dysbiosis in NAFLD mice induced by a high-fat (HF) diet. Dietary lentinan supplementation for 15 weeks significantly improved gut microbiota dysbiosis in HF mice, evidenced by increased the abundance of phylum Actinobacteria and decreased phylum Proteobacteria and Epsilonbacteraeota. Moreover, lentinan improved intestinal barrier integrity and characterized by enhancing intestinal tight junction proteins, restoring intestinal redox balance, and reducing serum lipopolysaccharide (LPS). In the liver, lentinan attenuated HF diet-induced steatohepatitis, alteration of inflammation–insulin (NFκB-PTP1B-Akt-GSK3β) signaling molecules, and dysregulation of metabolism and immune response genes. Importantly, the antihepatic inflammation effects of lentinan were associated with improved gut microbiota dysbiosis in the treated animals, since the Spearman's correlation analysis showed that hepatic LPS-binding protein and receptor (Lbp and Tlr4) and pro- and antiinflammatory cytokine expression were significantly correlated with the abundance of gut microbiota of phylum Proteobacteria, Epsilonbacteraeota and Actinobacteria. Therefore, lentinan supplementation may be used to mitigate NAFLD by modulating the microbiota–gut–liver axis.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Pang
- Tianjin Third Central Hospital, Tianjin, China
| | - Hongchun Li
- Medical Technology Institute, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xu-Feng Huang
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Yinghua Yu
| |
Collapse
|
49
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|