1
|
Mahé A, Verneuil N, Coupri D, Hartke A, Cattoir V, Rincé I, Gueulle S, Feng X, Lequeux T, Pfund E, Budin-Verneuil A. D-alanylation of lipoteichoic acids inhibitor provides anti-virulence and anti-resistance effects against methicillin-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother 2025; 69:e0182224. [PMID: 40116514 PMCID: PMC12057345 DOI: 10.1128/aac.01822-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Methicillin-resistant Staphylococcus epidermidis (MRSE) is an emerging multidrug-resistant pathogen responsible for numerous healthcare-associated infections. Most of them are resistant to all classes of antibiotics and thus lead to therapeutic impasse. For this reason, identifying new targets and characterizing new drugs are essential. We recently showed that methicillin-resistant Staphylococcus aureus strains deficient in D-alanylation of teichoic acids (TAs) lost resistance to various β-lactams. Here we explore if D-alanylation of TAs might be a druggable target to overcome β-lactam resistance of MRSE using a competitive DltA inhibitor. The binding affinity of a DltA inhibitor with the purified DltA protein was monitored by determining the half maximal inhibitory concentration (IC50). The efficiency of D-alanylation inhibition was determined by quantifying the ester-linked D-alanine content of purified TAs. Minimal inhibition concentrations (MICs) and bactericidal effects of several β-lactams were monitored in the absence or presence of the inhibitor against a panel of clinical MRSE isolates. Finally, the ability of inhibition of D-alanylation (i) to rescue MRSE-infected larvae of Galleria mellonella and (ii) to prevent or eradicate S. epidermidis biofilms was evaluated. The DltA inhibitor showed IC50 in the low µM range, drastically reduced the D-alanine esters content of TAs and re-sensitized MRSE to β-lactams. The most effective treatment was the DltA inhibitor/imipenem combination. Finally, inhibition of D-alanylation significantly reduced the virulence of MRSE in the G. mellonella infection model and strongly reduced the ability of S. epidermidis to form biofilms. All together, our results show the promising nature of the D-alanylation of TAs as a therapeutic target to fight against MRSE infections.
Collapse
Affiliation(s)
- Alexandre Mahé
- CBSA UR 4312, Université de Caen Normandie, Caen, Normandy, France
| | - Nicolas Verneuil
- CBSA UR 4312, Université de Caen Normandie, Caen, Normandy, France
| | - Delphine Coupri
- CBSA UR 4312, Université de Caen Normandie, Caen, Normandy, France
| | - Axel Hartke
- CBSA UR 4312, Université de Caen Normandie, Caen, Normandy, France
| | - Vincent Cattoir
- Department of Clinical Microbiology and National Reference Center for Enterococci, University Hospital of Rennes, Rennes, Brittany, France
- INSERM Unit U1230, University of Rennes, Rennes, Brittany, France
| | - Isabelle Rincé
- CBSA UR 4312, Université de Caen Normandie, Caen, Normandy, France
| | - Sabrina Gueulle
- CBSA UR 4312, Université de Caen Normandie, Caen, Normandy, France
| | - Xiao Feng
- Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, Normandie Université, Caen, Normandy, France
| | - Thierry Lequeux
- Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, Normandie Université, Caen, Normandy, France
| | - Emmanuel Pfund
- Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507, ENSICAEN, UNICAEN, CNRS, Normandie Université, Caen, Normandy, France
| | | |
Collapse
|
2
|
Liong A, Leão PN. Fatty acyl-AMP ligases in bacterial natural product biosynthesis. Nat Prod Rep 2025; 42:739-753. [PMID: 39968878 PMCID: PMC11837247 DOI: 10.1039/d4np00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Indexed: 02/20/2025]
Abstract
Covering: covering up to 2024Fatty Acyl-AMP Ligases (FAALs) belong to the family of adenylate-forming enzymes and activate fatty acyl substrates through adenylation. FAALs were discovered as key players in various natural product biosynthetic pathways, particularly in the assembly of polyketides and non-ribosomal peptides. These enzymes exhibit a conserved structural architecture that distinguishes them from their close relatives, the Fatty Acyl-CoA Ligases. FAALs display the starter unit in the biosynthesis of diverse natural products where they shuttle fatty acyl substrates into secondary metabolism for further chain elongation and/or modification. In this review, we cover the discovery, distribution and structure of FAALs as well as their role in natural product biosynthesis. In addition, we provide an overview about their genomic and biosynthetic contexts and summarize approaches used to analyze FAAL activity, predict their substrate specificity and to discover new compounds whose biosyntheses involve these enzymes.
Collapse
Affiliation(s)
- Anne Liong
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Pedro N Leão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| |
Collapse
|
3
|
Schultz BJ, Walker S. Acyltransferases that Modify Cell Surface Polymers Across the Membrane. Biochemistry 2025; 64:1728-1749. [PMID: 40171682 PMCID: PMC12021268 DOI: 10.1021/acs.biochem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface oligosaccharides and related polymers are commonly decorated with acyl esters that alter their structural properties and influence their interactions with other molecules. In many cases, these esters are added to polymers that are already positioned on the extracytoplasmic side of a membrane, presenting cells with a chemical challenge because the high-energy acyl donors used for these modifications are made in the cytoplasm. How activated acyl groups are passed from the cytoplasm to extra-cytoplasmic polymers has been a longstanding question. Recent mechanistic work has shown that many bacterial acyl transfer pathways operate by shuttling acyl groups through two covalent intermediates to their final destination on an extracellular polymer. Key to these and other pathways are cross-membrane acyltransferases─enzymes that catalyze transfer of acyl groups from a donor on one side of the membrane to a recipient on the other side. Here we review what has been learned recently about how cross-membrane acyltransferases in polymer acylation pathways function, highlighting the chemical and biosynthetic logic used by two key protein families, membrane-bound O-acyltransferases (MBOATs) and acyltransferase-3 (AT3) proteins. We also point out outstanding questions and avenues for further exploration.
Collapse
Affiliation(s)
- Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Del Rio Flores A, Zhai R, Kastner DW, Seshadri K, Yang S, De Matias K, Shen Y, Cai W, Narayanamoorthy M, Do NB, Xue Z, Marzooqi DA, Kulik HJ, Zhang W. Enzymatic synthesis of azide by a promiscuous N-nitrosylase. Nat Chem 2024; 16:2066-2075. [PMID: 39333393 PMCID: PMC11611683 DOI: 10.1038/s41557-024-01646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Azides are energy-rich compounds with diverse representation in a broad range of scientific disciplines, including material science, synthetic chemistry, pharmaceutical science and chemical biology. Despite ubiquitous usage of the azido group, the underlying biosynthetic pathways for its formation remain largely unknown. Here we report the characterization of an enzymatic route for de novo azide construction. We demonstrate that Tri17, a promiscuous ATP- and nitrite-dependent enzyme, catalyses organic azide synthesis through sequential N-nitrosation and dehydration of aryl hydrazines. Through biochemical, structural and computational analyses, we further propose a plausible molecular mechanism for azide synthesis that sets the stage for future biocatalytic applications and biosynthetic pathway engineering.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - David W Kastner
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Siyue Yang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Kyle De Matias
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Yuanbo Shen
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Nicholas B Do
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Zhaoqiang Xue
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Dunya Al Marzooqi
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
6
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Feldberg AL, Mayerthaler F, Rüschenbaum J, Kröger J, Mootz HD. Carrier Protein Interaction with Competing Adenylation and Epimerization Domains in a Nonribosomal Peptide Synthetase Analyzed by FRET. Angew Chem Int Ed Engl 2024; 63:e202317753. [PMID: 38488324 DOI: 10.1002/anie.202317753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 04/11/2024]
Abstract
In multi-domain nonribosomal peptide synthetases (NRPSs) the order of domains and their catalytic specificities dictate the structure of the peptide product. Peptidyl-carrier proteins (PCPs) bind activated amino acids and channel elongating peptidyl intermediates along the protein template. To this end, fine-tuned interactions with the catalytic domains and large-scale PCP translocations are necessary. Despite crystal structure snapshots of several PCP-domain interactions, the conformational dynamics under catalytic conditions in solution remain poorly understood. We report a FRET reporter of gramicidin S synthetase 1 (GrsA; with A-PCP-E domains) to study for the first time the interaction between PCP and adenylation (A) domain in the presence of an epimerization (E) domain, a competing downstream partner for the PCP. Bulk FRET measurements showed that upon PCP aminoacylation a conformational shift towards PCP binding to the A domain occurs, indicating the E domain acts on its PCP substrate out of a disfavored conformational equilibrium. Furthermore, the A domain was found to preferably bind the D-Phe-S-Ppant-PCP stereoisomer, suggesting it helps in establishing the stereoisomeric mixture in favor of the D-aminoacyl moiety. These observations surprisingly show that the conformational logic can deviate from the order of domains and thus reveal new principles in the multi-domain interplay of NRPSs.
Collapse
Affiliation(s)
- Anna-Lena Feldberg
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jennifer Rüschenbaum
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jonas Kröger
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
8
|
Peng YJ, Chen Y, Zhou CZ, Miao W, Jiang YL, Zeng X, Zhang CC. Modular catalytic activity of nonribosomal peptide synthetases depends on the dynamic interaction between adenylation and condensation domains. Structure 2024; 32:440-452.e4. [PMID: 38340732 DOI: 10.1016/j.str.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.
Collapse
Affiliation(s)
- Ye-Jun Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxing Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Miao
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China
| | - Yong-Liang Jiang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Xiaoli Zeng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.
| | - Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China.
| |
Collapse
|
9
|
Shen X, Jiang X, Sun X, Yuan Q, Wang J. Identifying and charactering a 4-aminobutyryl-CoA ligase for the production of butyrolactam. J Biotechnol 2024; 382:21-27. [PMID: 38246203 DOI: 10.1016/j.jbiotec.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Butyrolactam, a crucial four-carbon molecule, serves as building block in synthesis of polyamides. While biosynthesis of butyrolactam from renewable carbon sources offers a more sustainable approach, it has faced challenges in achieving high product titer and yield. Here, an efficient microbial platform for butyrolactam production was constructed by elimination of rate-limiting step and systematic pathway optimization. Initially, a superior 4-aminobutyryl-CoA ligase was discovered and characterized among six acyl-CoA ligases from different sources, which greatly improved the pathway efficiency. Subsequent optimizations were implemented to further enhance butyrolactam production, including promoter engineering, the elimination of competing pathways, transporter engineering and improving the availability of precursors. There efforts resulted in achieving approximately 2 g/L butyrolactam in shake flask experiments. Finally, the biosynthesis of butyrolactam was scaled up in a 3-L bioreactor in 84 hours, resulting in a significantly increased production of 45.2 g/L, with a carbon yield of 0.34 g/g glucose. This study highlights the construction of a microbial platform with the capability to achieve elevated levels of butyrolactam production and unlocks its potential in sustainable manufacturing processes.
Collapse
Affiliation(s)
- Xiaolin Shen
- College of life science and biotechnology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaotian Jiang
- College of life science and biotechnology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- College of life science and biotechnology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- College of life science and biotechnology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- College of life science and biotechnology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Sun X, Alfermann J, Li H, Watkins MB, Chen YT, Morrell TE, Mayerthaler F, Wang CY, Komatsuzaki T, Chu JW, Ando N, Mootz HD, Yang H. Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases. Nat Chem 2024; 16:259-268. [PMID: 38049653 PMCID: PMC11227371 DOI: 10.1038/s41557-023-01361-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
Many peptide-derived natural products are produced by non-ribosomal peptide synthetases (NRPSs) in an assembly-line fashion. Each amino acid is coupled to a designated peptidyl carrier protein (PCP) through two distinct reactions catalysed sequentially by the single active site of the adenylation domain (A-domain). Accumulating evidence suggests that large-amplitude structural changes occur in different NRPS states; yet how these molecular machines orchestrate such biochemical sequences has remained elusive. Here, using single-molecule Förster resonance energy transfer, we show that the A-domain of gramicidin S synthetase I adopts structurally extended and functionally obligatory conformations for alternating between adenylation and thioester-formation structures during enzymatic cycles. Complementary biochemical, computational and small-angle X-ray scattering studies reveal interconversion among these three conformations as intrinsic and hierarchical where intra-A-domain organizations propagate to remodel inter-A-PCP didomain configurations during catalysis. The tight kinetic coupling between structural transitions and enzymatic transformations is quantified, and how the gramicidin S synthetase I A-domain utilizes its inherent conformational dynamics to drive directional biosynthesis with a flexibly linked PCP domain is revealed.
Collapse
Affiliation(s)
- Xun Sun
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonas Alfermann
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Hao Li
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology; Institute of Molecular Medicine and Bioengineering; Department of Biological Science and Technology; Centre for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Thomas E Morrell
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Chia-Ying Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tamiki Komatsuzaki
- Research Centre of Mathematics for Social Creativity, Research Institute for Electronic Science; The Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology; Institute of Molecular Medicine and Bioengineering; Department of Biological Science and Technology; Centre for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Henning D Mootz
- Institute of Biochemistry, University of Münster, Münster, Germany.
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
12
|
Rüschenbaum J, Steinchen W, Mayerthaler F, Feldberg A, Mootz HD. FRET Monitoring of a Nonribosomal Peptide Synthetase Elongation Module Reveals Carrier Protein Shuttling between Catalytic Domains. Angew Chem Int Ed Engl 2022; 61:e202212994. [PMID: 36169151 PMCID: PMC9828546 DOI: 10.1002/anie.202212994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 01/12/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) employ multiple domains, specifically arranged in modules, for the assembly-line biosynthesis of a plethora of bioactive peptides. It is poorly understood how catalysis is correlated with the domain interplay and associated conformational changes. We developed FRET sensors of an elongation module to study in solution the intramodular interactions of the peptidyl carrier protein (PCP) with adenylation (A) and condensation (C) domains. Backed by HDX-MS analysis, we discovered dynamic mixtures of conformations that undergo distinct population changes in favor of the PCP-A and PCP-C interactions upon completion of the adenylation and thiolation reactions, respectively. To probe this model we blocked PCP binding to the C domain by photocaging and triggered peptide bond formation with light. Changing intramodular domain affinities of the PCP appear to result in conformational shifts according to the logic of the templated assembly process.
Collapse
Affiliation(s)
- Jennifer Rüschenbaum
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| | - Wieland Steinchen
- Philipps-University MarburgSYNMIKRO Research Center & Faculty of ChemistryKarl-von-Frisch-Straße 1435043MarburgGermany
| | - Florian Mayerthaler
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| | - Anna‐Lena Feldberg
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| | - Henning D. Mootz
- University of MünsterInstitute of BiochemistryCorrensstraße 3648149MünsterGermany
| |
Collapse
|
13
|
Nikolopoulos N, Matos RC, Courtin P, Ayala I, Akherraz H, Simorre JP, Chapot-Chartier MP, Leulier F, Ravaud S, Grangeasse C. DltC acts as an interaction hub for AcpS, DltA and DltB in the teichoic acid D-alanylation pathway of Lactiplantibacillus plantarum. Sci Rep 2022; 12:13133. [PMID: 35907949 PMCID: PMC9338922 DOI: 10.1038/s41598-022-17434-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Teichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by d-alanine, a process known as d-alanylation. TA d-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after d-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA d-alanylation pathway.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Pascal Courtin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Isabel Ayala
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, 3800, Grenoble, France
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, CEA, CNRS UMR 5075, Université Grenoble Alpes, 3800, Grenoble, France
| | | | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France.
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
14
|
Corpuz JC, Sanlley JO, Burkart MD. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth Syst Biotechnol 2022; 7:677-688. [PMID: 35224236 PMCID: PMC8857579 DOI: 10.1016/j.synbio.2022.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products. With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein (PCP) and its partner enzymes, NRPS enzymology and control remains fertile ground for discovery. This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes, including the phosphopantetheinyl transferase (PPTase), adenylation (A) domain, condensation (C) domain, thioesterase (TE) domain and other tailoring enzymes within the synthetase. Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Javier O. Sanlley
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
15
|
Wang Z, Yang FX, Liu C, Wang L, Qi Y, Cao M, Guo X, Li J, Huang X, Yang J, Huang SX. Isolation and Biosynthesis of Phenazine-Polyketide Hybrids from Streptomyces sp. KIB-H483. JOURNAL OF NATURAL PRODUCTS 2022; 85:1324-1331. [PMID: 35574837 DOI: 10.1021/acs.jnatprod.2c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A phenazine-polyketide hybrid compound, nexphenazine A (1), was isolated from Streptomyces sp. KIB-H483. The bioinformatic analysis of the draft genome of the producing strain and gene inactivation experiments revealed that the biosynthesis of 1 involves a phenazine-polyketide hybrid gene cluster. The abolished production of 1 as well as the accumulation of shunt metabolites 4-7 in mutant strain ΔnpzI revealed the key role of the npzI gene, which encodes an NAD(P)H-dependent ketoreductase, in nexphenazine biosynthesis. The structures and absolute configurations of the isolated intermediates were established on the basis of spectroscopic data analysis, single-crystal X-ray diffraction, chiral chromatography, and chemical conversion experiments. NpzI exhibited stereochemical selectivity in reducing the carbonyl group of 4. Nexphenazine biosynthesis is proposed to involve a condensation of the carboxyl group of phenazine with one molecule of methylmalonyl-CoA by a type I PKS, followed by a ketone reduction by NpzI and an unknown methylation reaction.
Collapse
Affiliation(s)
- Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Feng-Xian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chongxi Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yuxin Qi
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Minghang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiaowei Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
16
|
Lee IG, Song C, Yang S, Jeon H, Park J, Yoon HJ, Im H, Kang SM, Eun HJ, Lee BJ. Structural and functional analysis of the D-alanyl carrier protein ligase DltA from Staphylococcus aureus Mu50. Acta Crystallogr D Struct Biol 2022; 78:424-434. [PMID: 35362466 PMCID: PMC8972799 DOI: 10.1107/s2059798322000547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/16/2022] [Indexed: 11/10/2022] Open
Abstract
D-Alanylation of the teichoic acids of the Gram-positive bacterial cell wall plays crucial roles in bacterial physiology and virulence. Deprivation of D-alanine from the teichoic acids of Staphylococcus aureus impairs biofilm and colony formation, induces autolysis and ultimately renders methicillin-resistant S. aureus highly susceptible to antimicrobial agents and host defense peptides. Hence, the D-alanylation pathway has emerged as a promising antibacterial target against drug-resistant S. aureus. D-Alanylation of teichoic acids is mediated via the action of four proteins encoded by the dlt operon, DltABCD, all four of which are essential for the process. In order to develop novel antimicrobial agents against S. aureus, the D-alanyl carrier protein ligase DltA, which is the first protein in the D-alanylation pathway, was focused on. Here, the crystal structure of DltA from the methicillin-resistant S. aureus strain Mu50 is presented, which reveals the unique molecular details of the catalytic center and the role of the P-loop. Kinetic analysis shows that the enantioselectivity of S. aureus DltA is much higher than that of DltA from other species. In the presence of DltC, the enzymatic activity of DltA is increased by an order of magnitude, suggesting a new exploitable binding pocket. This discovery may pave the way for a new generation of treatments for drug-resistant S. aureus.
Collapse
|
17
|
Okamoto T, Yamanaka K, Hamano Y, Nagano S, Hino T. Crystal structure of the adenylation domain from an ε-poly-l-lysine synthetase provides molecular mechanism for substrate specificity. Biochem Biophys Res Commun 2022; 596:43-48. [DOI: 10.1016/j.bbrc.2022.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
18
|
Goldsmith M, Barad S, Peleg Y, Albeck S, Dym O, Brandis A, Mehlman T, Reich Z. The identification and characterization of an oxalyl-CoA synthetase from grass pea (Lathyrus sativus L.). RSC Chem Biol 2022; 3:320-333. [PMID: 35359497 PMCID: PMC8905533 DOI: 10.1039/d1cb00202c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Oxalic acid is a small metabolite that can be found in many plants in which it serves as protection from herbivores, a chelator of metal ions, a regulator of calcium...
Collapse
Affiliation(s)
- Moshe Goldsmith
- Dept. of Biomolecular Sciences, Weizmann Institute of Science Rehovot 7610001 Israel +972-8-9344118 +972-8-9343278 +972-8-9342982
| | - Shiri Barad
- Dept. of Biomolecular Sciences, Weizmann Institute of Science Rehovot 7610001 Israel +972-8-9344118 +972-8-9343278 +972-8-9342982
| | - Yoav Peleg
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Shira Albeck
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Orly Dym
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Alexander Brandis
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Tevie Mehlman
- Dept. of Life Science Core Facilities, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Ziv Reich
- Dept. of Biomolecular Sciences, Weizmann Institute of Science Rehovot 7610001 Israel +972-8-9344118 +972-8-9343278 +972-8-9342982
| |
Collapse
|
19
|
Structural, molecular docking computational studies and in-vitro evidence for antibacterial activity of mixed ligand complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130481] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Mayerthaler F, Feldberg AL, Alfermann J, Sun X, Steinchen W, Yang H, Mootz HD. Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases. RSC Chem Biol 2021; 2:843-854. [PMID: 34458813 PMCID: PMC8341999 DOI: 10.1039/d0cb00220h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 01/16/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that govern the stepwise biosynthesis of pharmaceutically important peptides. In an ATP-dependent assembly-line mechanism dedicated domains are responsible for each catalytic step. Crystal structures have provided insight into several conformations of interacting domains. However, the complete picture in solution of how domain dynamics and the timing of conformational changes effect a directional biosynthesis remains only poorly understood and will be important for the efficient reprogramming of NRPSs. Here we dissect the multiple conformational changes associated with the adenylation and thiolation reactions of the aminoacylation pathway under catalytic conditions. We used pyrophosphate (PP i ) to biochemically drive the conformational changes backward and forward while performing an online monitoring with a Förster resonance energy transfer (FRET) didomain sensor, consisting of adenylation (A) and peptidyl-carrier protein (PCP) domains. Notably, we found aminoacyl thioester formation to efficiently occur in the presence of PP i even at millimolar concentrations, despite the chemically and conformationally reversing effect of this metabolite and by-product. This finding settles conflicting reports and explains why intracellular PP i concentrations do not impair NRP biosynthesis. A conserved amino acid was identified to be important for the mechanism under these conditions. FRET time-course analyses revealed that the directionality of the aminoacylation catalysis is correlated with conformational kinetics. Complemented by equilibrium hydrogen-deuterium exchange (HDX) analyses, our data uncovered the existence of at least one new intermediary conformation that is associated with the rate-determining step. We propose an expanded model of conformational changes in the NRPS aminoacylation pathway.
Collapse
Affiliation(s)
- Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| | - Anna-Lena Feldberg
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| | - Jonas Alfermann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| | - Xun Sun
- Department of Chemistry, Princeton University Princeton New Jersey USA
| | - Wieland Steinchen
- SYNMIKRO Research Center & Faculty of Chemistry, Philipps-University Marburg Germany
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton New Jersey USA
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| |
Collapse
|
22
|
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Protein Sci 2020; 29:2316-2347. [PMID: 33073901 DOI: 10.1002/pro.3979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.
Collapse
Affiliation(s)
- Diego A Alonzo
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
23
|
Corpuz JC, Podust LM, Davis TD, Jaremko MJ, Burkart MD. Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis. RSC Chem Biol 2020; 1:8-12. [PMID: 33305272 PMCID: PMC7723355 DOI: 10.1039/c9cb00015a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Using a covalent chemical probe and X-ray crystallography coupled to nuclear magnetic resonance data, we elucidated the dynamic molecular basis of protein recognition between the carrier protein and adenylation domain in pyoluteorin biosynthesis. These findings reveal a unique binding mode, which contrasts previously solved carrier protein and partner protein interfaces. The interface interactions of a type II peptidyl carrier protein and partner enzyme are observed to be unique and dynamic.![]()
Collapse
Affiliation(s)
- Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0755, USA
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
24
|
Tan K, Zhou M, Jedrzejczak RP, Wu R, Higuera RA, Borek D, Babnigg G, Joachimiak A. Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Curr Res Struct Biol 2020; 2:14-24. [PMID: 34235466 PMCID: PMC8244413 DOI: 10.1016/j.crstbi.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/28/2022] Open
Abstract
The recently discovered antibiotic teixobactin is produced by uncultured soil bacteria. The antibiotic inhibits cell wall synthesis of Gram-positive bacteria by binding to precursors of cell wall building blocks, and therefore it is thought to be less vulnerable to development of resistance. Teixobactin is synthesized by two nonribosomal peptide synthetases (NRPSs), encoded by txo1 and txo2 genes. Like other NRPSs, the Txo1 and Txo2 synthetases are large, multifunctional, and comprised of several modules. Each module is responsible for catalysis of a distinct step of teixobactin synthesis and contains specific functional units, commonly including a condensation (C) domain, an adenylation (A) domain, and a peptidyl carrier protein (PCP) domain. Here we report the structures of the C-A bidomains of the two L-Ser condensing modules, from Txo1 and Txo2, respectively. In the structure of the C domain of the L-Ser subunit of Txo1, a large conformational change is observed, featuring an outward swing of its N-terminal α-helix. This repositioning, if functionally validated, provides the necessary conformational change for the condensation reaction in C domain, and likely represents a regulatory mechanism. In an Acore subdomain, a well-coordinated Mg2+ cation is observed, which is required in the adenylation reaction. The Mg2+-binding site is defined by a largely conserved amino acid sequence motif and is coordinated by the α-phosphate group of AMP (or ATP) when present, providing some structural evidence for the role of the metal cation in the catalysis of A domain.
Collapse
Key Words
- A domain, Adenylation domain
- Acore subdomain, Large N-terminal subdomain of A domain
- Adenylation domain
- Asub subdomain, Small C-terminal subdomain of A domain
- C domain, Condensation domain
- CCterm subdomain, C-terminal subdomain of C domain
- CNterm subdomain, N-terminal subdomain of C domain
- COMA domain, Acceptor communication-mediating domain
- COMD domain, Donor communication-mediating domain
- Condensation domain
- Conformational change
- MES, 2- morpholinoethane sulfonic acid
- Mg2+-binding
- NRPS, Nonribosomal peptide synthetase
- Nonribosomal peptide synthetase
- PCP domain, Peptidyl carrier domain
- RMSD, Root-mean-square deviation
- SAD, Single wavelength diffraction
- SSM, Secondary-structure matching
- Teixobactin
- Txo1
- Txo2
- α-helix regulation
Collapse
Affiliation(s)
- Kemin Tan
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Ruiying Wu
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Raul A. Higuera
- BUILDing SCHOLARS, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA
| | - Dominika Borek
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gyorgy Babnigg
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
25
|
D’Ambrosio HK, Derbyshire ER. Investigating the Role of Class I Adenylate-Forming Enzymes in Natural Product Biosynthesis. ACS Chem Biol 2020; 15:17-27. [PMID: 31815417 DOI: 10.1021/acschembio.9b00865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenylate-forming enzymes represent one of the most important enzyme classes in biology, responsible for the activation of carboxylate substrates for biosynthetic modifications. The byproduct of the adenylate-forming enzyme acetyl-CoA synthetase, acetyl-CoA, is incorporated into virtually every primary and secondary metabolic pathway. Modification of acetyl-CoA by an array of other adenylate-forming enzymes produces complex classes of natural products including nonribosomal peptides, polyketides, phenylpropanoids, lipopeptides, and terpenes. Adenylation domains possess a variety of unique structural and functional features that provide for such diversification in their resulting metabolites. As the number of organisms with sequenced genomes increases, more adenylate-forming enzymes are being identified, each with roles in metabolite production that have yet to be characterized. In this Review, we explore the broad role of class I adenylate-forming enzymes in the context of natural product biosynthesis and how they contribute to primary and secondary metabolism by focusing on important work conducted in the field. We highlight features of subclasses from this family that facilitate the production of structurally diverse metabolites, including those from noncanonical adenylation domains, and additionally discuss when biological roles for these compounds are known.
Collapse
Affiliation(s)
- Hannah K. D’Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710, United States
| |
Collapse
|
26
|
Izoré T, Cryle MJ. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 2019; 35:1120-1139. [PMID: 30207358 DOI: 10.1039/c8np00038g] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to July 2018 Non-ribosomal peptide synthetase (NRPS) machineries are complex, multi-domain proteins that are responsible for the biosynthesis of many important, peptide-derived compounds. By decoupling peptide synthesis from the ribosome, NRPS assembly lines are able to access a significant pool of amino acid monomers for peptide synthesis. This is combined with a modular protein architecture that allows for great variation in stereochemistry, peptide length, cyclisation state and further modifications. The architecture of NRPS assembly lines relies upon a repetitive set of catalytic domains, which are organised into modules responsible for amino acid incorporation. Central to NRPS-mediated biosynthesis is the carrier protein (CP) domain, to which all intermediates following initial monomer activation are bound during peptide synthesis up until the final handover to the thioesterase domain that cleaves the mature peptide from the NRPS. This mechanism makes understanding the protein-protein interactions that occur between different NRPS domains during peptide biosynthesis of crucial importance to understanding overall NRPS function. This endeavour is also highly challenging due to the inherent flexibility and dynamics of NRPS systems. In this review, we present the current state of understanding of the protein-protein interactions that govern NRPS-mediated biosynthesis, with a focus on insights gained from structural studies relating to CP domain interactions within these impressive peptide assembly lines.
Collapse
Affiliation(s)
- Thierry Izoré
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
27
|
Gulick AM, Aldrich CC. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Nat Prod Rep 2019; 35:1156-1184. [PMID: 30046790 DOI: 10.1039/c8np00044a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to early 2018 The Nonribosomal Peptide Synthetases (NRPSs) and Polyketide Synthases (PKSs) are families of modular enzymes that produce a tremendous diversity of natural products, with antibacterial, antifungal, immunosuppressive, and anticancer activities. Both enzymes utilize a fascinating modular architecture in which the synthetic intermediates are covalently attached to a peptidyl- or acyl-carrier protein that is delivered to catalytic domains for natural product elongation, modification, and termination. An investigation of the structural mechanism therefore requires trapping the often transient interactions between the carrier and catalytic domains. Many novel chemical probes have been produced to enable the structural and functional investigation of multidomain NRPS and PKS structures. This review will describe the design and implementation of the chemical tools that have proven to be useful in biochemical and biophysical studies of these natural product biosynthetic enzymes.
Collapse
Affiliation(s)
- Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 955 Main St, Buffalo, NY 14203, USA.
| | | |
Collapse
|
28
|
Cheng YY, Liu YJ. Luciferin Regeneration in Firefly Bioluminescence via Proton-Transfer-Facilitated Hydrolysis, Condensation and Chiral Inversion. Chemphyschem 2019; 20:1719-1727. [PMID: 31090243 DOI: 10.1002/cphc.201900306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Indexed: 01/06/2023]
Abstract
Firefly bioluminescence is produced via luciferin enzymatic reactions in luciferase. Luciferin has to be unceasingly replenished to maintain bioluminescence. How is the luciferin reproduced after it has been exhausted? In the early 1970s, Okada proposed the hypothesis that the oxyluciferin produced by the previous bioluminescent reaction could be converted into new luciferin for the next bioluminescent reaction. To some extent, this hypothesis was evidenced by several detected intermediates. However, the detailed process and mechanism of luciferin regeneration remained largely unknown. For the first time, we investigated the entire process of luciferin regeneration in firefly bioluminescence by density functional theory calculations. This theoretical study suggests that luciferin regeneration consists of three sequential steps: the oxyluciferin produced from the last bioluminescent reaction generates 2-cyano-6-hydroxybenzothiazole (CHBT) in the luciferin regenerating enzyme (LRE) via a hydrolysis reaction; CHBT combines with L-cysteine in vivo to form L-luciferin via a condensation reaction; and L-luciferin inverts into D-luciferin in luciferase and thioesterase. The presently proposed mechanism not only supports the sporadic evidence from previous experiments but also clearly describes the complete process of luciferin regeneration. This work is of great significance for understanding the long-term flashing of fireflies without an in vitro energy supply.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
29
|
Cieślak J, Miyanaga A, Takaishi M, Kudo F, Eguchi T. Functional and structural characterization of IdnL7, an adenylation enzyme involved in incednine biosynthesis. Acta Crystallogr F Struct Biol Commun 2019; 75:299-306. [PMID: 30950831 PMCID: PMC6450520 DOI: 10.1107/s2053230x19002863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Adenylation enzymes play an important role in the selective incorporation of the cognate carboxylate substrates in natural product biosynthesis. Here, the biochemical and structural characterization of the adenylation enzyme IdnL7, which is involved in the biosynthesis of the macrolactam polyketide antibiotic incednine, is reported. Biochemical analysis showed that IdnL7 selects and activates several small amino acids. The structure of IdnL7 in complex with an L-alanyl-adenylate intermediate mimic, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine, was determined at 2.1 Å resolution. The structure of IdnL7 explains the broad substrate specificity of IdnL7 towards small L-amino acids.
Collapse
Affiliation(s)
- Jolanta Cieślak
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Takaishi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
30
|
Degen A, Mayerthaler F, Mootz HD, Di Ventura B. Context-dependent activity of A domains in the tyrocidine synthetase. Sci Rep 2019; 9:5119. [PMID: 30914767 PMCID: PMC6435693 DOI: 10.1038/s41598-019-41492-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that produce bioactive peptides of tremendous structural and chemical diversity, due to the incorporation, alongside the canonical 20 amino acids, of non-proteinogenic amino acids, fatty acids, sugars and heterocyclic rings. For linear NRPSs, the size and composition of the peptide product is dictated by the number, order and specificity of the individual modules, each made of several domains. Given the size and complexity of NRPSs, most in vitro studies have focused on individual domains, di-domains or single modules extracted from the full-length proteins. However, intermodular interactions could play a critical role and regulate the activity of the domains and modules in unpredictable ways. Here we investigate in vitro substrate activation by three A domains of the tyrocidine synthetase TycC enzyme, systematically comparing their activity when alone (with the respective PCP domain), in pairs (di-modular constructs) or all together (tri-modular construct). Furthermore, we study the impact of mutations in the A or PCP domains in these various constructs. Our results suggest that substrate adenylation and effects of mutations largely depend on the context in which the domains/modules are. Therefore, generalizing properties observed for domains or modules in isolation should be done with caution.
Collapse
Affiliation(s)
- Anna Degen
- German Cancer Research Center DKFZ and Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Florian Mayerthaler
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Henning D Mootz
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Barbara Di Ventura
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
31
|
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. ACTA ACUST UNITED AC 2019; 46:515-536. [DOI: 10.1007/s10295-018-2084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
Abstract
Nonproteinogenic amino acids are the unique building blocks of nonribosomal peptides (NRPs) and hybrid nonribosomal peptide–polyketides (NRP–PKs) and contribute to their diversity of chemical structures and biological activities. In the biosynthesis of NRPs and NRP–PKs, adenylation enzymes select and activate an amino acid substrate as an aminoacyl adenylate, which reacts with the thiol of the holo form of the carrier protein to afford an aminoacyl thioester as the electrophile for the condensation reaction. Therefore, the substrate specificity of adenylation enzymes is a key determinant of the structure of NRPs and NRP–PKs. Here, we focus on nonproteinogenic amino acid selective adenylation enzymes, because understanding their unique selection mechanisms will lead to accurate functional predictions and protein engineering toward the rational biosynthesis of designed molecules containing amino acids. Based on recent progress in the structural analysis of adenylation enzymes, we discuss the nonribosomal codes of nonproteinogenic amino acid selective adenylation enzymes.
Collapse
|
32
|
Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, El-Mogazy MA. Allyl rhodanine azo dye derivatives: Potential antimicrobials target d-alanyl carrier protein ligase and nucleoside diphosphate kinase. J Cell Biochem 2019; 120:1667-1678. [PMID: 30187946 DOI: 10.1002/jcb.27473] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
3-Allyl-5-(4-arylazo)-2-thioxothiazolidine-4-one (HLn ) ligands (where n = 1 to 3) were hypothesized to have antimicrobial activities mediated through inhibition of new antimicrobial targets. The ligands (HLn ) were synthesized and characterized by infrared (IR) and 1 H nuclear magnetic resonance (1 H NMR) spectra. The ligands (HLn ) were in silico screened to their potential inhibition to models of d-alanyl carrier protein ligase (DltA) (from Bacillus cereus, PDB code 3FCE) and nucleoside diphosphate kinase (NDK) (from Staphylococcus aureus; PDB code 3Q8U). HL3 ligand has the best energy and mode of binding to both NDK and DltA, even though its binding to DltA was stronger than that to NDK. In antimicrobial activity of HL3 ligand, morphological and cytological changes in HL3 -treated bacteria agreed with the in silico results. The HL3 ligand showed significant antimicrobial activity against B. cereus, S. aureus, and Fusarium oxysporium. The HL3 -treated bacterial cells appeared malformed and incompletely separated. Its cell walls appeared electron-lucent and ruptured. They contained more mesosomes than normal cells. It was found that the HL3 ligand represented as a bactericide against B. cereus and S. aureusby blocking target DltA, and may target NDK.
Collapse
Affiliation(s)
- Mohamed I Abou-Dobara
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Noha F Omar
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Mostafa A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Adel Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Shaimaa M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
| | | |
Collapse
|
33
|
Reille-Seroussi M, Mayer SV, Dörner W, Lang K, Mootz HD. Expanding the genetic code with a lysine derivative bearing an enzymatically removable phenylacetyl group. Chem Commun (Camb) 2019; 55:4793-4796. [PMID: 30945708 DOI: 10.1039/c9cc00475k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the genetically encoded incorporation of phenylacetyl protected lysine (PacK) into proteins in Escherichia coli. This unnatural side-chain modification can be enzymatically removed using either penicillin G acylase (PGA) or, surprisingly, the sirtuin SrtN from Bacillus subtilis. Our approach expands the toolbox to reversibly control protein structure and function under very mild and non-denaturing conditions, as demonstrated by triggering the activity of the nonribosomal peptide synthetase GrsA.
Collapse
Affiliation(s)
- Marie Reille-Seroussi
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany.
| | | | | | | | | |
Collapse
|
34
|
Wood BM, Santa Maria JP, Matano LM, Vickery CR, Walker S. A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem 2018; 293:17985-17996. [PMID: 30237166 PMCID: PMC6240853 DOI: 10.1074/jbc.ra118.004561] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Modifications to the Gram-positive bacterial cell wall play important roles in antibiotic resistance and pathogenesis, but the pathway for the d-alanylation of teichoic acids (DLT pathway), a ubiquitous modification, is poorly understood. The d-alanylation machinery includes two membrane proteins of unclear function, DltB and DltD, which are somehow involved in transfer of d-alanine from a carrier protein inside the cell to teichoic acids on the cell surface. Here, we probed the role of DltD in the human pathogen Staphylococcus aureus using both cell-based and biochemical assays. We first exploited a known synthetic lethal interaction to establish the essentiality of each gene in the DLT pathway for d-alanylation of lipoteichoic acid (LTA) and confirmed this by directly detecting radiolabeled d-Ala-LTA both in cells and in vesicles prepared from mutant strains of S. aureus We developed a partial reconstitution of the pathway by using cell-derived vesicles containing DltB, but no other components of the d-alanylation pathway, and showed that d-alanylation of previously formed lipoteichoic acid in the DltB vesicles requires the presence of purified and reconstituted DltA, DltC, and DltD, but not of the LTA synthase LtaS. Finally, based on the activity of DltD mutants in cells and in our reconstituted system, we determined that Ser-70 and His-361 are essential for d-alanylation activity, and we propose that DltD uses a catalytic dyad to transfer d-alanine to LTA. In summary, we have developed a suite of assays for investigating the bacterial DLT pathway and uncovered a role for DltD in LTA d-alanylation.
Collapse
Affiliation(s)
- B McKay Wood
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - John P Santa Maria
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Leigh M Matano
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher R Vickery
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Suzanne Walker
- From the Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
35
|
Clark L, Leatherby D, Krilich E, Ropelewski AJ, Perozich J. In silico analysis of class I adenylate-forming enzymes reveals family and group-specific conservations. PLoS One 2018; 13:e0203218. [PMID: 30180199 PMCID: PMC6122825 DOI: 10.1371/journal.pone.0203218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
Luciferases, aryl- and fatty-acyl CoA synthetases, and non-ribosomal peptide synthetase proteins belong to the class I adenylate-forming enzyme superfamily. The reaction catalyzed by the adenylate-forming enzymes is categorized by a two-step process of adenylation and thioesterification. Although all of these proteins perform a similar two-step process, each family may perform the process to yield completely different results. For example, luciferase proteins perform adenylation and oxidation to produce the green fluorescent light found in fireflies, while fatty-acyl CoA synthetases perform adenylation and thioesterification with coenzyme A to assist in metabolic processes involving fatty acids. This study aligned a total of 374 sequences belonging to the adenylate-forming superfamily. Analysis of the sequences revealed five fully conserved residues throughout all sequences, as well as 78 more residues conserved in at least 60% of sequences aligned. Conserved positions are involved in magnesium and AMP binding and maintaining enzyme structure. Also, ten conserved sequence motifs that included most of the conserved residues were identified. A phylogenetic tree was used to assign sequences into nine different groups. Finally, group entropy analysis identified novel conservations unique to each enzyme group. Common group-specific positions identified in multiple groups include positions critical to coordinating AMP and the CoA-bound product, a position that governs active site shape, and positions that help to maintain enzyme structure through hydrogen bonds and hydrophobic interactions. These positions could serve as excellent targets for future research.
Collapse
Affiliation(s)
- Louis Clark
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| | - Danielle Leatherby
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| | - Elizabeth Krilich
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| | - Alexander J Ropelewski
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - John Perozich
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States of America
| |
Collapse
|
36
|
Fatty Acyl-AMP Ligases as Mechanistic Variants of ANL Superfamily and Molecular Determinants Dictating Substrate Specificities. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Abe T, Kobayashi K, Kawamura S, Sakaguchi T, Shiiba K, Kobayashi M. Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis. J GEN APPL MICROBIOL 2018; 65:1-10. [PMID: 29899192 DOI: 10.2323/jgam.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The adenylation domain of nonribosomal peptide synthetase (NRPS) is responsible for its selective substrate recognition and activation of the substrate (yielding an acyl-O-AMP intermediate) on ATP consumption. DhbF is an NRPS involved in bacillibactin synthesis and consists of multiple domains [adenylation domain, condensation domain, peptidyl carrier protein (PCP) domain, and thioesterase domain]; DhbFA1 and DhbFA2 (here named) are "internal" adenylation domains in the multidomain enzyme DhbF. We firstly succeeded in expressing and purifying the "internal" adenylation domains DhbFA1 and DhbFA2 separately. Furthermore, we initially demonstrated dipeptide synthesis by "internal" adenylation domains. When glycine and L-cysteine were used as substrates of DhbFA1, the formation of N-glycyl-L-cysteine (Gly-Cys) was observed. Furthermore, when L-threonine and L-cysteine were used as substrates of DhbFA2, N-L-threonyl-L-cysteine (Thr-Cys) was formed. These findings showed that both adenylation domains produced dipeptides by forming a carbon-nitrogen bond comprising the carboxyl group of an amino acid and the amino group of L-cysteine, although these adenylation domains are acid-thiol ligase using 4'-phosphopantetheine (bound to the PCP domain) as a substrate. Furthermore, DhbFA1 and DhbFA2 synthesized oligopeptides as well as dipeptides.
Collapse
Affiliation(s)
- Tomoko Abe
- Division of Life Science, School of Science and Engineering, Tokyo Denki University
| | - Kenta Kobayashi
- Division of Life Science, School of Science and Engineering, Tokyo Denki University
| | - Sho Kawamura
- Division of Life Science, School of Science and Engineering, Tokyo Denki University
| | - Tatsuya Sakaguchi
- Division of Life Science, School of Science and Engineering, Tokyo Denki University
| | - Kiwamu Shiiba
- Division of Life Science, School of Science and Engineering, Tokyo Denki University
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba
| |
Collapse
|
38
|
Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme. Nat Chem Biol 2018; 14:730-737. [PMID: 29867143 PMCID: PMC6008203 DOI: 10.1038/s41589-018-0061-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/19/2018] [Indexed: 01/23/2023]
Abstract
Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.
Collapse
|
39
|
Reimer JM, Haque AS, Tarry MJ, Schmeing TM. Piecing together nonribosomal peptide synthesis. Curr Opin Struct Biol 2018; 49:104-113. [DOI: 10.1016/j.sbi.2018.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
40
|
Alfermann J, Sun X, Mayerthaler F, Morrell TE, Dehling E, Volkmann G, Komatsuzaki T, Yang H, Mootz HD. FRET monitoring of a nonribosomal peptide synthetase. Nat Chem Biol 2017; 13:1009-1015. [PMID: 28759017 DOI: 10.1038/nchembio.2435] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/14/2017] [Indexed: 12/16/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine-thioester and phenylalanine-AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.
Collapse
Affiliation(s)
- Jonas Alfermann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Xun Sun
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Thomas E Morrell
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Eva Dehling
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Gerrit Volkmann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Tamiki Komatsuzaki
- Molecule and Life Nonlinear Sciences Laboratory, Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| |
Collapse
|
41
|
Chen Y, Li TL, Lin X, Li X, Li XD, Guo Z. Crystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode. J Biol Chem 2017; 292:12296-12310. [PMID: 28559280 DOI: 10.1074/jbc.m117.790410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/25/2017] [Indexed: 02/03/2023] Open
Abstract
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (MenE) is an essential enzyme in bacterial vitamin K biosynthesis and an important target in the development of new antibiotics. It is a member of the adenylating enzymes (ANL) family, which reconfigure their active site in two different active conformations, one for the adenylation half-reaction and the other for a thioesterification half-reaction, in a domain-alternation catalytic mechanism. Although several aspects of the adenylating mechanism in MenE have recently been uncovered, its thioesterification conformation remains elusive. Here, using a catalytically competent Bacillus subtilis mutant protein complexed with an OSB-CoA analogue, we determined MenE high-resolution structures to 1.76 and 1.90 Å resolution in a thioester-forming conformation. By comparison with the adenylation conformation, we found that MenE's C-domain rotates around the Ser-384 hinge by 139.5° during domain-alternation catalysis. The structures also revealed a thioesterification active site specifically conserved among MenE orthologues and a substrate-binding mode distinct from those of many other acyl/aryl-CoA synthetases. Of note, using site-directed mutagenesis, we identified several residues that specifically contribute to the thioesterification half-reaction without affecting the adenylation half-reaction. Moreover, we observed a substantial movement of the activated succinyl group in the thioesterification half-reaction. These findings provide new insights into the domain-alternation catalysis of a bacterial enzyme essential for vitamin K biosynthesis and of its adenylating homologues in the ANL enzyme family.
Collapse
Affiliation(s)
- Yaozong Chen
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tin Lok Li
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xingbang Lin
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xin Li
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhihong Guo
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
42
|
Bloudoff K, Schmeing TM. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1587-1604. [PMID: 28526268 DOI: 10.1016/j.bbapap.2017.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are incredible macromolecular machines that produce a wide range of biologically- and therapeutically-relevant molecules. During synthesis, peptide elongation is performed by the condensation (C) domain, as it catalyzes amide bond formation between the nascent peptide and the amino acid it adds to the chain. Since their discovery more than two decades ago, C domains have been subject to extensive biochemical, bioinformatic, mutagenic, and structural analyses. They are composed of two lobes, each with homology to chloramphenicol acetyltransferase, have two binding sites for their two peptidyl carrier protein-bound ligands, and have an active site with conserved motif HHxxxDG located between the two lobes. This review discusses some of the important insights into the structure, catalytic mechanism, specificity, and gatekeeping functions of C domains revealed since their discovery. In addition, C domains are the archetypal members of the C domain superfamily, which includes several other members that also function as NRPS domains. The other family members can replace the C domain in NRP synthesis, can work in concert with a C domain, or can fulfill diverse and novel functions. These domains include the epimerization (E) domain, the heterocyclization (Cy) domain, the ester-bond forming C domain, the fungal NRPS terminal C domain (CT), the β-lactam ring forming C domain, and the X domain. We also discuss structural and function insight into C, E, Cy, CT and X domains, to present a holistic overview of historical and current knowledge of the C domain superfamily. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Kristjan Bloudoff
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
43
|
Goodrich AC, Meyers DJ, Frueh DP. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication. J Biol Chem 2017; 292:10002-10013. [PMID: 28455448 DOI: 10.1074/jbc.m116.766220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Nonribosomal peptide synthesis involves the interplay between covalent protein modifications, conformational fluctuations, catalysis, and transient protein-protein interactions. Delineating the mechanisms involved in orchestrating these various processes will deepen our understanding of domain-domain communication in nonribosomal peptide synthetases (NRPSs) and lay the groundwork for the rational reengineering of NRPSs by swapping domains handling different substrates to generate novel natural products. Although many structural and biochemical studies of NRPSs exist, few studies have focused on the energetics and dynamics governing the interactions in these systems. Here, we present detailed binding studies of an adenylation domain and its partner carrier protein in apo-, holo-, and substrate-loaded forms. Results from fluorescence anisotropy, isothermal titration calorimetry, and NMR titrations indicated that covalent modifications to a carrier protein modulate domain communication, suggesting that chemical modifications to carrier proteins during NRPS synthesis may impart directionality to sequential NRPS domain interactions. Comparison of the structure and dynamics of an apo-aryl carrier protein with those of its modified forms revealed structural fluctuations induced by post-translational modifications and mediated by modulations of protein dynamics. The results provide a comprehensive molecular description of a carrier protein throughout its life cycle and demonstrate how a network of dynamic residues can propagate the molecular impact of chemical modifications throughout a protein and influence its affinity toward partner domains.
Collapse
Affiliation(s)
| | - David J Meyers
- the Department of Pharmacology and Molecular Sciences Synthetic Core Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
44
|
Cieślak J, Miyanaga A, Takaku R, Takaishi M, Amagai K, Kudo F, Eguchi T. Biochemical characterization and structural insight into aliphatic β-amino acid adenylation enzymes IdnL1 and CmiS6. Proteins 2017; 85:1238-1247. [DOI: 10.1002/prot.25284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jolanta Cieślak
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Akimasa Miyanaga
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ryoma Takaku
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Makoto Takaishi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Keita Amagai
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
45
|
Ji F, Wang C, Wang H, Liu G, Chen B, Hu L, Jiang G, Song M, Liang Y. Tetrabromobisphenol A (TBBPA) exhibits specific antimicrobial activity against Gram-positive bacteria without detectable resistance. Chem Commun (Camb) 2017; 53:3512-3515. [DOI: 10.1039/c7cc00613f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the antimicrobial ability of tetrabromobisphenol A (TBBPA) against Gram-positive bacteria without detectable resistance.
Collapse
Affiliation(s)
- Fang Ji
- School of Medicine, Jianghan University
- Wuhan 430056
- P. R. China
| | - Chang Wang
- Institute of Environment and Health
- Jianghan University
- Wuhan 430056
- P. R. China
| | - Huimin Wang
- Institute of Environment and Health
- Jianghan University
- Wuhan 430056
- P. R. China
| | - Guangliang Liu
- Institute of Environment and Health
- Jianghan University
- Wuhan 430056
- P. R. China
| | - Bolei Chen
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan 430056
- P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- P. R. China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- P. R. China
| | - Yong Liang
- School of Medicine, Jianghan University
- Wuhan 430056
- P. R. China
- Institute of Environment and Health
- Jianghan University
| |
Collapse
|
46
|
Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases. Cell Chem Biol 2016; 23:331-9. [PMID: 26991102 DOI: 10.1016/j.chembiol.2016.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 01/24/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) synthesize a vast variety of small molecules, including antibiotics, antitumors, and immunosuppressants. The NRPS condensation (C) domain catalyzes amide bond formation, the central chemical step in nonribosomal peptide synthesis. The catalytic mechanism and substrate determinants of the reaction are under debate. We developed chemical probes to structurally study the NRPS condensation reaction. These substrate analogs become covalently tethered to a cysteine introduced near the active site, to mimic covalent substrate delivery by carrier domains. They are competent substrates in the condensation reaction and behave similarly to native substrates. Co-crystal structures show C domain-substrate interactions, and suggest that the catalytic histidine's principle role is to position the α-amino group for nucleophilic attack. Structural insight provided by these co-complexes also allowed us to alter the substrate specificity profile of the reaction with a single point mutation.
Collapse
|
47
|
Chen Y, Jiang Y, Guo Z. Mechanistic Insights from the Crystal Structure of Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase Complexed with the Adenylate Intermediate. Biochemistry 2016; 55:6685-6695. [PMID: 27933791 DOI: 10.1021/acs.biochem.6b00889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase, or MenE, catalyzes an essential step in vitamin K biosynthesis and is a valuable drug target. Like many other adenylating enzymes, it changes its structure to accommodate substrate binding, catalysis, and product release along the path of a domain alternation catalytic mechanism. We have determined the crystal structure of its complex with the adenylation product, o-succinylbenzoyl-adenosine monophosphate (OSB-AMP), and captured a new postadenylation state. This structure presents unique features such as a strained conformation for the bound adenylate intermediate to indicate that it represents the enzyme state after completion of the adenylation reaction but before release of the C domain in its transition to the thioesterification conformation. By comparison to the ATP-bound preadenylation conformation, structural changes are identified in both the reactants and the active site to allow inference about how these changes accommodate and facilitate the adenylation reaction and to directly support an in-line backside attack nucleophilic substitution mechanism for the first half-reaction. Mutational analysis suggests that the conserved His196 plays an important role in desolvation of the active site rather than stabilizing the transition state of the adenylation reaction. In addition, comparison of the new structure with a previously determined OSB-AMP-bound structure of the same enzyme allows us to propose a release mechanism of the C domain in its alteration to form the thioesterification conformation. These findings allow us to better understand the domain alternation catalytic mechanism of MenE as well as many other adenylating enzymes.
Collapse
Affiliation(s)
- Yaozong Chen
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yiping Jiang
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
48
|
Reimer JM, Aloise MN, Powell HR, Schmeing TM. Manipulation of an existing crystal form unexpectedly results in interwoven packing networks with pseudo-translational symmetry. Acta Crystallogr D Struct Biol 2016; 72:1130-1136. [PMID: 27710934 PMCID: PMC5053139 DOI: 10.1107/s2059798316013504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes that synthesize a myriad of diverse molecules. Tailoring domains have been co-opted into NRPSs to introduce further variety into nonribosomal peptide products. Linear gramicidin synthetase contains a unique formylation-tailoring domain in its initiation module (F-A-PCP). The structure of the F-A di-domain has previously been determined in a crystal form which had large solvent channels and no density for the minor Asub subdomain. An attempt was made to take advantage of this packing by removing the Asub subdomain from the construct (F-AΔsub) in order to produce a crystal that could accommodate the PCP domain. In the resulting crystal the original packing network was still present, but a second network with the same packing and almost no contact with the original network took the place of the solvent channels and changed the space group of the crystal.
Collapse
Affiliation(s)
- Janice M. Reimer
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada
| | - Martin N. Aloise
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada
| | | | - T. Martin Schmeing
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
49
|
Gulick AM. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr Opin Chem Biol 2016; 35:89-96. [PMID: 27676239 DOI: 10.1016/j.cbpa.2016.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/09/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) catalyze the assembly line biosynthesis of peptide natural products that play important roles in microbial signaling and communication. These multidomain enzymes use an integrated carrier protein that delivers the growing peptide to the catalytic domains, requiring coordinated conformational changes that allow the proper sequence of synthetic steps. Recent structural studies of NRPSs have described important conformational states and illustrate the critical role of a small subdomain within the adenylation domains. This subdomain alternates between catalytic conformations and also serves as a linker domain, providing further conformational flexibility to enable the carrier to project from the core of NRPS. These studies are described along with remaining questions in the study of the structural dynamics of NRPSs.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA; Department of Structural Biology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
50
|
Kittilä T, Mollo A, Charkoudian LK, Cryle MJ. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis. Angew Chem Int Ed Engl 2016; 55:9834-40. [PMID: 27435901 PMCID: PMC5113783 DOI: 10.1002/anie.201602614] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 12/28/2022]
Abstract
The nonribosomal peptide synthetases (NRPSs) are one of the most promising resources for the production of new bioactive molecules. The mechanism of NRPS catalysis is based around sequential catalytic domains: these are organized into modules, where each module selects, modifies, and incorporates an amino acid into the growing peptide. The intermediates formed during NRPS catalysis are delivered between enzyme centers by peptidyl carrier protein (PCP) domains, which makes PCP interactions and movements crucial to NRPS mechanism. PCP movement has been linked to the domain alternation cycle of adenylation (A) domains, and recent complete NRPS module structures provide support for this hypothesis. However, it appears as though the A domain alternation alone is insufficient to account for the complete NRPS catalytic cycle and that the loaded state of the PCP must also play a role in choreographing catalysis in these complex and fascinating molecular machines.
Collapse
Affiliation(s)
- Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Aurelio Mollo
- Department of Chemistry, Haverford College, Haverford, PA, 19041, USA
| | | | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany. .,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia. .,The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|