1
|
Zhang T, Ambrodji A, Huang H, Bouchonville KJ, Etheridge AS, Schmidt RE, Bembenek BM, Temesgen ZB, Wang Z, Innocenti F, Stroka D, Diasio RB, Largiadèr CR, Offer SM. Germline cis variant determines epigenetic regulation of the anti-cancer drug metabolism gene dihydropyrimidine dehydrogenase ( DPYD). eLife 2024; 13:RP94075. [PMID: 38686795 PMCID: PMC11060711 DOI: 10.7554/elife.94075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Alisa Ambrodji
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences, University of BernBernSwitzerland
| | - Huixing Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Amy S Etheridge
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel HillChapel HillUnited States
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Brianna M Bembenek
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Zoey B Temesgen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Federico Innocenti
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel HillChapel HillUnited States
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochesterUnited States
- Department of Pathology, University of Iowa Carver College of Medicine, University of IowaIowa CityUnited States
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
2
|
Zhang T, Ambrodji A, Huang H, Bouchonville KJ, Etheridge AS, Schmidt RE, Bembenek BM, Temesgen ZB, Wang Z, Innocenti F, Stroka D, Diasio RB, Largiadèr CR, Offer SM. Germline cis variant determines epigenetic regulation of the anti-cancer drug metabolism gene dihydropyrimidine dehydrogenase ( DPYD). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565230. [PMID: 37961517 PMCID: PMC10635067 DOI: 10.1101/2023.11.01.565230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Alisa Ambrodji
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3010 Bern, Switzerland
| | - Huixing Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kelly J. Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Amy S. Etheridge
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Remington E. Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Brianna M. Bembenek
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zoey B. Temesgen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Federico Innocenti
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Carlo R. Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Pathology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Lead contact
| |
Collapse
|
3
|
Matsuguchi S, Hirai Y. Syntaxin4, P-cadherin, and CCAAT enhancer binding protein β as signaling elements in the novel differentiation pathway for cultured embryonic stem cells. Biochem Biophys Res Commun 2023; 672:27-35. [PMID: 37331168 DOI: 10.1016/j.bbrc.2023.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Pluripotent stem cells possess the potential to differentiate into all three germ layers. However, upon removal of the stemness factors, pluripotent stem cells, such as embryonic stem cells (ESCs), exhibit EMT-like cell behavior and lose stemness signatures. This process involves the membrane translocation of the t-SNARE protein syntaxin4 (Stx4) and the expression of the intercellular adhesion molecule P-cadherin. The forced expression of either of these elements induces the emergence of such phenotypes even in the presence of stemness factors. Interestingly, extracellular Stx4, but not P-cadherin, appears to induce a significant upregulation of the gastrulation-related gene brachyury, along with a slight upregulation of the smooth muscle cell-related gene ACTA2 in ESCs. Furthermore, our findings reveal that extracellular Stx4 plays a role in preventing the elimination of CCAAT enhancer binding protein β (C/EBPβ). Notably, the forced overexpression of C/EBPβ led to the downregulation of brachyury and a significant upregulation of ACTA2 in ESCs. These observations suggest that extracellular Stx4 contributes to early mesoderm induction while simultaneously activating an element that alters the differentiation state. The fact that a single differentiation cue can elicit multiple differentiation responses may reflect the challenges associated with achieving sensitive and directed differentiation in cultured stem cells.
Collapse
Affiliation(s)
- Shuji Matsuguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| | - Yohei Hirai
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
4
|
Abstract
Recent studies have identified long non-coding RNAs (lncRNAs) as potential regulators of adipogenesis. In this study, we have characterized a lncRNA, LIPE-AS1, that spans genes CEACAM1 to LIPE in man with conservation of genomic organization and tissue expression between mouse and man. Tissue-specific expression of isoforms of the murine lncRNA were found in liver and adipose tissue, one of which, designated mLas-V3, overlapped the Lipe gene encoding hormone-sensitive lipase in both mouse and man suggesting that it may have a functional role in adipose tissue. Knock down of expression of mLas-V3 using anti-sense oligos (ASOs) led to a significant decrease in the differentiation of the OP9 pre-adipocyte cell line through the down regulation of the major adipogenic transcription factors Pparg and Cebpa. Knock down of mLas-V3 induced apoptosis during the differentiation of OP9 cells as shown by expression of active caspase-3, a change in the localization of LIP/LAP isoforms of C/EBPβ, and expression of the cellular stress induced factors CHOP, p53, PUMA, and NOXA. We conclude that mLas-V3 may play a role in protecting against stress associated with adipogenesis, and its absence leads to apoptosis.
Collapse
Affiliation(s)
- Alyssa Thunen
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John E. Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
5
|
Metformin inhibits human non-small cell lung cancer by regulating AMPK-CEBPB-PDL1 signaling pathway. Cancer Immunol Immunother 2021; 71:1733-1746. [PMID: 34837101 DOI: 10.1007/s00262-021-03116-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Metformin has been found to have inhibitory effects on a variety of tumors. However, its effects on non-small cell lung cancer (NSCLC) remain unclear. We demonstrated that metformin could inhibit the proliferation of A549 and H1299 cells. RNA transcriptome sequencing revealed that PDL1 was significantly downregulated in both cell types following treatment with metformin (P < 0.001). Jaspar analysis and chromatin immunoprecipitation showed that CEBPB could directly bind the promoter region of PDL1. Western blotting showed that protein expression of the isoforms CEBPB-LAP*, CEBPB-LAP, and CEBPB-LIP was significantly upregulated and the LIP/LAP ratio was increased. Gene chip analysis showed that PDL1 was significantly upregulated in A549-CEBPB-LAP cells and significantly downregulated in A549-CEBPB-LIP cells (P < 0.05) compared with CEBPB-NC cells. Dual-luciferase reporter gene assay showed that CEBPB-LAP overexpression could promote transcription of PDL1 and CEBPB-LIP overexpression could inhibit the process. Functional assays showed that the changes in CEBPB isoforms affected the function of NSCLC cells. Western blotting showed that metformin could regulate the function of NSCLC cells via AMPK-CEBPB-PDL1 signaling. Animal experiments showed that tumor growth was significantly inhibited by metformin, and atezolizumab and metformin had a synergistic effect on tumor growth. A total of 1247 patients were retrospectively analyzed, including 166 and 1081 patients in metformin and control groups, respectively. The positive rate of PDL1 was lower than that of the control group (HR = 0.338, 95% CI = 0.235-0.487; P < 0.001). In conclusion, metformin inhibited the proliferation of NSCLC cells and played an anti-tumor role in an AMPK-CEBPB-PDL1 signaling-dependent manner.
Collapse
|
6
|
Jobava R, Mao Y, Guan BJ, Hu D, Krokowski D, Chen CW, Shu XE, Chukwurah E, Wu J, Gao Z, Zagore LL, Merrick WC, Trifunovic A, Hsieh AC, Valadkhan S, Zhang Y, Qi X, Jankowsky E, Topisirovic I, Licatalosi DD, Qian SB, Hatzoglou M. Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Mol Cell 2021; 81:4191-4208.e8. [PMID: 34686314 PMCID: PMC8559772 DOI: 10.1016/j.molcel.2021.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
Collapse
Affiliation(s)
- Raul Jobava
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA; Department of Molecular Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Evelyn Chukwurah
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | | | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, CWRU, Cleveland, OH 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, CWRU, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, Departments of Biochemistry and Experimental Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Donny D Licatalosi
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA.
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Zhu L, Huang X, Li Z, Cao G, Zhu X, She S, Huang T, Lu G. Evaluation of hepatotoxicity induced by 2-ethylhexyldiphenyl phosphate based on transcriptomics and its potential metabolism pathway in human hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125281. [PMID: 33582465 DOI: 10.1016/j.jhazmat.2021.125281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Increasing use of organophosphorus flame retardants (OPFRs) has aroused great concern to their uncertain environment risk, especially to human health risk. In our study, hepatotoxicity screening of six aryl-OPFRs, potential hepatotoxicity mechanism of 2-ethylhexyldiphenyl phosphate (EHDPP) using RNA-sequencing and its metabolites were investigated in human hepatocytes (L02). The toxicity results demonstrated that EHDPP should be prioritized for further research with the highest toxicity. Further RNA-seq results through GO and KEGG enrichment analysis indicated that exposure to 10 mg/L of EHDPP significantly affected energy homeostasis, endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and inflammation response in cells. The top 12 hub genes were validated by RT-qPCR and conformed to be mainly related to glycolysis and ER stress, followed by cell cycle and inflammation response. Western blot, apoptosis detection, glycolysis stress test, and cell cycle analysis were further performed to verify the above main pathways. Additionally, it was found in the metabolism experiment that detoxification of EHDPP by phase I and phase II metabolism in cells wasn't significant until 48 h with a metabolic rate of 6.12%. EHDPP was stable and still dominated the induction of toxicity. Overall, this study provided valuable information regarding the toxicity and potential metabolism pathway of EHDPP.
Collapse
Affiliation(s)
- Lingfei Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaohan Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xuanjin Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shaohua She
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Tenghao Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
C/EBPβ isoforms sequentially regulate regenerating mouse hematopoietic stem/progenitor cells. Blood Adv 2021; 4:3343-3356. [PMID: 32717031 DOI: 10.1182/bloodadvances.2018022913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The transcription factor CCAAT enhancer-binding protein β (C/EBPβ) is required for stress-induced granulopoiesis at the level of hematopoietic stem/progenitor cells (HSPCs); however, its role and mechanisms of action in HSPCs are unknown. In this study, we assessed the regulation and functions of C/EBPβ in HSPCs, especially under stress conditions. After 5-fluorouracil treatment or bone marrow transplantation, Cebpb-/- HSPCs exhibited impaired cell-cycle activation and myeloid differentiation at the early and late phases of regeneration, respectively, whereas at steady state, Cebpb deficiency did not affect HSPCs. C/EBPβ was upregulated in response to hematopoietic stress, especially in CD150high long term-hematopoietic stem cells (LT-HSCs). Intracellular flow cytometric analysis that detected distinct domains of C/EBPβ revealed that, among the 3 isoforms of C/EBPβ, liver-enriched inhibitory protein (LIP) was upregulated in LT-HSCs prior to liver-enriched activating protein (LAP)/LAP* during regeneration. Early upregulation of LIP promoted cell-cycle entry of LT-HSCs by positively regulating Myc and expanded the HSPCs pool. Subsequent myeloid differentiation of amplified HSPCs was mediated by LAP/LAP*, which were upregulated at a later phase of regeneration. Collectively, our findings show that stress-induced sequential upregulation of C/EBPβ isoforms is critical for fine-tuning the proliferation and differentiation of regenerating HSPCs.
Collapse
|
9
|
Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, Tang A, Ruan Q, Yang X, Chen YH, Wan X. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med 2020; 217:jem.20182005. [PMID: 31662347 PMCID: PMC7041705 DOI: 10.1084/jem.20182005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are "polarized" myeloid cells that effectively promote tumorigenesis by inhibiting antitumor immunity. How myeloid cells acquire the protumoral properties during tumorigenesis is poorly understood. We report here that the polarity protein TIPE2 (tumor necrosis factor-α-induced protein 8-like 2) mediates the functional polarization of murine and human MDSCs by specifying their pro- and antitumoral properties. Tumor cells induced the expression of TIPE2 in Gr1+CD11b+ cells through reactive oxygen species (ROS). TIPE2 in turn increased the expression of protumoral mediators such as CCAAT/enhancer-binding protein-β while inhibiting the expression of antitumoral mediators. Consequently, tumor growth in TIPE2-deficient mice was significantly diminished, and TIPE2-deficient MDSCs markedly inhibited tumor growth upon adoptive transfer. Pharmaceutical blockade of ROS inhibited TIPE2 expression in MDSCs and reduced tumor growth in mice. These findings indicate that TIPE2 plays a key role in the functional polarization of MDSCs and represents a new therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Dehong Yan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinghui Wang
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Honghong Sun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ali Zamani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Honglin Zhang
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weihong Chen
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Aifa Tang
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingguo Ruan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaolu Yang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xiaochun Wan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Back SH. Roles of the Translation Initiation Factor eIF2α Phosphorylation in Cell Structure and Function. Cell Struct Funct 2020; 45:65-76. [PMID: 32350191 PMCID: PMC10511048 DOI: 10.1247/csf.20013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2023] Open
Abstract
It is often assumed that α-subunit phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) complex is just a mechanism to control protein synthesis. However, eIF2α phosphorylation induced by multiple kinases can recognize various intracellular and extracellular stress conditions, and it is involved in various other cellular processes beyond protein synthesis. This review introduces the roles of eIF2α phosphorylation in translational regulation, the generation of reactive oxygen species, changes in mitochondria structure and shape, and mitochondrial retrograde signaling pathways in response to diverse stress conditions.Key words: eIF2α phosphorylation, Translation, Unfolded Protein Response, Reactive Oxygen Species, Mitochondria.
Collapse
Affiliation(s)
- Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
11
|
Sulforaphene Suppresses Adipocyte Differentiation via Induction of Post-Translational Degradation of CCAAT/Enhancer Binding Protein Beta (C/EBPβ). Nutrients 2020; 12:nu12030758. [PMID: 32183002 PMCID: PMC7146557 DOI: 10.3390/nu12030758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
Adipocyte differentiation (adipogenesis) is a crucial process that determines the total number and size of mature adipocytes that will develop. In this study, the anti-adipogenic effect of sulforaphene (SFEN), a dietary isothiocyanate (ITC) derived from radish, is investigated both in 3T3-L1 pre-adipocytes and in human adipose tissue-derived stem cells. The results revealed that SFEN significantly inhibit adipogenic cocktail-induced adipocyte differentiation and lipid accumulation at the early stage of adipogenesis. Additionally, the effects are more potent compared to those of other ITCs derived from various cruciferous vegetables. As a related molecular mechanism of action, SFEN promotes the post-translational degradation of CCAAT/enhancer-binding protein (C/EBP) β by decreasing the stability of C/EBPβ, which is responsible for decreasing the expression of master regulatory proteins such as peroxisome proliferator-activated receptor γ and C/EBPα. Collectively, these results suggest that the intake of SFEN-enriched natural materials could be helpful as a strategy for preventing obesity.
Collapse
|
12
|
Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, Tang A, Ruan Q, Yang X, Chen YH, Wan X. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med 2020; 217:e20182005. [PMID: 31662347 DOI: 10.1084/jem_20182005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2025] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are "polarized" myeloid cells that effectively promote tumorigenesis by inhibiting antitumor immunity. How myeloid cells acquire the protumoral properties during tumorigenesis is poorly understood. We report here that the polarity protein TIPE2 (tumor necrosis factor-α-induced protein 8-like 2) mediates the functional polarization of murine and human MDSCs by specifying their pro- and antitumoral properties. Tumor cells induced the expression of TIPE2 in Gr1+CD11b+ cells through reactive oxygen species (ROS). TIPE2 in turn increased the expression of protumoral mediators such as CCAAT/enhancer-binding protein-β while inhibiting the expression of antitumoral mediators. Consequently, tumor growth in TIPE2-deficient mice was significantly diminished, and TIPE2-deficient MDSCs markedly inhibited tumor growth upon adoptive transfer. Pharmaceutical blockade of ROS inhibited TIPE2 expression in MDSCs and reduced tumor growth in mice. These findings indicate that TIPE2 plays a key role in the functional polarization of MDSCs and represents a new therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Dehong Yan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinghui Wang
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Honghong Sun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ali Zamani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Honglin Zhang
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weihong Chen
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Aifa Tang
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingguo Ruan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaolu Yang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xiaochun Wan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Protein and Cell-based Drugs, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Anokhina IP, Anokhin PK, Kokhan VS. Combined Irradiation by Gamma Rays and Carbon Nuclei Increases the C/EBP-β LIP Isoform Content in the Pituitary Gland of Rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2019; 488:133-135. [PMID: 31732897 DOI: 10.1134/s0012496619050016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022]
Abstract
C/EBP-β, a basic leucine zipper transcription factor, has important roles in the regulation of the body immune and inflammatory responses. Wistar rats subjected to combined irradiation were characterized by an increase in the content of the C/EBP-β LIP isoform in the pituitary gland. The obtained data indicate that moderate doses of ionizing radiation to initiate the endoplasmic reticulum stress response and are likely to initiate C/EBP-β-mediated cell death according to the apoptotic scenario. This study also confirms the earlier hypothesis about the alterations of the hypothalamic-pituitary-adrenocortical axis in response to moderate doses of ionizing radiation.
Collapse
Affiliation(s)
- I P Anokhina
- Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - P K Anokhin
- Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - V S Kokhan
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
14
|
Guo Q, Hu H, Liu X, Yang D, Yin Y, Zhang B, He H, Oh Y, Wu Q, Liu C, Gu N. C/EBPβ mediates palmitate-induced musclin expression via the regulation of PERK/ATF4 pathways in myotubes. Am J Physiol Endocrinol Metab 2019; 316:E1081-E1092. [PMID: 30964708 DOI: 10.1152/ajpendo.00478.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Musclin is a muscle-secreted cytokine that disrupts glucose uptake and glycogen synthesis in type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the regulation of musclin gene expression in response to treatment with palmitate. RNA sequencing results showed that biological processes activated by palmitate are mainly enriched in endoplasmic reticulum (ER) stress. The protein kinase RNA-like ER kinase (PERK) signaling pathway is involved in the regulation of musclin expression induced by palmitate. Chromatin immunoprecipitation data showed that activating transcription factor 4 (ATF4)-downstream of PERK-bound to the promoter of the C/EBPβ gene. Notably, C/EBPβ also contains a binding site in the region -94~-52 of the musclin gene promoter. Knockdown or knockout of PERK and ATF4 using short hairpin RNA or CRISPR-Cas9 decreased the expression of C/EBPβ and musclin induced by palmitate. Furthermore, knockdown and knockout of C/EBPβ alleviated the high expression of musclin in response to treatment with palmitate. Moreover, CRISPR-Cas9 knockout of the region -94~-52 in which C/EBPβ binds to the promoter of musclin abrogated the induction of high musclin expression caused by palmitate. Collectively, these findings suggest that treatment with palmitate activates the PERK/ATF4 signaling pathway, which in turn increases the expression of C/EBPβ. C/EBPβ binds directly to the promoter of the musclin gene and upregulates its expression.
Collapse
Affiliation(s)
- Qian Guo
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Hailong Hu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Xiaohuan Liu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - DaQian Yang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Yao Yin
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Yuri Oh
- Faculty of Education, Wakayama University , Wakayama , Japan
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology , Harbin , China
| |
Collapse
|
15
|
Liu Z, Li C, Kang N, Malhi H, Shah VH, Maiers JL. Transforming growth factor β (TGFβ) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem 2019; 294:3137-3151. [PMID: 30610118 PMCID: PMC6398135 DOI: 10.1074/jbc.ra118.005761] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) potently activates hepatic stellate cells (HSCs), which promotes production and secretion of extracellular matrix (ECM) proteins and hepatic fibrogenesis. Increased ECM synthesis and secretion in response to TGFβ is associated with endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). TGFβ and UPR signaling pathways are tightly intertwined during HSC activation, but the regulatory mechanism that connects these two pathways is poorly understood. Here, we found that TGFβ treatment of immortalized HSCs (i.e. LX-2 cells) induces phosphorylation of the UPR sensor inositol-requiring enzyme 1α (IRE1α) in a SMAD2/3-procollagen I-dependent manner. We further show that IRE1α mediates HSC activation downstream of TGFβ and that its role depends on activation of a signaling cascade involving apoptosis signaling kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK). ASK1-JNK signaling promoted phosphorylation of the UPR-associated transcription factor CCAAT/enhancer binding protein β (C/EBPβ), which is crucial for TGFβ- or IRE1α-mediated LX-2 activation. Pharmacological inhibition of C/EBPβ expression with the antiviral drug adefovir dipivoxil attenuated TGFβ-mediated activation of LX-2 or primary rat HSCs in vitro and hepatic fibrogenesis in vivo Finally, we identified a critical relationship between C/EBPβ and the transcriptional regulator p300 during HSC activation. p300 knockdown disrupted TGFβ- or UPR-induced HSC activation, and pharmacological inhibition of the C/EBPβ-p300 complex decreased TGFβ-induced HSC activation. These results indicate that TGFβ-induced IRE1α signaling is critical for HSC activation through a C/EBPβ-p300-dependent mechanism and suggest C/EBPβ as a druggable target for managing fibrosis.
Collapse
Affiliation(s)
- Zhikui Liu
- From the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Chao Li
- From the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Harmeet Malhi
- From the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Vijay H Shah
- From the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Jessica L Maiers
- From the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905 and
| |
Collapse
|
16
|
Li S, Zhai J, Liu J, Di F, Sun Y, Li W, Chen ZJ, Du Y. Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome. EBioMedicine 2018; 36:539-552. [PMID: 30292674 PMCID: PMC6197718 DOI: 10.1016/j.ebiom.2018.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated. Methods We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7. Findings EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats. Interpretation Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. Fund National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.
Collapse
Affiliation(s)
- Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fangfang Di
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
17
|
Collins CB, Puthoor PR, Nguyen TT, Strassheim D, Jedlicka P, Friedman JE, de Zoeten EF. C/EBPβ Deletion Promotes Expansion of Poorly Functional Intestinal Regulatory T Cells. J Crohns Colitis 2018; 12:1475-1485. [PMID: 30085016 PMCID: PMC8877170 DOI: 10.1093/ecco-jcc/jjy105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Inflammatory Bowel Diseases [IBDs] are chronic intestinal inflammatory conditions in part mediated by CD4+ T cells. Anti-inflammatory Foxp3+ regulatory T cells [Tregs] maintain immune homeostasis and protect against IBD development via multiple mechanisms, including cytokine secretion and cell-cell interaction. CCAAT enhancer binding protein-beta [C/EBPβ] is a stress-responsive transcription factor linked with IBD susceptibility. Whole-body C/EBPβ deficiency induces CD4+ T cell-predominant hyperproliferation, and we hypothesize that this may be due to impaired Treg function. METHODS We used the C/EBPβ-/- mice in the CD45RBHigh adoptive transfer model, to assess C/EBPβ-/- CD4+ T cells for their colitiogenic potential, and C/EBPβ-/- CD4+ Foxp3+ Tregs for their ability to inhibit colitis. We assessed Tregs from the C/EBPβ-/- mice for expression of Treg functional genes and proteins. RESULTS Naïve C/EBPβ-/- CD4+ T cells are more colitogenic in vivo. The exacerbated colitis does not appear to reflect impaired Treg development, however, as C/EBPβ-/- mice displayed more, rather than fewer intestinal CD4+Foxp3+ Tregs in vivo. Instead, this reflects impaired Treg function as seen by the reduced capacity to suppress T cell proliferation in vitro, along with decreased secretion of the anti-inflammatory cytokine IL-10. These findings were corroborated in vivo by additional adoptive co-transfer studies in which wildtype Tregs prevented colitis but C/EBPβ-/- Tregs did not. CONCLUSION C/EBPβ deficiency impairs Treg function and potentiates T cell-mediated colitis. A clearer understanding of the function of this transcription factor may provide a novel therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Colm B Collins
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pamela R Puthoor
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Pediatric Inflammatory Bowel Disease Center, Children’s Hospital Colorado, Aurora, CO, USA
| | - Tom T Nguyen
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edwin F de Zoeten
- Corresponding author: Edwin F. de Zoeten M.D., Ph.D., Children’s Hospital Colorado, Digestive Health Institute, Anschutz Medical Campus, 13123 East 16th Avenue, B290, Aurora, CO 80045, USA. Tel: 1-720-777-5415; Fax: 1-720-777-7277;
| |
Collapse
|
18
|
Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K, Wei S, Zhao L, Vatan L, Wen B, Shu P, Sun D, Kleer C, Wicha M, Sabel M, Tao K, Wang G, Zou W. Aerobic Glycolysis Controls Myeloid-Derived Suppressor Cells and Tumor Immunity via a Specific CEBPB Isoform in Triple-Negative Breast Cancer. Cell Metab 2018; 28:87-103.e6. [PMID: 29805099 PMCID: PMC6238219 DOI: 10.1016/j.cmet.2018.04.022] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/15/2017] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) inhibit anti-tumor immunity. Aerobic glycolysis is a hallmark of cancer. However, the link between MDSCs and glycolysis is unknown in patients with triple-negative breast cancer (TNBC). Here, we detect abundant glycolytic activities in human TNBC. In two TNBC mouse models, 4T1 and Py8119, glycolysis restriction inhibits tumor granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) expression and reduces MDSCs. These are accompanied with enhanced T cell immunity, reduced tumor growth and metastasis, and prolonged mouse survival. Mechanistically, glycolysis restriction represses the expression of a specific CCAAT/enhancer-binding protein beta (CEBPB) isoform, liver-enriched activator protein (LAP), via the AMP-activated protein kinase (AMPK)-ULK1 and autophagy pathways, whereas LAP controls G-CSF and GM-CSF expression to support MDSC development. Glycolytic signatures that include lactate dehydrogenase A correlate with high MDSCs and low T cells, and are associated with poor human TNBC outcome. Collectively, tumor glycolysis orchestrates a molecular network of the AMPK-ULK1, autophagy, and CEBPB pathways to affect MDSCs and maintain tumor immunosuppression.
Collapse
Affiliation(s)
- Wei Li
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA; Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China
| | - Takashi Tanikawa
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Ke Wu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Pan Shu
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Celina Kleer
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Max Wicha
- University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael Sabel
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA; University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kaixiong Tao
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China.
| | - Guobin Wang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA; University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Programs in Immunology and Tumor Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Bégay V, Baumeier C, Zimmermann K, Heuser A, Leutz A. The C/EBPβ LIP isoform rescues loss of C/EBPβ function in the mouse. Sci Rep 2018; 8:8417. [PMID: 29849099 PMCID: PMC5976626 DOI: 10.1038/s41598-018-26579-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
The transcription factor C/EBPβ regulates hematopoiesis, bone, liver, fat, and skin homeostasis, and female reproduction. C/EBPβ protein expression from its single transcript occurs by alternative in-frame translation initiation at consecutive start sites to generate three isoforms, two long (LAP*, LAP) and one truncated (LIP), with the same C-terminal bZip dimerization domain. The long C/EBPβ isoforms are considered gene activators, whereas the LIP isoform reportedly acts as a dominant-negative repressor. Here, we tested the putative repressor functions of the C/EBPβ LIP isoform in mice by comparing monoallelic WT or LIP knockin mice with Cebpb knockout mice, in combination with monoallelic Cebpa mice. The C/EBPβ LIP isoform was sufficient to function in coordination with C/EBPα in murine development, adipose tissue and sebocyte differentiation, and female fertility. Thus, the C/EBPβ LIP isoform likely has more physiological functions than its currently known role as a dominant-negative inhibitor, which are more complex than anticipated.
Collapse
Affiliation(s)
- Valérie Bégay
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany. .,Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany.
| | - Christian Baumeier
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany.,Department of experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DifE), 14558, Nuthetal, Germany, German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karin Zimmermann
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany
| | - Arnd Heuser
- Pathophysiology Group, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany
| | - Achim Leutz
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany. .,Humboldt-University, Berlin, Institute of Biology, 10115, Berlin, Germany.
| |
Collapse
|
20
|
Kopecka J, Salaroglio IC, Righi L, Libener R, Orecchia S, Grosso F, Milosevic V, Ananthanarayanan P, Ricci L, Capelletto E, Pradotto M, Napoli F, Di Maio M, Novello S, Rubinstein M, Scagliotti GV, Riganti C. Loss of C/EBP-β LIP drives cisplatin resistance in malignant pleural mesothelioma. Lung Cancer 2018; 120:34-45. [PMID: 29748013 DOI: 10.1016/j.lungcan.2018.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/13/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Cisplatin-based chemotherapy is moderately active in malignant pleural mesothelioma (MPM) due to intrinsic drug resistance and to low immunogenicity of MPM cells. CAAT/enhancer binding protein (C/EBP)-β LIP is a pro-apoptotic and chemosensitizing transcription factor activated in response to endoplasmic reticulum (ER) stress. MATERIALS AND METHODS We investigated if LIP levels can predict the clinical response to cisplatin and survival of MPM patients receiving cisplatin-based chemotherapy. We studied the LIP-dependent mechanisms determining cisplatin-resistance and we identified pharmacological approaches targeting LIP, able to restore cisplatin sensitiveness, in patient-derived MPM cells and animal models. Results were analyzed by a one-way analysis of variance test. RESULTS We found that LIP was degraded by constitutive ubiquitination in primary MPM cells derived from patients poorly responsive to cisplatin. LIP ubiquitination was directly correlated with cisplatin chemosensitivity and was associated with patients' survival after chemotherapy. Overexpression of LIP restored cisplatin's pro-apoptotic effect by activating CHOP/TRB3/caspase 3 axis and up-regulating calreticulin, that triggered MPM cell phagocytosis by dendritic cells and expanded autologous anti-tumor CD8+CD107+T-cytotoxic lymphocytes. Proteasome inhibitor carfilzomib and lysosome inhibitor chloroquine prevented LIP degradation. The triple combination of carfilzomib, chloroquine and cisplatin increased ER stress-triggered apoptosis and immunogenic cell death in patients' samples, and reduced tumor growth in cisplatin-resistant MPM preclinical models. CONCLUSION The loss of LIP mediates cisplatin resistance, rendering LIP a possible predictor of cisplatin response in MPM patients. The association of proteasome and lysosome inhibitors reverses cisplatin resistance by restoring LIP levels and may represent a new adjuvant strategy in MPM treatment.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| | - Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
| | - Roberta Libener
- Pathology Division, S. Antonio and Biagio Hospital, Spalto Marengo, 15121, Alessandria, Italy.
| | - Sara Orecchia
- Pathology Division, S. Antonio and Biagio Hospital, Spalto Marengo, 15121, Alessandria, Italy.
| | - Federica Grosso
- Oncology Division, S. Antonio and Biagio Hospital, Spalto Marengo, 15121, Alessandria, Italy.
| | - Vladan Milosevic
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| | | | - Luisa Ricci
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| | - Enrica Capelletto
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, Regione Gonzole 10, University of Torino, Orbassano, Italy.
| | - Monica Pradotto
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, Regione Gonzole 10, University of Torino, Orbassano, Italy.
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
| | - Massimo Di Maio
- Medical Oncology Division, Department of Oncology at Mauriziano Hospital, Largo Filippo Turati 62, 10128, University of Torino, Italy.
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, Regione Gonzole 10, University of Torino, Orbassano, Italy.
| | - Menachem Rubinstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Herzl Street 234, 76100, Rehovot, Israel.
| | - Giorgio V Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, Regione Gonzole 10, University of Torino, Orbassano, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
21
|
Rutkowski DT. Liver function and dysfunction - a unique window into the physiological reach of ER stress and the unfolded protein response. FEBS J 2018; 286:356-378. [PMID: 29360258 DOI: 10.1111/febs.14389] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) improves endoplasmic reticulum (ER) protein folding in order to alleviate stress. Yet it is becoming increasingly clear that the UPR regulates processes well beyond those directly involved in protein folding, in some cases by mechanisms that fall outside the realm of canonical UPR signaling. These pathways are highly specific from one cell type to another, implying that ER stress signaling affects each tissue in a unique way. Perhaps nowhere is this more evident than in the liver, which-beyond being a highly secretory tissue-is a key regulator of peripheral metabolism and a uniquely proliferative organ upon damage. The liver provides a powerful model system for exploring how and why the UPR extends its reach into physiological processes that occur outside the ER, and how ER stress contributes to the many systemic diseases that involve liver dysfunction. This review will highlight the ways in which the study of ER stress in the liver has expanded the view of the UPR to a response that is a key guardian of cellular homeostasis outside of just the narrow realm of ER protein folding.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, IA, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, IA, USA
| |
Collapse
|
22
|
van der Krieken SE, Popeijus HE, Konings M, Dullens SP, Mensink RP, Plat J. C/EBP-β Is Differentially Affected by PPARα Agonists Fenofibric Acid and GW7647, But Does Not Change Apolipoprotein A-I Production During ER-Stress and Inflammation. J Cell Biochem 2016; 118:754-763. [DOI: 10.1002/jcb.25731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Sophie E. van der Krieken
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Herman E. Popeijus
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Maurice Konings
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Stefan P.J. Dullens
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Ronald P. Mensink
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| | - Jogchum Plat
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University; P.O. Box 616; Maastricht 6200 MD The Netherlands
| |
Collapse
|
23
|
Selagea L, Mishra A, Anand M, Ross J, Tucker-Burden C, Kong J, Brat DJ. EGFR and C/EBP-β oncogenic signaling is bidirectional in human glioma and varies with the C/EBP-β isoform. FASEB J 2016; 30:4098-4108. [PMID: 27572958 DOI: 10.1096/fj.201600550r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/15/2016] [Indexed: 01/06/2023]
Abstract
We investigated the intersection of epidermal growth factor receptor (EGFR) and CCAAT enhancer binding protein (C/EBP)-β signaling in glioblastoma (GBM), given that both gene products strongly influence neoplastic behavior. C/EBP-β is known to drive the mesenchymal transcriptional signature in GBM, likely through strong microenvironmental influences, whereas the genetic contributions to its up-regulation in this disease are not well described. We demonstrated that stable overexpression and activation of WT EGFR (U87MG-WT) led to elevated C/EBP-β expression, as well as enhanced nuclear translocation and DNA-binding activity, leading to up-regulation of C/EBP-β transcription and translation. Deeper investigation identified bidirectional regulation, with C/EBP-β also causing up-regulation of EGFR that was at least partially dependent on the STAT3. Based on ChIP-based studies, we also found that that the translational isoforms of C/EBP-β [liver-enriched transcription-activating protein (LAP)-1/2 and liver inhibitory protein (LIP)] have differential occupancy on STAT3 promoter and opposing roles in transcriptional regulation of STAT3 and EGFR. We further demonstrated that the shorter C/EBP-β isoform, LIP, promoted proliferation and migration of U87MG glioma cells, potentially via induction of cytokine IL-6. Our molecular dissection of EGFR and C/EBP-β pathway interactions uncovered a complex signaling network in which increased activity of either EGFR or C/EBP-β leads to the up-regulation of the other, enhancing oncogenic signaling. Disrupting the EGFR-C/EBP-β signaling axis could attenuate malignant behavior of glioblastoma.-Selagea, L., Mishra, A., Anand, M., Ross, J., Tucker-Burden, C., Kong, J., Brat, D. J. EGFR and C/EBP-β oncogenic signaling is bidirectional in human glioma and varies with the C/EBP-β isoform.
Collapse
Affiliation(s)
- Ligia Selagea
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia.,Department of Biology, Agnes Scott College, Decatur, Georgia
| | - Alok Mishra
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Monika Anand
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - James Ross
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia.,Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia; and
| | - Carol Tucker-Burden
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Jun Kong
- Department of Biomedical Informatics, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; .,Department of Biomedical Informatics, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
24
|
Balvan J, Gumulec J, Raudenska M, Krizova A, Stepka P, Babula P, Kizek R, Adam V, Masarik M. Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating. PLoS One 2015; 10:e0145016. [PMID: 26671576 PMCID: PMC4679176 DOI: 10.1371/journal.pone.0145016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
Abstract
Resistant cancer phenotype is a key obstacle in the successful therapy of prostate cancer. The primary aim of our study was to explore resistance mechanisms in the advanced type of prostate cancer cells (PC-3) and to clarify the role of autophagy in these processes. We performed time-lapse experiment (48 hours) with ROS generating plumbagin by using multimodal holographic microscope. Furthermore, we also performed the flow-cytometric analysis and the qRT-PCR gene expression analysis at 12 selected time points. TEM and confocal microscopy were used to verify the results. We found out that autophagy (namely mitophagy) is an important resistance mechanism. The major ROS producing mitochondria were coated by an autophagic membrane derived from endoplasmic reticulum and degraded. According to our results, increasing ROS resistance may be also accompanied by increased average cell size and polyploidization, which seems to be key resistance mechanism when connected with an escape from senescence. Many different types of cell-cell interactions were recorded including entosis, vesicular transfer, eating of dead or dying cells, and engulfment and cannibalism of living cells. Entosis was disclosed as a possible mechanism of polyploidization and enabled the long-term survival of cancer cells. Significantly reduced cell motility was found after the plumbagin treatment. We also found an extensive induction of pluripotency genes expression (NANOG, SOX2, and POU5F1) at the time-point of 20 hours. We suppose, that overexpression of pluripotency genes in the portion of prostate tumour cell population exposed to ROS leads to higher developmental plasticity and capability to faster respond to changes in the extracellular environment that could ultimately lead to an alteration of cell fate.
Collapse
Affiliation(s)
- Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Aneta Krizova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
- TESCAN Brno, s.r.o., Brno, Czech Republic
| | - Petr Stepka
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno / Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno / Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
25
|
Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quiñones OA, Johnson PF. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4. Mol Cell Biol 2015; 36:693-713. [PMID: 26667036 PMCID: PMC4760225 DOI: 10.1128/mcb.00911-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.
Collapse
Affiliation(s)
- Christopher J Huggins
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Manasi K Mayekar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nancy Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Karen L Saylor
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mesfin Gonit
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Parthav Jailwala
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Manjula Kasoji
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Diana C Haines
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- DMS, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
26
|
Huber R, Panterodt T, Welz B, Christmann M, Friesenhagen J, Westphal A, Pietsch D, Brand K. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation. PLoS One 2015; 10:e0144338. [PMID: 26646662 PMCID: PMC4672875 DOI: 10.1371/journal.pone.0144338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Panterodt
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Judith Friesenhagen
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Westphal
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Daniel Pietsch
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
- * E-mail:
| |
Collapse
|
27
|
Han DY, Guan BJ, Wang YJ, Hatzoglou M, Mu TW. L-type Calcium Channel Blockers Enhance Trafficking and Function of Epilepsy-associated α1(D219N) Subunits of GABA(A) Receptors. ACS Chem Biol 2015; 10:2135-48. [PMID: 26168288 DOI: 10.1021/acschembio.5b00479] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that verapamil treatment enhances the calnexin-assisted forward trafficking and subunit assembly, which leads to substantially enhanced functional surface expression of the mutant receptors. Since verapamil is an FDA-approved drug that crosses blood-brain barrier and has been used as an additional medication for some epilepsies, our findings suggest that verapamil holds great promise to be developed to ameliorate IGE resulting from α1(D219N) subunit trafficking deficiency.
Collapse
Affiliation(s)
- Dong-Yun Han
- Department
of Physiology and Biophysics, ‡Department of Pharmacology, §Center for Proteomics
and Bioinformatics and Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Bo-Jhih Guan
- Department
of Physiology and Biophysics, ‡Department of Pharmacology, §Center for Proteomics
and Bioinformatics and Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Ya-Juan Wang
- Department
of Physiology and Biophysics, ‡Department of Pharmacology, §Center for Proteomics
and Bioinformatics and Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Maria Hatzoglou
- Department
of Physiology and Biophysics, ‡Department of Pharmacology, §Center for Proteomics
and Bioinformatics and Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Ting-Wei Mu
- Department
of Physiology and Biophysics, ‡Department of Pharmacology, §Center for Proteomics
and Bioinformatics and Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| |
Collapse
|
28
|
Datta S, Barrera N, Pavicic PG, Zhao C, Freeman M, Min B, Hamilton T. cEBP Homologous Protein Expression in Macrophages Regulates the Magnitude and Duration of IL-6 Expression and Dextran Sodium Sulfate Colitis. J Interferon Cytokine Res 2015; 35:785-94. [PMID: 26134251 DOI: 10.1089/jir.2014.0204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular stress enhances inflammatory cytokine gene expression by inducing cEBP homologous protein (CHOP). Engaging cell stress via thapsigargin induced CHOP and selectively prolonged lipopolysaccharide-stimulated interleukin-6 (IL-6) expression in bone marrow-derived macrophages from wild-type (WT) but not CHOP knockout (KO) mice. To determine the impact of this mechanism in vivo we employed dextran sodium sulfate (DSS)-induced colitis in irradiated mice reconstituted with bone marrow from WT or CHOP KO mice. WT recipients of CHOP KO bone marrow exhibited more rapid recovery from disease than did mice reconstituted with WT bone marrow as reflected in increased survival, reduced clinical scores, and colonic histopathology. No differences in mesenteric lymph node cell populations were observed between mice with WT or CHOP KO bone marrow during colitis. CD11b(+) macrophages infiltrating the lamina propria were, however, reduced in DSS-treated mice reconstituted with CHOP KO bone marrow. CHOP expression was observed within the infiltrating inflammatory CD11b(+) macrophages. Furthermore, IL-6 expression within the inflamed colon was significantly lower in mice with CHOP-deficient bone marrow. Our findings indicate that CHOP expression in myeloid cells plays an important role in determining the magnitude and duration of inflammatory response in vivo by modulating expression of proinflammatory cytokines such as IL-6 in infiltrating macrophages.
Collapse
Affiliation(s)
- Shyamasree Datta
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Natilibeth Barrera
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Paul G Pavicic
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Chenyang Zhao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Michael Freeman
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Thomas Hamilton
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio
| |
Collapse
|
29
|
Bellizzi A, White MK, Wollebo HS. Degradation of polyomavirus JC T-antigen by stress involves the LIP isoform of C/EBP. Cell Cycle 2015; 14:2075-9. [PMID: 26017382 DOI: 10.1080/15384101.2015.1042631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is caused by the accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum. CCAAT/enhancer binding proteins are one of the cellular proteins whose expression is upregulated during ER stress. Previously, we have identified C/EBPbeta isoforms, especially LIP, as a negative regulator of polyomavirus JC (JCV), the causative agent of the demyelinating disease progressive multifocal leukoencephalopathy (PML). Here, we show that the induction of ER stress by thapsigargin increase the expression of endogenous LIP and the degradation of JCV T-antigen in a JCV-transgenic mouse tumor cell line. Our results also revealed that overexpression of LIP significantly reduced the level of T-Ag and this effect is reversed upon siRNA-mediated silencing of LIP. Immunoprecipitation/Western blot experiments indicated that LIP interacts with T-antigen directly. Treatment of cells that overexpress LIP with MG115, a proteasome inhibitor, partially rescued LIP-mediated degradation of T-antigen. Our observations point to a role of LIP in ER stress regulation of T-antigen stability and may open a new avenue to study host-virus interaction during ER stress.
Collapse
Affiliation(s)
- Anna Bellizzi
- a Department of Neuroscience; Center for Neurovirology; Temple University School of Medicine ; Philadelphia , PA USA
| | | | | |
Collapse
|
30
|
Crawford RR, Prescott ET, Sylvester CF, Higdon AN, Shan J, Kilberg MS, Mungrue IN. Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element. J Biol Chem 2015; 290:15878-15891. [PMID: 25931127 DOI: 10.1074/jbc.m114.635144] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 11/06/2022] Open
Abstract
Using an unbiased systems genetics approach, we previously predicted a role for CHAC1 in the endoplasmic reticulum stress pathway, linked functionally to activating transcription factor 4 (ATF4) following treatment with oxidized phospholipids, a model for atherosclerosis. Mouse and yeast CHAC1 homologs have been shown to degrade glutathione in yeast and a cell-free system. In this report, we further defined the ATF4-CHAC1 interaction by cloning the human CHAC1 promoter upstream of a luciferase reporter system for in vitro assays in HEK293 and U2OS cells. Mutation and deletion analyses defined two major cis DNA elements necessary and sufficient for CHAC1 promoter-driven luciferase transcription under conditions of ER stress or ATF4 coexpression: the -267 ATF/cAMP response element (CRE) site and a novel -248 ATF/CRE modifier (ACM) element. We also examined the ability of the CHAC1 ATF/CRE and ACM sequences to bind ATF4 and ATF3 using immunoblot-EMSA and confirmed ATF4, ATF3, and CCAAT/enhancer-binding protein β binding at the human CHAC1 promoter in the proximity of the ATF/CRE and ACM using ChIP. To further validate the function of CHAC1 in a human cell model, we measured glutathione levels in HEK293 cells with enhanced CHAC1 expression. Overexpression of CHAC1 led to a robust depletion of glutathione, which was alleviated in a CHAC1 catalytic mutant. These results suggest an important role for CHAC1 in oxidative stress and apoptosis with implications for human health and disease.
Collapse
Affiliation(s)
- Rebecca R Crawford
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Eugenia T Prescott
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Charity F Sylvester
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Ashlee N Higdon
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Jixiu Shan
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Imran N Mungrue
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112.
| |
Collapse
|
31
|
Riganti C, Kopecka J, Panada E, Barak S, Rubinstein M. The role of C/EBP-β LIP in multidrug resistance. J Natl Cancer Inst 2015; 107:djv046. [PMID: 25766403 DOI: 10.1093/jnci/djv046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chemotherapy triggers endoplasmic reticulum (ER) stress, which in turn regulates levels of the active (LAP) and the natural dominant-negative (LIP) forms of the transcription factor C/EBP-β. LAP upregulates and LIP downregulates the multidrug resistance (MDR) protein P-glycoprotein (Pgp), but it is not known how critical is their role in establishing MDR. METHODS Cell viability was quantitated by crystal violet staining and measuring absorbance at 540nm. Expression of various proteins was determined by immunoblotting. mRNA levels were determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). LIP and LAP were overexpressed using expression plasmids followed by selection with blasticidin. Tumor cells expressing doxycycline-inducible LIP were orthotopically implanted in mice (n = 15 mice per group), and tumor size was measured daily by caliper. Tumor sections were stained with hematoxylin and eosin and immunostained for Pgp, proliferation, and ER stress markers. RESULTS MDR cells do not express basal, chemotherapy-triggered, or ER stress-triggered LIP and fail to activate the CHOP-caspase-3 death-triggering axis upon ER stress or chemotherapy challenge. Overexpression of LIP reversed the MDR phenotype in vitro and in tumors implanted in mice. LIP was undetectable in MDR cells, probably due to its ubiquitination, which was 3.56-fold higher, resulting in lysosomal and proteasomal degradation of LIP. CONCLUSIONS Spontaneous and drug-selected MDR cells lack LIP, which is eliminated by ubiquitin-mediated degradation. Loss of LIP drives MDR not only by increasing Pgp expression but also by a two-fold attenuation of ER stress-triggered cell death.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Elisa Panada
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Sara Barak
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR)
| | - Menachem Rubinstein
- Department of Oncology, University of Torino, Italy (CR, JK, EP); Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel (SB, MR).
| |
Collapse
|
32
|
CCAAT/enhancer binding protein β in relation to ER stress, inflammation, and metabolic disturbances. BIOMED RESEARCH INTERNATIONAL 2015; 2015:324815. [PMID: 25699273 PMCID: PMC4324884 DOI: 10.1155/2015/324815] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022]
Abstract
The prevalence of the metabolic syndrome and underlying metabolic disturbances increase rapidly in developed countries. Various molecular targets are currently under investigation to unravel the molecular mechanisms that cause these disturbances. This is done in attempt to counter or prevent the negative health consequences of the metabolic disturbances. Here, we reviewed the current knowledge on the role of C/EBP-β in these metabolic disturbances. C/EBP-β deletion in mice resulted in downregulation of hepatic lipogenic genes and increased expression of β-oxidation genes in brown adipose tissue. Furthermore, C/EBP-β is important in the differentiation and maturation of adipocytes and is increased during ER stress and proinflammatory conditions. So far, studies were only conducted in animals and in cell systems. The results found that C/EBP-β is an important transcription factor within the metabolic disturbances of the metabolic system. Therefore, it is interesting to examine the potential role of C/EBP-β at molecular and physiological level in humans.
Collapse
|
33
|
Vachirayonsti T, Ho KW, Yang D, Yan B. Suppression of the pregnane X receptor during endoplasmic reticulum stress is achieved by down-regulating hepatocyte nuclear factor-4α and up-regulating liver-enriched inhibitory protein. Toxicol Sci 2015; 144:382-92. [PMID: 25616597 DOI: 10.1093/toxsci/kfv008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is recognized as a common theme in the development of metabolic syndrome and other diseases. Chronic liver diseases develop ER stress and also show decreased capacity of drug metabolism. The pregnane X receptor (PXR) is a master regulator of genes involved in drug elimination. This study was performed to determine whether ER stress condition decreases the expression of PXR and whether the decrease alters the induction of cytochrome P450 3A4 (CYP3A4). Human primary hepatocytes and HepG2 cell line (human hepatocellular carcinoma) were treated with brefeldin A and thapsigargin, 2 well-established ER stressors. Without exceptions, both stressors significantly decreased the expression of PXR. The decrease led to reduced induction of CYP3A4. Reporter dissection study, electrophoretic mobility shift assay, and chromatin immunoprecipitation located in the PXR promoter region 2 adjacent elements recognized by hepatocyte nuclear factor-4α (HNF-4α) and cytidine-cytidine-adenosine-adenosine-thymidine enhanced binding proteins (C/EBPs), respectively. Additional studies demonstrated that HNF-4α was down-regulated during ER stress but the expression of C/EBPβ varied depending on a particular form of C/EBPβ. Liver-enriched activator protein (LAP) was down-regulated but liver-enriched inhibitory protein (LIP) was highly induced. Nevertheless, over-expression of HNF-4α or LAP restored the expression of PXR. Interestingly, the very same sequence also responded to interleukin-6 (IL-6), and primary hepatocytes treated with thapsigargin significantly increased the level of IL-6 mRNA. These findings establish a functional interconnection between ER stress and signaling of proinflammatory cytokines in the regulation of PXR expression.
Collapse
Affiliation(s)
- Thaveechai Vachirayonsti
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Karen W Ho
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Dongfang Yang
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| |
Collapse
|
34
|
Bégay V, Smink JJ, Loddenkemper C, Zimmermann K, Rudolph C, Scheller M, Steinemann D, Leser U, Schlegelberger B, Stein H, Leutz A. Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis. J Mol Med (Berl) 2014; 93:39-49. [PMID: 25401168 DOI: 10.1007/s00109-014-1215-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/17/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022]
Abstract
UNLABELLED Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPβ) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPβ mRNA. The truncated C/EBPβ LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPβ LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPβ knockin mice that constitutively express only the C/EBPβ LIP isoform from its own locus. Our data show that deregulated C/EBPβ LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPβ LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPβ LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPβ LIP isoform. KEY MESSAGE Elevated C/EBPβ LIP promotes cancer in mice. C/EBPβ LIP is upregulated in B-NHL. Deregulated C/EBPβ LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPβ LIP may support a pro-tumorigenic microenvironment.
Collapse
Affiliation(s)
- Valérie Bégay
- Department of Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str.10, 13125, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hui H, Yang H, Dai Q, Wang Q, Yao J, Zhao K, Guo Q, Lu N. Oroxylin A inhibits ATRA-induced IL-6 expression involved in retinoic acid syndrome by down-regulating CHOP. Gene 2014; 551:230-5. [PMID: 25192658 DOI: 10.1016/j.gene.2014.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/31/2014] [Indexed: 02/07/2023]
Abstract
Production of IL-6 constituted the major cause of death in the ATRA trial called retinoic acid syndrome (RAS). LAP and LIP are active and inactive isoforms of C/EBPβ, respectively. Inactive LIP dimerized with LAP to eliminate its activity. Following treatment with ATRA, CHOP expression was increased and dimerized with LIP more preferentially than LAP to rescue function of LAP. Oroxylin A has been reported to activate CHOP, a key mediator of unfolded protein response (UPR) pathway, and resulted in apoptosis. Interestingly, we found that low concentration of oroxylin A (≦ 40 μM) showed no apoptosis effect on NB4 and HL-60 cells and decreased the CHOP protein level via promoting its degradation. MG132 was utilized to conform the effect of oroxylin A on degrading CHOP. Our results showed that oroxylin A decreased the level of IL-6 secretion of NB4 cells with or without ATRA treatment while the effect was eliminated by C/EBPβ siRNA. We conclude that oroxylin A possessed abilities of inhibiting the ATRA-induced IL-6 production via modulation of LAP/LIP/CHOP in leukemia cell lines, which could providing a therapeutic strategy for RAS.
Collapse
Affiliation(s)
- Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinsheng Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
36
|
Shoji T, Higuchi H, Nishijima KI, Iijima S. Effects of Siglec on the expression of IL-10 in the macrophage cell line RAW264. Cytotechnology 2014; 67:633-9. [PMID: 24715531 DOI: 10.1007/s10616-014-9717-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/20/2014] [Indexed: 11/24/2022] Open
Abstract
Interleukin-10 (IL-10) expression was significantly elevated upon stimulation with lipopolysaccharide (LPS) when the sialic acid-recognizing Ig-superfamily lectin Siglec-5 or -9 was overexpressed in RAW264 cells. During the course to clarify the mechanism for this activation, we found that IL-10 promoter proximal region up to -500 bp led to transactivation similar to that up to -1,500 bp. Among the transcription factors that activate the mouse IL-10 promoter so far reported, the level of C/EBPβ was increased in Siglec-9-expressing cells. Transient expression of the C/EBPβ major isoform LAP led to an increase in the expression of IL-10 in Siglec-9-expressing cells, but not in mock-transfected control RAW264 cells upon stimulation with LPS, as assessed by either a luciferase assay or the production of IL-10. Without LPS, the IL-10 promoter was activated by transiently expressed LAP in Siglec-9-expressing cells, however, the magnitude of transactivation was less than that with the LPS stimulation. The knockdown of C/EBPβ down-regulated the production of IL-10. Taken together, these results suggest that one of the reasons for the stimulation of IL-10 expression in Siglec-9-expressing cells may be an increase in intracellular C/EBPβ level.
Collapse
Affiliation(s)
- Toru Shoji
- Department of Biotechnology, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | |
Collapse
|
37
|
Guan BJ, Krokowski D, Majumder M, Schmotzer CL, Kimball SR, Merrick WC, Koromilas AE, Hatzoglou M. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. J Biol Chem 2014; 289:12593-611. [PMID: 24648524 DOI: 10.1074/jbc.m113.543215] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes stress to which an unfolded protein response is activated to render cell survival or apoptosis (chronic stress). Transcriptional and translational reprogramming is tightly regulated during the unfolded protein response to ensure specific gene expression. The master regulator of this response is the PERK/eIF2α/ATF4 signaling where eIF2α is phosphorylated (eIF2α-P) by the kinase PERK. This signal leads to global translational shutdown, but it also enables translation of the transcription factor ATF4 mRNA. We showed recently that ATF4 induces an anabolic program through the up-regulation of selected amino acid transporters and aminoacyl-tRNA synthetases. Paradoxically, this anabolic program led cells to apoptosis during chronic ER stress in a manner that involved recovery from stress-induced protein synthesis inhibition. By using eIF2α-P-deficient cells as an experimental system, we identified a communicating network of signaling pathways that contribute to the inhibition of protein synthesis during chronic ER stress. This eIF2α-P-independent network includes (i) inhibition of mammalian target of rapamycin kinase protein complex 1 (mTORC1)-targeted protein phosphorylation, (ii) inhibited translation of a selective group of 5'-terminal oligopyrimidine mRNAs (encoding proteins involved in the translation machinery and translationally controlled by mTORC1 signaling), and (iii) inhibited translation of non-5'-terminal oligopyrimidine ribosomal protein mRNAs and ribosomal RNA biogenesis. We propose that the PERK/eIF2α-P/ATF4 signaling acts as a brake in the decline of protein synthesis during chronic ER stress by positively regulating signaling downstream of the mTORC1 activity. These studies advance our knowledge on the complexity of the communicating signaling pathways in controlling protein synthesis rates during chronic stress.
Collapse
|
38
|
Kim MA, Kang K, Lee HJ, Kim M, Kim CY, Nho CW. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sci 2014; 101:64-72. [PMID: 24582594 DOI: 10.1016/j.lfs.2014.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/14/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
AIMS Obesity develops when energy intake chronically exceeds total energy expenditure. We sought to assess whether the flavonoid-rich fraction of crude extracts from Daphne genkwa Siebold et Zuccarini (GFF) might inhibit adipogenesis of 3T3-L1 cells. MAIN METHODS Cell viability of 3T3-L1 preadipocytes was assessed by MTT assays, and lipid accumulation was measured by Oil Red O. Adipogenesis related factors were checked by Western blot analysis. Flow cytometry was used to analyze the mitotic cell cycle during the mitotic clonal expansion phase. KEY FINDINGS Among five flavonoids isolated from GFF, only apigenin potently inhibited the differentiation of 3T3-L1 cells. Apigenin reduced CCAAT/enhancer binding protein (C/EBP) α and peroxisome proliferator-activated receptor γ levels. Apigenin-treated 3T3-L1 cells failed to undergo clonal expansion during the early phase of adipocyte differentiation. Apigenin arrested cell cycle progression at the G0/G1 phase. This effect was associated with a marked decrease in cyclin D1 and cyclin-dependent kinase 4 expression, with the concomitant and sustained expression of p27(Kip1). In addition, apigenin inhibited the DNA-binding activity of C/EBPβ in differentiating 3T3-L1 cells by down-regulating the 35kDa isoform of C/EBPβ (liver-enriched activating protein) and up-regulating the expression of two different sets of C/EBP inhibitors: C/EBP homologous protein and the phospho-liver-enriched inhibitory protein isoform of C/EBPβ. SIGNIFICANCE These findings suggest that apigenin can prevent 3T3-L1 preadipocyte differentiation by the inhibition of the mitotic clonal expansion and the adipogenesis related factors and upregulation of the expression of multiple C/EBPβ inhibitors.
Collapse
Affiliation(s)
- Mi-Ae Kim
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Kyungsu Kang
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Hee-Ju Lee
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Myungsuk Kim
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Chul Young Kim
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 210-340, Republic of Korea.
| |
Collapse
|
39
|
CCAAT-enhancer binding protein-β expression and elevation in Alzheimer's disease and microglial cell cultures. PLoS One 2014; 9:e86617. [PMID: 24466171 PMCID: PMC3899300 DOI: 10.1371/journal.pone.0086617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/24/2023] Open
Abstract
CCAAT-enhancer binding proteins are transcription factors that help to regulate a wide range of inflammatory mediators, as well as several key elements of energy metabolism. Because C/EBPs are expressed by rodent astrocytes and microglia, and because they are induced by pro-inflammatory cytokines that are chronically upregulated in the Alzheimer’s disease (AD) cortex, we have investigated whether C/EBPs are expressed and upregulated in the AD cortex. Here, we demonstrate for the first time that C/EBPβ can be detected by Western blots in AD and nondemented elderly (ND) cortex, and that it is significantly increased in AD cortical samples. In situ, C/EBPβ localizes immunohistochemically to microglia. In microglia cultured from rapid autopsies of elderly patient’s brains and in the BV-2 murine microglia cell line, we have shown that C/EBPβ can be upregulated by C/EBP-inducing cytokines or lipopolysaccharide and exhibits nuclear translocation possibly indicating functional activity. Given the known co-regulatory role of C/EBPs in pivotal inflammatory mechanisms, many of which are present in AD, we propose that upregulation of C/EBPs in the AD brain could be an important orchestrator of pathogenic changes.
Collapse
|
40
|
Arensdorf AM, Diedrichs D, Rutkowski DT. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences. Front Genet 2013; 4:256. [PMID: 24348511 PMCID: PMC3844873 DOI: 10.3389/fgene.2013.00256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Danilo Diedrichs
- Department of Mathematics and Computer Science, Wheaton College Wheaton, IL, USA
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
41
|
Peña-Altamira E, Polazzi E, Moretto E, Lauriola M, Monti B. The transcription factor CCAAT enhancer-binding protein β protects rat cerebellar granule neurons from apoptosis through its transcription-activating isoforms. Eur J Neurosci 2013; 39:176-85. [PMID: 24438488 DOI: 10.1111/ejn.12407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/07/2023]
Abstract
CCAAT enhancer-binding protein β is a transcription factor that is involved in many brain processes, although its role in neuronal survival/death remains unclear. By using primary cultures of rat cerebellar granule neurons, we have shown here that CCAAT enhancer-binding protein β is present as all of its isoforms: the transcriptional activators liver activator proteins 1 and 2, and the transcriptional inhibitor liver inhibitory protein. We have also shown that liver activator protein 1 undergoes post-translational modifications, such as phosphorylation and sumoylation. These isoforms have different subcellular localizations, liver activator protein 2 being found in the cytosolic fraction only, liver inhibitory protein in the nucleus only, and liver activator protein 1 in both fractions. Through neuronal apoptosis induction by shifting mature cerebellar granule neurons to low-potassium medium, we have demonstrated that nuclear liver activator protein 1 expression decreases and its phosphorylation disappears, whereas liver inhibitory protein levels increase in the nuclear fraction, suggesting a pro-survival role for liver activator protein transcriptional activation and a pro-apoptotic role for liver inhibitory protein transcriptional inhibition. To confirm this, we transfected cerebellar granule neurons with plasmids expressing liver activator protein 1, liver activator protein 2, or liver inhibitory protein respectively, and observed that both liver activator proteins, which increase CCAAT-dependent transcription, but not liver inhibitory protein, counteracted apoptosis, thus demonstrating the pro-survival role of liver activator proteins. These data significantly improve our current understanding of the role of CCAAT enhancer-binding protein β in neuronal survival/apoptosis.
Collapse
Affiliation(s)
- Emiliano Peña-Altamira
- Department of Pharmacy and BioTechnology, University of Bologna, Ex-BES Building, Via Selmi 3, Bologna, 40126, Italy
| | | | | | | | | |
Collapse
|
42
|
ER stress in rodent islets of Langerhans is concomitant with obesity and β-cell compensation but not with β-cell dysfunction and diabetes. Nutr Diabetes 2013; 3:e93. [PMID: 24145577 PMCID: PMC3817349 DOI: 10.1038/nutd.2013.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/15/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
Objective: The objective of this study was to determine whether ER stress correlates with β-cell dysfunction in obesity-associated diabetes. Methods: Quantitative RT-PCR and western blot analysis were used to investigate changes in the expression of markers of ER stress, the unfolded protein response (UPR) and β-cell function in islets isolated from (1) non-diabetic Zucker obese (ZO) and obese female Zucker diabetic fatty (fZDF) rats compared with their lean littermates and from (2) high-fat-diet-fed fZDF rats (HF-fZDF), to induce diabetes, compared with age-matched non-diabetic obese fZDF rats. Results: Markers of an adaptive ER stress/UPR and β-cell function are elevated in islets isolated from ZO and fZDF rats compared with their lean littermates. In islets isolated from HF-fZDF rats, there was no significant change in the expression of markers of ER stress compared with age matched, obese, non-diabetic fZDF rats. Conclusions: These results provide evidence that obesity-induced activation of the UPR is an adaptive response for increasing the ER folding capacity to meet the increased demand for insulin. As ER stress is not exacerbated in high-fat-diet-induced diabetes, we suggest that failure of the islet to mount an effective adaptive UPR in response to an additional increase in insulin demand, rather than chronic ER stress, may ultimately lead to β-cell failure and hence diabetes.
Collapse
|
43
|
Arensdorf AM, Dezwaan McCabe D, Kaufman RJ, Rutkowski DT. Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network. Front Genet 2013; 4:188. [PMID: 24069029 PMCID: PMC3781334 DOI: 10.3389/fgene.2013.00188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
The unfolded protein response (UPR) responds to disruption of endoplasmic reticulum (ER) function by initiating signaling cascades that ultimately culminate in extensive transcriptional regulation. Classically, this regulation includes genes encoding ER chaperones, ER-associated degradation factors, and others involved in secretory protein folding and processing, and is carried out by the transcriptional activators that are produced as a consequence of UPR activation. However, up to half of the mRNAs regulated by ER stress are downregulated rather than upregulated, and the mechanisms linking ER stress and UPR activation to mRNA suppression are poorly understood. To begin to address this issue, we used a "bottom-up" approach to study the metabolic gene regulatory network controlled by the UPR in the liver, because ER stress in the liver leads to lipid accumulation, and fatty liver disease is the most common liver disease in the western world. qRT-PCR profiling of mouse liver mRNAs during ER stress revealed that suppression of the transcriptional regulators C/EBPα, PPARα, and PGC-1α preceded lipid accumulation, and was then followed by suppression of mRNAs encoding key enzymes involved in fatty acid oxidation and lipoprotein biogenesis and transport. Mice lacking the ER stress sensor ATF6α, which experience persistent ER stress and profound lipid accumulation during challenge, were then used as the basis for a functional genomics approach that allowed genes to be grouped into distinct expression profiles. This clustering predicted that ER stress would suppress the activity of the metabolic transcriptional regulator HNF4α-a finding subsequently confirmed by chromatin immunopreciptation at the Cebpa and Pgc1a promoters. Our results establish a framework for hepatic gene regulation during ER stress and suggest that HNF4α occupies the apex of that framework. They also provide a unique resource for the community to further explore the temporal regulation of gene expression during ER stress in vivo.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | | | | | | |
Collapse
|
44
|
Arensdorf AM, Rutkowski DT. Endoplasmic reticulum stress impairs IL-4/IL-13 signaling through C/EBPβ-mediated transcriptional suppression. J Cell Sci 2013; 126:4026-36. [PMID: 23813955 DOI: 10.1242/jcs.130757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the unfolded protein response (UPR) by endoplasmic reticulum (ER) stress culminates in extensive gene regulation, with transcriptional upregulation of genes that improve the protein folding capacity of the organelle. However, a substantial number of genes are downregulated by ER stress, and the mechanisms that lead to this downregulation and its consequences on cellular function are poorly understood. We found that ER stress led to coordinated transcriptional suppression of diverse cellular processes, including those involved in cytokine signaling. Using expression of the IL-4/IL-13 receptor subunit Il4ra as a sentinel, we sought to understand the mechanism behind this suppression and its impact on inflammatory signaling. We found that reinitiation of global protein synthesis by GADD34-mediated dephosphorylation of eIF2α resulted in preferential expression of the inhibitory LIP isoform of the transcription factor C/EBPβ. This regulation was in turn required for the suppression of Il4ra and related inflammatory genes. Suppression of Il4ra was lost in Cebpb(-/-) cells but could be induced by LIP overexpression. As a consequence of Il4ra suppression, ER stress impaired IL-4/IL-13 signaling. Strikingly, Cebpb(-/-) cells lacking Il4ra downregulation were protected from this signaling impairment. This work identifies a novel role for C/EBPβ in regulating transcriptional suppression and inflammatory signaling during ER stress.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
45
|
Nakajima S, Kato H, Gu L, Takahashi S, Johno H, Umezawa K, Kitamura M. Pleiotropic Potential of Dehydroxymethylepoxyquinomicin for NF-κB Suppression via Reactive Oxygen Species and Unfolded Protein Response. THE JOURNAL OF IMMUNOLOGY 2013; 190:6559-69. [DOI: 10.4049/jimmunol.1300155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Chikka MR, McCabe DD, Tyra HM, Rutkowski DT. C/EBP homologous protein (CHOP) contributes to suppression of metabolic genes during endoplasmic reticulum stress in the liver. J Biol Chem 2012; 288:4405-15. [PMID: 23281479 DOI: 10.1074/jbc.m112.432344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The unfolded protein response (UPR) senses stress in the endoplasmic reticulum (ER) and initiates signal transduction cascades that culminate in changes to gene regulation. Long recognized as a means for improving ER protein folding through up-regulation of ER chaperones, the UPR is increasingly recognized to play a role in the regulation of metabolic pathways. ER stress is clearly connected to altered metabolism in tissues such as the liver, but the mechanisms underlying this connection are only beginning to be elucidated. Here, working exclusively in vivo, we tested the hypothesis that the UPR-regulated CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) participates in the transcriptional regulation of metabolism during hepatic ER stress. We found that metabolic dysregulation was associated with induction of eIF2α signaling and CHOP up-regulation during challenge with tunicamycin or Velcade. CHOP was necessary for suppression of genes encoding the transcriptional master regulators of lipid metabolism: Cebpa, Ppara, and Srebf1. This action of CHOP required a contemporaneous CHOP-independent stress signal. CHOP bound directly to C/EBP-binding regions in the promoters of target genes, whereas binding of C/EBPα and C/EBPβ to the same regions was diminished during ER stress. Our results thus highlight a role for CHOP in the transcriptional regulation of metabolism.
Collapse
Affiliation(s)
- Madhusudana R Chikka
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine,Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
47
|
Xue H, Slavov D, Wischmeyer PE. Glutamine-mediated dual regulation of heat shock transcription factor-1 activation and expression. J Biol Chem 2012; 287:40400-13. [PMID: 23055521 DOI: 10.1074/jbc.m112.410712] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Regulation of transcriptional activity of heat shock factor-1 (HSF1) is widely thought to be the main point of control for heat shock protein (Hsp) expression. RESULTS Glutamine increases Hsf1 gene transcription in a C/EBPβ-dependent manner and up-regulates HSF1 activity. CONCLUSION Glutamine is an activator for both HSF1 expression and transactivation. SIGNIFICANCE Glutamine-induced HSF1 expression provides a novel mechanistic frame for HSF1-Hsp axis regulation. Heat shock transcription factor-1 (HSF1) is the master regulator for cytoprotective heat shock protein (Hsp) expression. It is widely thought that HSF1 expression is non-inducible, and thus the key control point of Hsp expression is regulation of the transactivation activity of HSF1. How HSF1 expression is regulated remains unknown. Herein we demonstrate that glutamine (Gln), a preferred fuel substrate for the gut, enhanced Hsp expression both in rat colonic epithelium in vivo and in cultured non-transformed young adult mouse colonic epithelial cells. This was associated with up-regulation of the transactivation activity of HSF1 via increased HSF1 trimerization, nuclear localization, DNA binding, and relative abundance of activating phosphorylation at Ser-230 of HSF1. More intriguingly, Gln enhanced HSF1 protein and mRNA expression and Hsf1 gene promoter activity. Within the -281/-200 region of the Hsf1 promoter, deletion of the putative CCAAT enhancer-binding protein (C/EBP) binding site abolished the HSF1 response to Gln. C/EBPβ was further shown to bind to this 82-bp sequence both in vitro and in vivo. Gln availability strikingly altered the ratio of C/EBPβ inhibitory and active isoforms, i.e. liver-enriched inhibitory protein and liver-enriched activating protein. Liver-enriched inhibitory protein and liver-enriched activating protein were further shown to be an independent repressor and activator, respectively, for Hsf1 gene transcription, and the relative abundance of these two C/EBPβ isoforms was demonstrated to determine Hsf1 transcription. We show for the first time that Gln not only enhances the transactivation of HSF1 but also induces Hsf1 expression by activating its transcription in a C/EBPβ-dependent manner.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
48
|
Ravimohan S, Gama L, Engle EL, Zink MC, Clements JE. Early emergence and selection of a SIV-LTR C/EBP site variant in SIV-infected macaques that increases virus infectivity. PLoS One 2012; 7:e42801. [PMID: 22952612 PMCID: PMC3428313 DOI: 10.1371/journal.pone.0042801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
CCAAT/enhancer binding protein (C/EBP)β, and C/EBP binding sites in the HIV/SIV-long terminal repeat (LTR) are crucial for regulating transcription and for IFNβ-mediated suppression of virus replication in macrophages, the predominant source of productive virus replication in the brain. We investigated sequence variation within the SIV-LTR C/EBP sites that may be under selective pressure in vivo and therefore associated with disease progression. Using the SIV-macaque model, we examined viral LTR sequences derived from the spleen, a site of macrophage and lymphocyte infection, and the brain from macaques euthanized at 10, 21, 42, 48 and 84 days postinoculation (p.i.). A dominant variant, DS1C/A, containing an adenine-to-guanine substitution and a linked cytosine-to-adenine substitution in the downstream (DS1) C/EBP site, was detected in the spleen at 10 days p.i. The DS1C/A genotype was not detected in the brain until 42 days p.i., after which it was the predominant replicating genotype in both brain and spleen. Functional characterization of the DS1C/A containing SIV showed increased infectivity with or without IFNβ treatment over the wild-type virus, SIV/17E-Fr. The DS1C/A C/EBP site had higher affinity for both protein isoforms of C/EBPβ compared to the wild-type DS1 C/EBP site. Cytokine expression in spleen compared to brain implicated IFNβ and IL-6 responses as part of the selective pressures contributing to emergence of the DS1C/A genotype in vivo. These studies demonstrate selective replication of virus containing the DS1C/A genotype that either emerges very early in spleen and spreads to the brain, or evolves independently in the brain when IFNβ and IL-6 levels are similar to that found in spleen earlier in infection.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
49
|
Cells expressing the C/EBPbeta isoform, LIP, engulf their neighbors. PLoS One 2012; 7:e41807. [PMID: 22860016 PMCID: PMC3409234 DOI: 10.1371/journal.pone.0041807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/29/2012] [Indexed: 01/05/2023] Open
Abstract
Descriptions of various processes that lead to cell-in-cell structures have been reported for decades. The exact molecular mechanism(s) of their formation and the physiological significance of cell-in-cell structures remain poorly understood. We had previously shown that an isoform of the CCAAT/enhancer-binding protein beta (C/EBPbeta) transcription factor, liver-enriched inhibitory protein (LIP), induces cell death in human breast cancer cells and stimulates autophagy. Here we describe a non-apoptotic cell death process where LIP mediates the engulfment of neighboring cells. We provide evidence of LIP-mediated engulfment via DNA profiling, fluorescent imaging and cell sorting studies, as well as ultrastructure analysis of LIP-expressing MDA-MB-468 breast cancer cells. Our work illustrates that expression of a specific transcription factor, LIP, can mediate cell engulfment.
Collapse
|
50
|
Cronin KR, Mangan TP, Carew JA. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4. PLoS One 2012; 7:e40994. [PMID: 22848420 PMCID: PMC3407153 DOI: 10.1371/journal.pone.0040994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Background Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Methodology/Principal Findings Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/− SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/−15% to 188+/−27% and 100+/−8.8% to 176.3+/−17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Conclusions/Significance Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.
Collapse
Affiliation(s)
- Katherine R. Cronin
- Department of Research, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
| | - Thomas P. Mangan
- Department of Research, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
| | - Josephine A. Carew
- Department of Research, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|