1
|
A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators Inflamm 2022; 2022:6600264. [PMID: 35620115 PMCID: PMC9129985 DOI: 10.1155/2022/6600264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.
Collapse
|
2
|
Vidal S, Puig L, Carrascosa-Carrillo JM, González-Cantero Á, Ruiz-Carrascosa JC, Velasco-Pastor AM. From Messengers to Receptors in Psoriasis: The Role of IL-17RA in Disease and Treatment. Int J Mol Sci 2021; 22:6740. [PMID: 34201664 PMCID: PMC8268646 DOI: 10.3390/ijms22136740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
The paradigm of psoriasis as a Th17-driven disease has evolved in the last years towards a much deeper knowledge of the complex pathways, mechanisms, cells, and messengers involved, highlighting the crucial role played by the IL-17 family of cytokines. All IL-17 isoforms signal through IL-17R. Five subunits of IL-17R have been described to date, which couple to form a homo- or hetero-receptor complex. Characteristically, IL-17RA is a common subunit in all hetero-receptors. IL-17RA has unique structural-containing a SEFIR/TILL domain-and functional-requiring ACT-1 for signaling-properties, enabling Th17 cells to act as a bridge between innate and adaptive immune cells. In psoriasis, IL-17RA plays a key role in pathogenesis based on: (a) IL-17A, IL-17F, and other IL-17 isoforms are involved in disease development; and (b) IL-17RA is essential for signaling of all IL-17 cytokines but IL-17D, whose receptor has not been identified to date. This article reviews current evidence on the biology and role of the IL-17 family of cytokines and receptors, with focus on IL-17RA, in psoriasis and some related comorbidities, and puts them in context with current and upcoming treatments.
Collapse
Affiliation(s)
- Silvia Vidal
- Institute of Research, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Lluís Puig
- Institute of Research, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | | | - Álvaro González-Cantero
- Department of Dermatology, Hospital Universitario Ramón y Cajal, M-607, km. 9, 100, 28034 Madrid, Spain;
- Facultad de Medicina, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda KM 1.800, 28223 Pozuelo de Alarcón, Spain
| | | | | |
Collapse
|
3
|
Noack M, Beringer A, Miossec P. Additive or Synergistic Interactions Between IL-17A or IL-17F and TNF or IL-1β Depend on the Cell Type. Front Immunol 2019; 10:1726. [PMID: 31396230 PMCID: PMC6664074 DOI: 10.3389/fimmu.2019.01726] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023] Open
Abstract
Background: IL-17A has effects on several cell types and is a therapeutic target in several inflammatory diseases. IL-17F shares 50% homology and biological activities with IL-17A. It is now of interest to target both cytokines. The objective was to compare the IL-17A and IL-17F effect on cytokine production by RA synoviocytes, and to extend to other cells. Methods: Cells (RA synoviocytes, psoriasis skin fibroblasts, endothelial cells, myoblasts, and hepatocytes) were cultured in the presence or not of: IL-17A, IL-17F, TNF, IL-1β alone or their combinations, IL-17A/TNF, IL-17A/IL-1β, IL-17A/TNF/IL-1β, IL-17F/TNF, IL-17F/IL-1β, and IL-17F/TNF/IL-1β. All experiments were performed in parallel to reduce variability. After 48 h, supernatants were recovered and IL-6 and IL-8 levels were measured by ELISA. Results: IL-17A and IL-17F alone increased significantly IL-6 and IL-8 productions by synoviocytes, with a stronger effect for IL-17A. For IL-6 production, TNF or IL-1β alone had the largest effect on myoblasts (5-fold increase), while for IL-8 production, it was on skin fibroblasts (5-fold increase). The IL-17A/TNF synergistic increase was observed on all cells for IL-6; and for IL-8, except for endothelial cells. For IL-17F/TNF, except with endothelial cells, a synergistic effect was also observed, but less powerful than with IL-17A/TNF. IL-17A/IL-1β or IL-17F/IL-1β effect was cell-type dependent, with an additive effect for synoviocytes (1.6 and 2-fold increase, respectively for IL-6, and 1.8 and 2-fold increase, respectively for IL-8) and a synergistic effect for hepatocytes (3.8 and 4.2-fold increase, respectively for IL-6, and 6 and 2-fold increase, respectively for IL-8). The three-cytokine combination induced an additive effect for synoviocytes and a synergistic effect for skin fibroblasts. Conclusion: IL-17A and IL-17F acted similarly by inducing pro-inflammatory cytokine secretion, with a stronger response intensity with IL-17A. Their activities were potentiated by the combination with TNF and IL-1β, with an effect dependent on the cell type.
Collapse
Affiliation(s)
- Mélissa Noack
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| | - Audrey Beringer
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
4
|
Tosello Boari J, Araujo Furlan CL, Fiocca Vernengo F, Rodriguez C, Ramello MC, Amezcua Vesely MC, Gorosito Serrán M, Nuñez NG, Richer W, Piaggio E, Montes CL, Gruppi A, Acosta Rodríguez EV. IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During Trypanosoma cruzi Infection. Front Immunol 2018; 9:2347. [PMID: 30364284 PMCID: PMC6193063 DOI: 10.3389/fimmu.2018.02347] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.
Collapse
Affiliation(s)
- Jimena Tosello Boari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - María C. Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - María C. Amezcua Vesely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Melisa Gorosito Serrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Nicolás G. Nuñez
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Wilfrid Richer
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Eliane Piaggio
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
5
|
Weng X, Liu Y, Cui S, Cheng B. The role of RORα in salivary gland lesions in patients with primary Sjögren's syndrome. Arthritis Res Ther 2018; 20:205. [PMID: 30189901 PMCID: PMC6127992 DOI: 10.1186/s13075-018-1698-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Background The orphan nuclear receptors retinoic acid-related receptor α and γt (RORα and RORγt) are critical in the development of T helper 17 (Th17) cells, and ROR-specific synthetic ligands have proven efficacy in several mouse models of autoimmunity. However, the pathological significance of RORα in primary Sjögren’s syndrome (pSS) remains to be elucidated. The present study was designed to clarify the significance of RORα in the pathogenesis of pSS. Methods RORα expression in the labial salivary gland (LSG) was determined by immunohistochemical analysis using a quantitative scoring system in 34 patients with pSS. The correlation between RORα expression in LSGs and the focus score (FS) was determined, and Th17 and IL-17 receptor A (1L-17RA) levels in LSGs were determined. To investigate the effect of RORs and the therapeutic potential of targeting RORs in pSS, we administered SR1001, a selective RORα/γt inverse agonist, to non-obese diabetic (NOD) mice. Results The expression of RORα was significantly increased in LSGs of patients with pSS and intensified with disease stage/FS, showing a similar increasing trend with IL-17A and IL-17RA. SR1001 significantly improved salivary gland secretory function and relieved sialadenitis in treated mice. Conclusion Our data reveal the importance of RORα in controlling pathologic lymphocytic infiltration of the salivary glands and suggest that RORα may be a druggable target in treating pSS. Electronic supplementary material The online version of this article (10.1186/s13075-018-1698-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuhong Weng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Yi Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Jianhan District, Wuhan, 430022, Hubei Province, China
| | - Shun Cui
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Jianghan District, Wuhan, 430022, Hubei Province, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
6
|
Kurte M, Luz-Crawford P, Vega-Letter AM, Contreras RA, Tejedor G, Elizondo-Vega R, Martinez-Viola L, Fernández-O'Ryan C, Figueroa FE, Jorgensen C, Djouad F, Carrión F. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:802. [PMID: 29760692 PMCID: PMC5936796 DOI: 10.3389/fimmu.2018.00802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA-/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA-/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA-/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.
Collapse
Affiliation(s)
- Mónica Kurte
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Rafael A Contreras
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Gautier Tejedor
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Roberto Elizondo-Vega
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Luna Martinez-Viola
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Catalina Fernández-O'Ryan
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Fernando E Figueroa
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | | | - Farida Djouad
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
7
|
Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance. J Virol 2016; 91:JVI.01529-16. [PMID: 27795421 PMCID: PMC5165211 DOI: 10.1128/jvi.01529-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023] Open
Abstract
CD8+ T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8+ T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a-/-) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8+ T cells isolated from Il17a-/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8+ T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. IMPORTANCE Interleukin-17A (IL-17A) and CD8+ T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8+ T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8+ T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8+ T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8+ T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8+ T cell functions are crucial.
Collapse
|
8
|
Tucci M, Stucci S, Passarelli A, D'Oronzo S, Silvestris F. Everolimus restrains the IL-17A-dependent osteoclast-like transdifferentiation of dendritic cells in multiple myeloma. Exp Hematol 2016; 47:48-53. [PMID: 27765615 DOI: 10.1016/j.exphem.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/31/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Interleukin-17A (IL-17A) promotes the osteoclast (OC)-like differentiation of dendritic cells (DCs) in multiple myeloma (MM) and contributes to the pathogenesis of myeloma bone disease (MBD). In our study, everolimus (EVR) abrogated the in vitro OC-like activity of DCs from 12 MM patients significantly. Exploring the EVR effects, we found that the inhibition of the osteoerosive activity of OC-DCs was mostly due to the blockade of signals driven by the IL-17A receptor toward the CCAAT/enhancer-binding protein beta/musculoaponeurotic fibrosarcoma oncogene homolog B axis Therefore, MM patients with MBD would probably benefit from mammalian target of rapamycin inhibition.
Collapse
Affiliation(s)
- Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Senra L, Stalder R, Alvarez Martinez D, Chizzolini C, Boehncke WH, Brembilla NC. Keratinocyte-Derived IL-17E Contributes to Inflammation in Psoriasis. J Invest Dermatol 2016; 136:1970-1980. [DOI: 10.1016/j.jid.2016.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
|
10
|
CCR6(-) regulatory T cells blunt the restoration of gut Th17 cells along the CCR6-CCL20 axis in treated HIV-1-infected individuals. Mucosal Immunol 2016; 9:1137-50. [PMID: 26883727 DOI: 10.1038/mi.2016.7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/10/2016] [Indexed: 02/07/2023]
Abstract
The gut CD4(+) T cells, particularly the T helper type 17 (Th17) subset, are not completely restored in most HIV-1-infected individuals despite combined antiretroviral therapy, when initiated at the chronic phase of infection. We show here that the CCR6-CCL20 chemotactic axis is altered, with reduced CCL20 production by small intestine epithelial cells in treated HIV-1-infected individuals. This leads to impaired CCR6(+)CD4(+) T-cell homing, particularly Th17 cells, to the small intestine mucosa. In contrast, the frequency of gut FoxP3(+) T regulatory (Treg) cells, specifically the CCR6(-) subset, was increased. The resulting imbalance in the Th17/CCR6(-) Treg ratio and the associated shift from interleukin (IL)-17 to IL-10 and transforming growth factor-β (TGF-β) blunts CCL20 production by enterocytes, perpetuating a negative feedback for the recruitment of CCR6(+)CD4(+) T cells to the small intestine in treated HIV-1-infected individuals.
Collapse
|
11
|
Regulation of Interleukin-17 Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:139-166. [DOI: 10.1007/978-94-024-0921-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N, Conti HR, Hernandez Mir G, Sirakova T, Childs EC, Smithgall TE, Biswas PS, Kolls JK, McGeachy MJ, Kolattukudy PE, Gaffen SL. MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity 2015; 43:475-87. [PMID: 26320658 DOI: 10.1016/j.immuni.2015.07.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 01/13/2023]
Abstract
Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore, constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1's endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra(-/-) background. Conversely, IL-17-dependent pathology in Zc3h12a(+/-) mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3' UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ, and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.
Collapse
Affiliation(s)
- Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nilesh Amatya
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kong Chen
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - J Agustin Cruz
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prerna Grover
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Natasha Whibley
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heather R Conti
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gerard Hernandez Mir
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Erin C Childs
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Mandy J McGeachy
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pappachan E Kolattukudy
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Konya C, Paz Z, Apostolidis SA, Tsokos GC. Update on the role of Interleukin 17 in rheumatologic autoimmune diseases. Cytokine 2015; 75:207-15. [PMID: 26028353 DOI: 10.1016/j.cyto.2015.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/02/2015] [Accepted: 01/09/2015] [Indexed: 12/14/2022]
Abstract
Interleukin 17 is a proinflammatory cytokine produced by CD4+ T cells when in the presence of a distinct set of cytokines and other cells. Preclinical and clinical studies have assigned a role to IL-17 in tissue inflammation and damage in patients with rheumatoid arthritis, psoriasis and psoriatic arthritis, ankylosing spondylitis and systemic lupus erythematosus. Antibodies blocking the action of IL-17 have already been approved to treat patients with psoriasis and it is expected that they may also benefit patients with other rheumatic diseases.
Collapse
Affiliation(s)
- Christine Konya
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Ziv Paz
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Sokratis A Apostolidis
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - George C Tsokos
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| |
Collapse
|
14
|
The effect of proinflammatory cytokines on IL-17RA expression in NSCLC. Med Oncol 2014; 31:144. [PMID: 25112467 DOI: 10.1007/s12032-014-0144-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
Abstract
Interleukin-17 receptor (IL-17RA) is essential for proinflammatory cytokine IL-17-mediated pathogenesis of various tumors. IL-17RA is upregulated by some proinflammatory cytokines such as IL-21 and IL-15 and downregulated by IL-2, while the effect of IL-1β, IL-6, IL-8, TNF-α on IL-17RA expression in non-small cell lung caner (NSCLC) remains unknown. Our findings revealed that IL-17RA mRNA was increased in NSCLC tissues compared with the corresponding peritumor tissues (P = 0.0039) and high expression of IL-17RA protein in human NSCLC tissues was significantly associated with histological subtype, primary tumor size and clinical stages (P = 0.033, 0.033 and 0.011, respectively). IL-17RA mRNA expression was positively related to IL-1β, IL-6, IL-8, TNF-α mRNA expression (P = 0.013, 0.0001, 0.002 and 0.010 respectively) in NSCLC tissues. Furthermore, IL-1β, IL-6, IL-8, TNF-α upregulated IL-17RA mRNA and protein in A549 and H460 cells (all P < 0.05). It is suggested that IL-1β, IL-6, IL-8, TNF-α promoted IL-17RA expression in NSCLC and they may involve in IL-17RA signaling in NSCLC.
Collapse
|
15
|
Liu G, Guo J, Liu J, Wang Z, Liang D. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells. Clin Immunol 2014; 154:127-40. [PMID: 25076485 DOI: 10.1016/j.clim.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/26/2022]
Abstract
IL-17, the hallmark cytokine of Th17 cells, plays a pivotal role in the pathogenesis of autoimmune diseases, including encephalomyelitis. In the central nervous system, neuroglial cells are the main residents that express IL-17R and respond to IL-17 by producing chemokines/cytokines and boosting local inflammation. Factors that influence the IL-17R expression in neuroglial cells can also exert their impacts on the outbreak, progression and outcome of encephalomyelitis. Here, we reported that Toll-like receptor signaling has its bias for promoting the IL-17RA, but not the IL-17RC, expression in mouse neuroglial cells in a T cell infiltration independent manner. Elevated IL-17R functionally responded to IL-17 by secreting more chemokines and accelerating CD4 cell migration. First, real-time PCR confirmed that the expression of Il-17ra, but not Il-17rc, was significantly increased in the brain and spinal cord of EAE-induced mice. This effect was elicited by something in complete Freund's adjuvant (CFA), because markedly increased IL-17R was detected in mice immunized with CFA only, even though no evidence of EAE was found. Furthermore, in Rag1(-/-) mice, it was confirmed that CFA could augment the IL-17RA expression in the CNS in the absence of T cell infiltration. In vivo immunization with TLR ligands and in vitro treatment of purified neuroglial cells demonstrated that TLR ligands directly and effectively evoke the IL-17RA expression in the CNS and in cultured astrocytes, microglia and oligodendrocytes. LPS was the most effective inducer of the IL-17RA expression in astrocytes, and polyIC was superior to LPS for microglia and oligodendrocytes. Activated CD4 cells can also promote the secretion of chemokines by LPS pre-treated astrocytes, and hence accelerate the migration of CD4 cells, which was blocked by the neutralization of IL-17RA on the surface of the astrocyte. Taken together, we concluded that TLR signaling can directly stimulate the expression of IL-17RA, but not IL-17RC, in neuroglial cells, which functionally respond to IL-17A by secreting chemokines, accelerating CD4 cell migration, and contributing to the pathogenesis of encephalomyelitis.
Collapse
Affiliation(s)
- Guoping Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jin Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dongchun Liang
- Doheny Eye Institute, University of Southern California, CA 90033, USA.
| |
Collapse
|
16
|
Stettner M, Lohmann B, Wolffram K, Weinberger JP, Dehmel T, Hartung HP, Mausberg AK, Kieseier BC. Interleukin-17 impedes Schwann cell-mediated myelination. J Neuroinflammation 2014; 11:63. [PMID: 24678820 PMCID: PMC3977670 DOI: 10.1186/1742-2094-11-63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/12/2014] [Indexed: 01/05/2023] Open
Abstract
Background Pro-inflammatory cytokines are known to have deleterious effects on Schwann cells (SCs). Interleukin 17 (IL-17) is a potent pro-inflammatory cytokine that exhibits relevant effects during inflammation in the peripheral nervous system (PNS), and IL-17-secreting cells have been reported within the endoneurium in proximity to the SCs. Methods Here, we analyzed the effects of IL-17 on myelination and the immunological properties of SCs. Dorsal root ganglia (DRG) co-cultures containing neurons and SCs from BL6 mice were used to define the impact of IL-17 on myelination and on SC differentiation; primary SCs were analyzed for RNA and protein expression to define the putative immunological alignment of the SCs. Results SCs were found to functionally express the IL-17 receptors A and B. In DRG cultures, stimulation with IL-17 resulted in reduced myelin synthesis, while pro-myelin gene expression was suppressed at the mRNA level. Neuronal outgrowth and SC viability, as well as structural myelin formation, remained unaffected. Co-cultures exhibited SC-relevant pro-inflammatory markers, such as matrix metalloproteinase 9 and SCs significantly increased the expression of the major histocompatibility complex (MHC) I and exhibited a slight, nonsignificant increase in expression of MHCII, and a transporter associated with antigen presentation (TAP) II molecules relevant for antigen processing and presentation. Conclusions IL-17 may act as a myelin-suppressive mediator in the peripheral nerve, directly propagating SC-mediated demyelination, paralleled by an inflammatory alignment of the SCs. Further analyses are warranted to elucidate the role of IL-17 during inflammation in the PNS in vivo, which could be useful in the development of target therapies.
Collapse
Affiliation(s)
- Mark Stettner
- Department of Neurology, Medical Faculty, Research Group for Clinical and Experimental Neuroimmunology, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang X, Kallarakal A, Saptharishi N, Jiang H, Yang Z, Xie Y, Mitra G, Zheng XX, Strom TB, Soman G. Molecular characterization and functional activity of an IL-15 antagonist MutIL-15/Fc human fusion protein. Mol Pharm 2013; 10:717-27. [PMID: 23311475 PMCID: PMC3573692 DOI: 10.1021/mp300513j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fc fusion proteins are a new emerging class of molecules for immune-targeted delivery of therapeutic proteins. Biophysical and bioanalytical characterization is critical for clinical development and delivery of therapeutic proteins. Here we report molecular and functional characterization of a recombinant human fusion protein Mutant IL-15/Fc. MutIL-15/Fc has a molecular weight of ∼95 kDa as determined by multiangle laser light scattering with online size exclusion chromatography and migrated at a faster rate (lower retention time) in gel filtration column. The kinetics of binding of MutIL-15/Fc to Fcγ receptor is best fitted in a bivalent modal with K(D1) 5 μM and K(D2) 9 μM determined by surface plasmon resonance (BIAcore). N-Glycoprofiling analysis revealed extensive glycosylation of MutIL-15/Fc. The Fc and IL-15 components in the MutIL-15/Fc are detected using the dual mode ELISA. The HT-2 cell proliferation inhibition assay is qualified as a quantitative in vitro marker functional assay. Molecular state changes associated with forced stress analyzed by SEC-MALS resulted in changes in bioactivity and Fc:Fcγ receptor interaction affinity. These data provide a systematic approach to molecular and functional characterization of the MutIL-15/Fc to establish product consistency and stability monitoring during storage and under drug delivery conditions.
Collapse
Affiliation(s)
- Xiaoyi Yang
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Abraham Kallarakal
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Nirmala Saptharishi
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Hengguang Jiang
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Zhiwen Yang
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Yueqing Xie
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - George Mitra
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Xin Xiao Zheng
- Thomas Starzl Transplant Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - Terry B. Strom
- Harvard Medical School, Department of Surgery and Medicine, Transplant Institute at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, MA 02215
| | - Gopalan Soman
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| |
Collapse
|
18
|
Ring AM, Lin JX, Feng D, Mitra S, Rickert M, Bowman GR, Pande VS, Li P, Moraga I, Spolski R, Ozkan E, Leonard WJ, Garcia KC. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat Immunol 2012; 13:1187-95. [PMID: 23104097 PMCID: PMC3501574 DOI: 10.1038/ni.2449] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/11/2012] [Indexed: 12/11/2022]
Abstract
Interleukin 15 (IL-15) and IL-2 have distinct immunological functions even though both signal through the receptor subunit IL-2Rβ and the common γ-chain (γ(c)). Here we found that in the structure of the IL-15-IL-15Rα-IL-2Rβ-γ(c) quaternary complex, IL-15 binds to IL-2Rβ and γ(c) in a heterodimer nearly indistinguishable from that of the IL-2-IL-2Rα-IL-2Rβ-γ(c) complex, despite their different receptor-binding chemistries. IL-15Rα substantially increased the affinity of IL-15 for IL-2Rβ, and this allostery was required for IL-15 trans signaling. Consistent with their identical IL-2Rβ-γ(c) dimer geometries, IL-2 and IL-15 showed similar signaling properties in lymphocytes, with any differences resulting from disparate receptor affinities. Thus, IL-15 and IL-2 induced similar signals, and the cytokine specificity of IL-2Rα versus IL-15Rα determined cellular responsiveness. Our results provide new insights for the development of specific immunotherapeutics based on IL-15 or IL-2.
Collapse
Affiliation(s)
- Aaron M Ring
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ahn IE, Ju JH, Lee SY, Park JS, Oh HJ, Kim HR, Lee SH, Park SH, Kim HY, Cho ML. Upregulation of stromal cell-derived factor by IL-17 and IL-18 via a phosphatidylinositol 3-kinase-dependent pathway. Scand J Immunol 2012; 76:433-9. [PMID: 22690919 DOI: 10.1111/j.1365-3083.2012.02745.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Th17 cells that produce interleukin (IL)-17 play a key role in the pathogenesis of autoimmune inflammation. Among the various cytokines that are involved in the IL-17 pathway, members of the IL-1β family, including IL-18, have recently gained attention. In this study, we stimulated synovial fibroblasts with a combination of IL-17 and IL-18 and quantified their stromal cell-derived factor-1 (SDF-1) production by enzyme-linked immunosorbent assay and their transcript levels by reverse transcription-polymerase chain reaction. Both IL-17 and IL-18 significantly increased the level of SDF-1, not only individually but also synergistically (P< 0.05). The synergism was effectively suppressed by anti-IL-17 and -IL-18 antibodies, and a PI3K inhibitor. To the best of our knowledge, this is the first report of PI3K-dependent synergism between IL-18 and IL-17, and this work adds a novel perspective of the role of IL-18 in immune regulation. The individual effects of these two cytokines, and their interactions, suggest an interrelationship between the IL-1 family and IL-17.
Collapse
Affiliation(s)
- I E Ahn
- Rheumatism Research Center (RhRC), Catholic Institute of Medical Sciences, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Harris SJ, Ciuclan L, Finan PM, Wymann MP, Walker C, Westwick J, Ward SG, Thomas MJ. Genetic ablation of PI3Kγ results in defective IL-17RA signalling in T lymphocytes and increased IL-17 levels. Eur J Immunol 2012; 42:3394-404. [PMID: 22930133 DOI: 10.1002/eji.201242463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/11/2012] [Accepted: 08/21/2012] [Indexed: 01/21/2023]
Abstract
The signalling molecule PI3Kγ has been reported to play a key role in the immune system and the inflammatory response. In particular, it facilitates the migration of haemato-poietic cells to the site of inflammation. In this study, we reveal a novel role for PI3Kγ in the regulation of the pro-inflammatory cytokine IL-17. Loss of PI3Kγ or expression of a catalytically inactive mutant of PI3Kγ in mice led to increased IL-17 production both in vitro and in vivo in response to various stimuli. The kinetic profile was unaltered from WT cells, with no effect on proliferation or other cytokines. Elevated levels of IL-17 were not due to an aberrant expansion of IL-17-producing cells. Furthermore, we also identified an increase in IL-17RA expression on PI3Kγ(-/-) CD4(+) T cells, yet these cells exhibited impaired PI3K-dependent signalling in response to IL-17A, and subsequent NF-κB phosphorylation. In vivo, instillation of recombinant IL-17 into the airways of mice lacking PI3Kγ signalling also resulted in reduced phosphorylation of Akt. Cell influx in response to IL-17 was also reduced in PI3Kγ(-/-) lungs. These data demonstrate PI3Kγ-dependent signalling downstream of IL-17RA, which plays a pivotal role in regulating IL-17 production in T cells.
Collapse
|
21
|
IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond) 2012; 122:487-511. [PMID: 22324470 DOI: 10.1042/cs20110496] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IL-17 (interleukin-17), a hallmark cytokine of Th17 (T-helper 17) cells, plays critical roles in host defence against bacterial and fungal infections, as well as in the pathogenesis of autoimmune diseases. The present review focuses on current knowledge of the regulation, functional mechanisms and targeting strategies of IL-17 in the context of inflammatory autoimmune diseases. Evidence shows that IL-17 is highly up-regulated at sites of inflammatory tissues of autoimmune diseases and amplifies the inflammation through synergy with other cytokines, such as TNF (tumour necrosis factor) α. Although IL-17 was originally thought to be produced mainly by Th17 cells, a newly defined T-cell subset with a specific differentiation programme and tight regulation, several other cell types (especially innate immune cells) are also found as important sources for IL-17 production. Although IL-17 activates common downstream signalling, including NF-κB (nuclear factor κB), MAPKs (mitogen-activated protein kinases), C/EBPs (CCAAT/enhancer-binding proteins) and mRNA stability, the immediate receptor signalling has been shown to be quite unique and tightly regulated. Mouse genetic studies have demonstrated a critical role for IL-17 in the pathogenesis of variety of inflammatory autoimmune diseases, such as RA (rheumatoid arthritis) and MS (multiple sclerosis). Importantly, promising results have been shown in initial clinical trials of monoclonal antibodies against IL-17 or its receptor (IL-17R) to block IL-17-mediated function in treating autoimmune patients with psoriasis, RA and MS. Therefore targeting IL-17/IL-17R, IL-17-producing pathways or IL-17-mediated signalling pathways can be considered for future therapy in autoimmune diseases.
Collapse
|
22
|
Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z, Shi Y, Qian Y. Persistent Stimulation with Interleukin-17 Desensitizes Cells Through SCF -TrCP-Mediated Degradation of Act1. Sci Signal 2011; 4:ra73. [DOI: 10.1126/scisignal.2001653] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Chang SH, Dong C. Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal 2011; 23:1069-75. [PMID: 21130872 PMCID: PMC3078175 DOI: 10.1016/j.cellsig.2010.11.022] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/25/2010] [Indexed: 02/08/2023]
Abstract
IL-17 cytokine family, though still young since discovery, has recently emerged as critical players in immunity and inflammatory diseases. The prototype cytokine, IL-17A, plays essential roles in promoting inflammation and host defense. IL-17RA, a member of the IL-17 receptor family, forms a complex with another member, IL-17RC, to mediate effective signaling for IL-17A as well as IL-17F, which is most similar to IL-17A, via Act1 and TRAF6 factors. On the other hand, IL-17RA appears to interact with IL-17RB to regulate signaling by another cytokine IL-25. IL-25, the most distant from IL-17A in the IL-17 family, is involved in allergic disease and defense against helminthic parasites. In this review, we discuss recent advancements on signaling mechanisms and biological functions of IL-17A, IL-17F and IL-25, which will shed light on the remaining IL-17 family cytokines and help understand and treat inflammatory diseases.
Collapse
Affiliation(s)
- Seon Hee Chang
- Department of Immunology and Center for Inflammation and Cancer, M D Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
24
|
Scanlon KM, Hawksworth RJ, Lane SJ, Mahon BP. IL-17A induces CCL28, supporting the chemotaxis of IgE-secreting B cells. Int Arch Allergy Immunol 2011; 156:51-61. [PMID: 21447959 DOI: 10.1159/000322178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/18/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atopic asthma is an allergic disease typically associated with T(H)2 cytokines. IL-17A is also associated with asthma, through the induction of chemokines. Mucosal CCL28 concentrations correlate with cellular recruitment to inflamed airways and support migration of IgA(+) B cells. Here, a link between IL-17A, CCL28 and IgE-secreting B cell chemotaxis is examined. METHODS Primary human airway cells and the airway epithelial line A549 were used to characterize IL-17A receptor expression and the effect of IL-17A on CCL28 transcription and translation. B cells, differentiated to IgE+ cells ex vivo, were assessed for CCR10 surface expression and chemotaxis to CCL28 by flow cytometry, transwell migration and ELISpot. RESULTS Human airway epithelium expressed both IL-17RA and IL-17RC, and was responsive to IL-17A stimulation. Cultured human IgE+ B cells expressed surface CCR10 and displayed CCR10-dependent chemotaxis towards recombinant CCL28. Enhanced levels of CCL28 were observed upon A549 cell incubation with IL-17A, and this up-regulation significantly increased the migration of IgE+ antibody-secreting B cells. The specificity of chemotaxis was confirmed by migration blockade in the presence of anti-CCL28 or anti-CCR10. CONCLUSIONS This work identifies a novel chemokine for the migration of IgE+ B cells, in addition to characterizing induction of CCL28 by IL-17A. Taken together the results presented here propose a new role for IL-17A in the allergic airways, linking this cytokine with the recruitment of IgE+ antibody-secreting B cells, via the induction of CCL28. These observations justify further in vivo studies of larger cohorts.
Collapse
Affiliation(s)
- Karen M Scanlon
- Cellular Immunology Laboratory, Institute of Immunology, National University of Ireland Maynooth, Maynooth, Ireland
| | | | | | | |
Collapse
|
25
|
Shuttleworth S, Townsend P, Silva F, Cecil A, Hill T, Tomassi C, Rogers H, Harrison R. Progress in the development of small molecule therapeutics targeting Th17 cell function for the treatment of immune-inflammatory diseases. PROGRESS IN MEDICINAL CHEMISTRY 2011; 50:109-133. [PMID: 21315929 DOI: 10.1016/b978-0-12-381290-2.00003-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Stephen Shuttleworth
- Karus Therapeutics Ltd., 2 Venture Road, Southampton Science Park, Southampton, SO16 7NP, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Qian Y, Kang Z, Liu C, Li X. IL-17 signaling in host defense and inflammatory diseases. Cell Mol Immunol 2010; 7:328-33. [PMID: 20514051 DOI: 10.1038/cmi.2010.27] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-17, the signature cytokine secreted by T helper (Th) 17 cells, plays important roles in host defense against extracellular bacterial infection and fungal infection and contributes to the pathogenesis of various autoimmune inflammatory diseases. Here we review the recent advances in IL-17-mediated functions with emphasis on the studies of IL-17-mediated signal transduction, providing perspective on potential drug targets for the treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Youcun Qian
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
27
|
Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells. Clin Sci (Lond) 2010; 119:75-86. [PMID: 20402669 DOI: 10.1042/cs20100033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
COPD (chronic obstructive pulmonary disease) is an inflammatory disorder of the airways, which is associated with irreversible airway obstruction. The pathological hallmarks of COPD are destruction of the lung parenchyma (pulmonary emphysema), inflammation of the central airways (chronic bronchitis) and inflammation of the peripheral airways (respiratory bronchiolitis). Tobacco smoking is established as the main aetiological factor for COPD. A maladaptive modulation of inflammatory responses to inhalation of noxious particles and gases is generally accepted as being a key central pathogenic process; however, the precise regulatory mechanisms of the disease are poorly understood. Two cell types are known to be important in immune regulation, namely regulatory T-cells and the newly identified Th17 (T-helper 17) cells. Both types of cells are subsets of CD4 T-lymphocytes and modulate the immune response through secretion of cytokines, for example IL (interleukin)-10 and IL-17 respectively. The present review will begin by describing the current understanding of inflammatory cell involvement in the disease process, and then focus on the possible role of subsets of regulatory and helper T-cells in COPD.
Collapse
|
28
|
Pappu R, Ramirez-Carrozzi V, Ota N, Ouyang W, Hu Y. The IL-17 family cytokines in immunity and disease. J Clin Immunol 2010; 30:185-95. [PMID: 20177959 DOI: 10.1007/s10875-010-9369-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 01/07/2010] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Accumulating evidence suggests that the interleukin (IL)-17 cytokines are major players in the immune response to foreign pathogens. In addition, the pathogeneses of a number of inflammatory diseases have been linked to uncontrolled expression of these cytokine pathways. DISCUSSION Genetic and biochemical analyses have elucidated the cellular and molecular events triggered by these proteins during an inflammatory response. While significant efforts have been placed on understanding the functions of IL-17A, IL-17F, and IL-17E, the significance of the other family members, IL-17B-D, in inflammation remains to be determined. CONCLUSION This review will focus on the cellular sources, target cell/receptors that are utilized by these cytokines to control pathogenesis, and the therapeutic potential of targeting these pathways to treat inflammatory disorders.
Collapse
Affiliation(s)
- Rajita Pappu
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Interleukin-17A (IL-17A) and IL-17F are 2 of several cytokines produced by T helper 17 cells (Th17), which are able to indirectly induce the recruitment of neutrophils. Recently, human Th17 cells have been phenotypically characterized and shown to express discrete chemokine receptors, including CCR2 and CCR6. Herein, we show that highly purified neutrophils cultured with interferon-gamma plus lipopolysaccharide produce the CCL2 and CCL20 chemokines, the known ligands of CCR2 and CCR6, respectively. Accordingly, supernatants from activated neutrophils induced chemotaxis of Th17 cells, which was greatly suppressed by anti-CCL20 and anti-CCL2 antibodies. We also discovered that activated Th17 cells could directly chemoattract neutrophils via the release of biologically active CXCL8. Consistent with this reciprocal recruitment, neutrophils and Th17 cells were found in gut tissue from Crohn disease and synovial fluid from rheumatoid arthritis patients. Finally, we report that, although human Th17 cells can directly interact with freshly isolated or preactivated neutrophils via granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and interferon-gamma release, these latter cells cannot be activated by IL-17A and IL-17F, because of their lack of IL-17RC expression. Collectively, our results reveal a novel chemokine-dependent reciprocal cross-talk between neutrophils and Th17 cells, which may represent a useful target for the treatment of chronic inflammatory diseases.
Collapse
|
30
|
Abstract
Interleukin-17A (IL-17A), the hallmark cytokine of the newly defined T helper 17 (T(H)17) cell subset, has important roles in protecting the host against extracellular pathogens, but also promotes inflammatory pathology in autoimmune disease. IL-17A and its receptor (IL-17RA) are the founding members of a newly described family of cytokines and receptors that have unique structural features which distinguish them from other cytokine families. Research defining the signal transduction pathways induced by IL-17R family cytokines has lagged behind that of other cytokine families, but studies in the past 2 years have begun to delineate unusual functional motifs and new proximal signalling mediators used by the IL-17R family to mediate downstream events.
Collapse
Affiliation(s)
- Sarah L Gaffen
- University of Pittsburgh, Department of Medicine, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|