1
|
Wang K, Ni X, Deng X, Nan J, Ma-Lauer Y, von Brunn A, Zeng R, Lei J. The CoV-Y domain of SARS-CoV-2 Nsp3 interacts with BRAP to stimulate NF-κB signaling and induce host inflammatory responses. Int J Biol Macromol 2024; 280:136123. [PMID: 39343285 DOI: 10.1016/j.ijbiomac.2024.136123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Non-structural protein 3 (Nsp3) is the largest protein encoded by the coronavirus (CoV) genome. It consists of multiple domains that perform critical functions during the viral life cycle. CoV-Y is the most C-terminal domain of Nsp3, and it exhibits evolutionary conservation across diverse CoVs; however, the exact biological function of CoV-Y remains unclear. Here, we determined the crystal structure of CoV-Y of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp3 using the single-wavelength anomalous diffraction method. We revealed the interaction between CoV-Y and the host BRCA1-associated protein (BRAP) using immunoprecipitation-mass spectrometry experiments. This interaction was subsequently confirmed in cellular assays, and the precise binding-regions between these two proteins were clarified. We found that this interaction is conserved in SARS-CoV and Middle East respiratory syndrome coronavirus. Next, we demonstrated that CoV-Y enhances IκBα and IκBβ phosphorylation and promotes the nuclear translocation of the downstream NF-κB members p50 and p65 through binding to BRAP. The CoV-Y-BRAP interaction can upregulate the transcript levels of the host inflammatory cytokines. Overall, our findings illustrate the biological function of CoV-Y for the first time and provide novel insights into coronavirus regulation of host inflammatory responses, as well as a possible target for antiviral drug development.
Collapse
Affiliation(s)
- Kai Wang
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xincheng Ni
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyue Deng
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Nan
- MAX IV Laboratory, Lund University, PO Box 118, SE-22100 Lund, Sweden
| | - Yue Ma-Lauer
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich and German Center for Infection Research (DZIF), Partner Site Munich, 80336 Munich, Germany
| | - Albrecht von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich and German Center for Infection Research (DZIF), Partner Site Munich, 80336 Munich, Germany
| | - Rui Zeng
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Lei
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wang B, Cao C, Liu X, He X, Zhuang H, Wang D, Chen B. BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. Cell Oncol (Dordr) 2019; 43:223-235. [PMID: 31776938 DOI: 10.1007/s13402-019-00482-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
PURPOSE BRCA1-associated protein (BRAP) was first identified by its ability to bind to the nuclear localization signalling motif of BRCA1 and other proteins. Subsequently, human BRAP has been found to exert multiple functions, many of which are related to cancer development. Up till now, however, the role of BRAP in glioma development has remained obscure. Here, we report a role for BRAP in mediating the proliferation and migration of glioma cells both in vitro and in vivo. METHODS The expression of BRAP in 98 glioma patient samples was determined by immunohistochemistry, after which associations between BRAP expression and patient prognosis were assessed. A short hairpin RNA (shRNA) was used to knock down BRAP and an expression vector was used to exogenously overexpress BRAP in glioma cells. The effects of BRAP expression on tumour cell behaviour in vitro and in an in vivo xenograft mouse model were examined. RESULTS We found that in glioma patients BRAP expression was associated with a favourable prognosis. We also found that shRNA-mediated knockdown of BRAP facilitated the proliferation and migration of glioma cells and the self-renewal of glioma stem cells. In parallel, we found that BRAP knockdown increased tumour growth and invasion and decreased survival in an in vivo glioma xenograft mouse model. Mechanistically, we found that BRAP inhibited glioma cell proliferation and migration, as well as glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. CONCLUSIONS Together, our findings identify BRAP as a mediator of glioma cell proliferation, migration and glioma stem cell self-renewal.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, No.94 Weijin Road, Tianjin, 300071, China
| | - Chen Cao
- Department of Medical Imaging, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, No.6 Changjiang Road, Tianjin, 300100, China
| | - Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450008, Henan Province, China.
| | - Dong Wang
- Department of Neurosurgery, General Hospital; Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System; Tianjin Neurological Institute, Tianjin Medical University, No.154 Anshan Road, Tianjin, 300052, China.
| | - Budong Chen
- Department of Neurosurgery, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China.
| |
Collapse
|
3
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
4
|
Central catalytic domain of BRAP (RNF52) recognizes the types of ubiquitin chains and utilizes oligo-ubiquitin for ubiquitylation. Biochem J 2017; 474:3207-3226. [PMID: 28768733 PMCID: PMC5628404 DOI: 10.1042/bcj20161104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/02/2022]
Abstract
Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP–RING–ZfUBP–CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers.
Collapse
|
5
|
Ray A, Basu S, Miller NM, Chan AM, Dittel BN. An increase in tolerogenic dendritic cell and natural regulatory T cell numbers during experimental autoimmune encephalomyelitis in Rras-/- mice results in attenuated disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5109-17. [PMID: 24771856 PMCID: PMC4041102 DOI: 10.4049/jimmunol.1302254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
R-Ras is a member of the Ras superfamily of small GTPases, which are regulators of various cellular processes, including adhesion, survival, proliferation, trafficking, and cytokine production. R-Ras is expressed by immune cells and has been shown to modulate dendritic cell (DC) function in vitro and has been associated with liver autoimmunity. We used Rras-deficient mice to study the mechanism whereby R-Ras contributes to autoimmunity using experimental autoimmune encephalomyelitis (EAE), a mouse model of the CNS autoimmune disease multiple sclerosis. We found that a lack of R-Ras in peripheral immune cells resulted in attenuated EAE disease. Further investigation revealed that, during EAE, absence of R-Ras promoted the formation of MHC II(low) DC concomitant with a significant increase in proliferation of natural regulatory T cells, resulting in an increase in their cell numbers in the periphery. Our study suggests a novel role for R-Ras in promoting autoimmunity through negative regulation of natural regulatory T cell numbers by inhibiting the development of MHCII(low) DC with tolerogenic potential.
Collapse
Affiliation(s)
- Avijit Ray
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201
| | - Sreemanti Basu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Nichole M Miller
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201
| | - Andrew M Chan
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Bonnie N Dittel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| |
Collapse
|
6
|
Davies RG, Wagstaff KM, McLaughlin EA, Loveland KL, Jans DA. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3436-3444. [DOI: 10.1016/j.bbamcr.2013.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
|
7
|
Takashima O, Tsuruta F, Kigoshi Y, Nakamura S, Kim J, Katoh MC, Fukuda T, Irie K, Chiba T. Brap2 regulates temporal control of NF-κB localization mediated by inflammatory response. PLoS One 2013; 8:e58911. [PMID: 23554956 PMCID: PMC3598860 DOI: 10.1371/journal.pone.0058911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/08/2013] [Indexed: 11/18/2022] Open
Abstract
Nuclear factor-kappaB (NF-κB) is critical for the expression of multiple genes involved in inflammatory responses and cellular survival. NF-κB is normally sequestered in the cytoplasm through interaction with an inhibitor of NF-κB (IκB), but inflammatory stimulation induces proteasomal degradation of IκB, followed by NF-κB nuclear translocation. The degradation of IκB is mediated by a SCF (Skp1-Cullin1-F-box protein)-type ubiquitin ligase complex that is post-translationaly modified by a ubiquitin-like molecule Nedd8. In this study, we report that BRCA1-associated protein 2 (Brap2) is a novel Nedd8-binding protein that interacts with SCF complex, and is involved in NF-κB translocation following TNF-α stimulation. We also found a putative neddylation site in Brap2 associated with NF-κB activity. Our findings suggest that Brap2 is a novel modulator that associates with SCF complex and controls TNF-α-induced NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Osamu Takashima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fuminori Tsuruta
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yu Kigoshi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shingo Nakamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jaehyun Kim
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi C. Katoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomomi Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoki Chiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
8
|
Hayes SD, Liu H, MacDonald E, Sanderson CM, Coulson JM, Clague MJ, Urbé S. Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/RAF1 kinase, by the deubiquitylating enzyme USP15. J Biol Chem 2012; 287:43007-18. [PMID: 23105109 PMCID: PMC3522295 DOI: 10.1074/jbc.m112.386938] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The opposing regulators of ubiquitylation status, E3 ligases and deubiquitylases, are often found to be associated in complexes. Here we report on a novel interaction between the E3 ligase BRAP (also referred to as IMP), a negative regulator of the MAPK scaffold protein KSR, and two closely related deubiquitylases, USP15 and USP4. We map the interaction to the N-terminal DUSP-UBL domain of USP15 and the coiled coil region of BRAP. USP15 as well as USP4 oppose the autoubiquitylation of BRAP, whereas BRAP promotes the ubiquitylation of USP15. Importantly, USP15 but not USP4 depletion destabilizes BRAP by promoting its proteasomal degradation, and BRAP-protein levels can be rescued by reintroducing catalytically active but not inactive mutant USP15. Unexpectedly, USP15 depletion results in a decrease in amplitude of MAPK signaling in response to EGF and PDGF. We provide evidence for a model in which the dominant effect of prolonged USP15 depletion upon signal amplitude is due to a decrease in CRAF levels while allowing for the possibility that USP15 may also function to dampen MAPK signaling through direct stabilization of a negative regulator, the E3 ligase BRAP.
Collapse
Affiliation(s)
- Sebastian D Hayes
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Liao YC, Wang YS, Guo YC, Ozaki K, Tanaka T, Lin HF, Chang MH, Chen KC, Yu ML, Sheu SH, Juo SHH. BRAP Activates Inflammatory Cascades and Increases the Risk for Carotid Atherosclerosis. Mol Med 2011; 17:1065-1074. [PMID: 21670849 PMCID: PMC3188876 DOI: 10.2119/molmed.2011.00043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/09/2011] [Indexed: 12/24/2022] Open
Abstract
The BRCA-1 associated protein gene (BRAP) was recently identified as a susceptibility gene for myocardial infarction (MI). In the present study we aimed to decipher the association between the BRAP polymorphism and carotid atherosclerosis and the mechanism underlying its proatherogenic effect. A total of 1749 stroke/MI-free volunteers received carotid ultrasonic examinations for the measurement of intima-medial thickness (IMT) and plaque. The promoter polymorphism rs11066001 was selected because it affects the transcription of BRAP. We found that the GG genotype was associated with a 1.58-fold increased risk for having at least one plaque compared to carrying the A allele (P = 0.021). When subjects were divided by the cutoff value of IMT above the mean plus 1 standard deviation, there was an overrepresentation of the GG genotype in the subjects with thicker IMT (P = 0.004). The expression of BRAP increased significantly when human aortic smooth muscle cells (HASMCs) were treated with lipopolysaccharide (LPS). HASMCs were transfected with small interfering RNA against BRAP or scrambled sequences before treatment with LPS. Knockdown of BRAP led to attenuated HASMC proliferation and reduced secretion of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) in response to LPS. Downregulation of BRAP did not affect the protein levels of nuclear factor-κB (NF-κB), but prohibited its nuclear translocation. Coimmunoprecipitation experiments confirmed an interaction between BRAP and the two major components of the IKK signalosome, IκBβ and IKKβ. Collectively, BRAP conferred a risk for carotid plaque and IMT. Inflammatory stimuli upregulated BRAP expression, and BRAP activated inflammatory cascades by regulating NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Yi-Chu Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Section of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurology, National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Yung-Song Wang
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Cherng Guo
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Kouichi Ozaki
- Laboratory for Cardiovascular Diseases, Center for Genomic Medicine, RIKEN, Yokohama, Japan
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, Center for Genomic Medicine, RIKEN, Yokohama, Japan
| | - Hsiu-Fen Lin
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Chang
- Section of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurology, National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Ku-Chung Chen
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Sheng-Hsiung Sheu
- Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Luo Q, Gu Y, Zheng W, Wu X, Gong F, Gu L, Sun Y, Xu Q. Erlotinib inhibits T-cell-mediated immune response via down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. Toxicol Appl Pharmacol 2011; 251:130-6. [DOI: 10.1016/j.taap.2010.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/08/2010] [Accepted: 12/16/2010] [Indexed: 11/25/2022]
|
11
|
E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci U S A 2009; 106:16770-5. [PMID: 19805371 DOI: 10.1073/pnas.0908957106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell unresponsiveness or anergy is one of the mechanisms that maintain inactivity of self-reactive lymphocytes. E3 ubiquitin ligases are important mediators of the anergic state. The RING finger E3 ligase GRAIL is thought to selectively function in anergic T cells but its mechanism of action and its role in vivo are largely unknown. We show here that genetic deletion of Grail in mice leads not only to loss of an anergic phenotype in various models but also to hyperactivation of primary CD4(+) T cells. Grail(-/-) CD4(+) T cells hyperproliferate in vitro to TCR stimulation alone or with concomitant anti-CD28 costimulation, with transient increased survival. In vitro differentiated T helper 1 cells show slight but significant hypersecretion of IFN-gamma in Grail(-/-) mice whereas Th2 and Th17 cytokine secretions are unchanged. Consistent with defective in vitro anergy, oral tolerance is abolished in vivo in OT-II TCR transgenic Grail(-/-) mice fed with ovalbumin. In experimental allergic encephalitis, a model of organ-specific autoimmunity, oral tolerization with myelin basic protein was abrogated as well in Grail(-/-) mice. On the protein level, Grail(-/-) naïve T cells show no significant differences of total and phosphorylated levels of ZAP70, phospholipase Cgamma1, and MAP kinases p38 and JNK but elevated baseline levels of MAP kinase ERK1/2. In summary, we define a role for GRAIL in primary T cell activation, survival, and differentiation. In addition, we formally prove an indispensable role for GRAIL in T cell anergy and oral tolerance-a promising, antigen-specific strategy to treat autoimmune diseases.
Collapse
|
12
|
Abstract
The Ras effector and E3 ligase family member IMP (impedes mitogenic signal propagation) acts as a steady-state resistor within the Raf-MEK-ERK kinase module. IMP concentrations are directly regulated by Ras, through induction of autoubiquitination, to permit productive Raf-MEK complex assembly. Inhibition of Raf-MEK pathway activation by IMP occurs through the inactivation of KSR, a scaffold/adapter protein that couples activated Raf to its substrate MEK1. The capacity of IMP to inhibit signal propagation through Raf to MEK is, in part, a consequence of disrupting KSR1 homo-oligomerization and c-Raf-B-Raf hetero-oligomerization. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus by directly limiting the assembly of functional KSR1-dependent Raf-MEK complexes.
Collapse
|