1
|
Wilson KM, He JJ. HIV Nef Expression Down-modulated GFAP Expression and Altered Glutamate Uptake and Release and Proliferation in Astrocytes. Aging Dis 2023; 14:152-169. [PMID: 36818564 PMCID: PMC9937695 DOI: 10.14336/ad.2022.0712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection of astrocytes leads to restricted gene expression and replication but abundant expression of HIV early genes Tat, Nef and Rev. A great deal of neuroHIV research has so far been focused on Tat protein, its effects on astrocytes, and its roles in neuroHIV. In the current study, we aimed to determine effects of Nef expression on astrocytes and their function. Using transfection or infection of VSVG-pseudotyped HIV viruses, we showed that Nef expression down-modulated glial fibrillary acidic protein (GFAP) expression. We then showed that Nef expression also led to decreased GFAP mRNA expression. The transcriptional regulation was further confirmed using a GFAP promoter-driven reporter gene assay. We performed transcription factor profiling array to compare the expression of transcription factors between Nef-intact and Nef-deficient HIV-infected cells and identified eight transcription factors with expression changes of 1.5-fold or higher: three up-regulated by Nef (Stat1, Stat5, and TFIID), and five down-regulated by Nef (AR, GAS/ISRE, HIF, Sp1, and p53). We then demonstrated that removal of the Sp1 binding sites from the GFAP promoter resulted in a much lower level of the promoter activity and reversal of Nef effects on the GFAP promoter, confirming important roles of Sp1 in the GFAP promoter activity and for Nef-induced GFAP expression. Lastly, we showed that Nef expression led to increased glutamate uptake and decreased glutamate release by astrocytes and increased astrocyte proliferation. Taken together, these results indicate that Nef leads to down-modulation of GFAP expression and alteration of glutamate metabolism in astrocytes, and astrocyte proliferation and could be an important contributor to neuroHIV.
Collapse
Affiliation(s)
- Kelly M Wilson
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| |
Collapse
|
2
|
Kandel SR, Luo X, He JJ. Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4 + T cells. J Neurovirol 2022; 28:552-565. [PMID: 36001227 DOI: 10.1007/s13365-022-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
HIV infects astrocytes in a restricted manner but leads to abundant expression of Nef, a major viral factor for HIV replication and disease progression. However, the roles of Nef in HIV gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells remain largely unclear. In this study, we attempted to address these issues by transfecting human primary astrocytes with HIV molecular clones with intact Nef and without Nef (a nonsense Nef mutant) and comparing gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells MT4. First, we found that lack of Nef expression led to increased extracellular virus production from astrocytes and intracellular viral protein and RNA expression in astrocytes. Using a HIV LTR-driven luciferase reporter gene assay, we showed that ectopic Nef expression alone inhibited the HIV LTR promoter activity in astrocytes. Consistent with the previously established function of Nef, we showed that the infectivity of HIV derived from astrocytes with Nef expression was significantly higher than that with no Nef expression. Next, we performed the co-culture assay to determine HIV transfer from astrocytes transfected to MT4. We showed that lack of Nef expression led to significant increase in HIV transfer from astrocytes to MT4 using two HIV clones. We also used Nef-null HIV complemented with Nef in trans in the co-culture assay and demonstrated that Nef expression led to significantly decreased HIV transfer from astrocytes to MT4. Taken together, these findings support a negative role of Nef in HIV replication and pathogenesis in astrocytes.
Collapse
Affiliation(s)
- Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Xiaoyu Luo
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
3
|
Ferrantelli F, Chiozzini C, Manfredi F, Giovannelli A, Leone P, Federico M. Simultaneous CD8 + T-Cell Immune Response against SARS-Cov-2 S, M, and N Induced by Endogenously Engineered Extracellular Vesicles in Both Spleen and Lungs. Vaccines (Basel) 2021; 9:240. [PMID: 33801926 PMCID: PMC7999804 DOI: 10.3390/vaccines9030240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Most advanced vaccines against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 are designed to induce antibodies against spike (S) protein. Differently, we developed an original strategy to induce CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This is a new vaccination approach based on intramuscular injection of DNA expression vectors coding for a biologically inactive HIV-1 Nef protein (Nefmut) with an unusually high efficiency of incorporation into EVs, even when foreign polypeptides are fused to its C-terminus. Nanovesicles containing Nefmut-fused antigens released by muscle cells can freely circulate into the body and are internalized by antigen-presenting cells. Therefore, EV-associated antigens can be cross-presented to prime antigen-specific CD8+ T-cells. To apply this technology to a strategy of anti-SARS-CoV-2 vaccine, we designed DNA vectors expressing the products of fusion between Nefmut and different viral antigens, namely N- and C-terminal moieties of S (referred to as S1 and S2), M, and N. We provided evidence that all fusion products are efficiently uploaded in EVs. When the respective DNA vectors were injected in mice, a strong antigen-specific CD8+ T cell immunity became detectable in spleens and, most important, in lung airways. Co-injection of DNA vectors expressing the diverse SARS-CoV-2 antigens resulted in additive immune responses in both spleen and lungs. Hence, DNA vectors expressing Nefmut-based fusion proteins can be proposed for new anti-SARS-CoV-2 vaccine strategies.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Andrea Giovannelli
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Patrizia Leone
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (F.F.); (C.C.); (F.M.); (P.L.)
| |
Collapse
|
4
|
Delviks-Frankenberry KA, Ackerman D, Timberlake ND, Hamscher M, Nikolaitchik OA, Hu WS, Torbett BE, Pathak VK. Development of Lentiviral Vectors for HIV-1 Gene Therapy with Vif-Resistant APOBEC3G. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:1023-1038. [PMID: 31778955 PMCID: PMC6889484 DOI: 10.1016/j.omtn.2019.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Strategies to control HIV-1 replication without antiviral therapy are needed to achieve a functional cure. To exploit the innate antiviral function of restriction factor cytidine deaminase APOBEC3G (A3G), we developed self-activating lentiviral vectors that efficiently deliver HIV-1 Vif-resistant mutant A3G-D128K to target cells. To circumvent APOBEC3 expression in virus-producing cells, which diminishes virus infectivity, a vector containing two overlapping fragments of A3G-D128K was designed that maintained the gene in an inactive form in the virus-producer cells. However, during transduction of target cells, retroviral recombination between the direct repeats reconstituted an active A3G-D128K in 89%-98% of transduced cells. Lentiviral vectors that expressed A3G-D128K transduced CD34+ hematopoietic stem and progenitor cells with a high efficiency (>30%). A3G-D128K expression in T cell lines CEM, CEMSS, and PM1 potently inhibited spreading infection of several HIV-1 subtypes by C-to-U deamination leading to lethal G-to-A hypermutation and inhibition of reverse transcription. SIVmac239 and HIV-2 were not inhibited, since their Vifs degraded A3G-D128K. A3G-D128K expression in CEM cells potently suppressed HIV-1 replication for >3.5 months without detectable resistant virus, suggesting a high genetic barrier for the emergence of A3G-D128K resistance. Because of this, A3G-D128K expression in HIV-1 target cells is a potential anti-HIV gene therapy approach that could be combined with other therapies for the treatment and functional cure of HIV-1 infection.
Collapse
Affiliation(s)
- Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Daniel Ackerman
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Maria Hamscher
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
5
|
Borzooee F, Asgharpour M, Quinlan E, Grant MD, Larijani M. Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy. Int Rev Immunol 2018; 37:151-164. [PMID: 29211501 DOI: 10.1080/08830185.2017.1403596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.
Collapse
Affiliation(s)
- Faezeh Borzooee
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mahdi Asgharpour
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Emma Quinlan
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Michael D Grant
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mani Larijani
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| |
Collapse
|
6
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
7
|
Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages. Sci Rep 2016; 6:34752. [PMID: 27734899 PMCID: PMC5062087 DOI: 10.1038/srep34752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/16/2016] [Indexed: 01/03/2023] Open
Abstract
The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2',5'-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product.
Collapse
|
8
|
Luo X, Fan Y, Park IW, He JJ. Exosomes are unlikely involved in intercellular Nef transfer. PLoS One 2015; 10:e0124436. [PMID: 25919665 PMCID: PMC4412529 DOI: 10.1371/journal.pone.0124436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Several recent studies including ours have demonstrated that Nef can be transferred to neighboring cells and alters the function of these cells. However, how the intercellular Nef transfer occurs is in dispute. In the current study, we attempted to address this important issue using several complementary strategies, a panel of exosomal markers, and human CD4+ T lymphocyte cell line Jurkat and a commonly used cell line 293T. First, we showed that Nef was transferred from Nef-expressing or HIV-infected Jurkat to naïve Jurkat and other non-Jurkat cells and that the transfer required the membrane targeting function of Nef and was cell density-dependent. Then, we showed that Nef transfer was cell-cell contact-dependent, as exposure to culture supernatants or exosomes from HIV-infected Jurkat or Nef-expressing Jurkat and 293T led to little Nef detection in the target cells Jurkat. Thirdly, we demonstrated that Nef was only detected to be associated with HIV virions but not with acetylcholinesterase (AChE+) exosomes from HIV-infected Jurkat and not in the exosomes from Nef-expressing Jurkat. In comparison, when it was over-expressed in 293T, Nef was detected in detergent-insoluble AChE+/CD81low/TSG101low exosomes, but not in detergent-soluble AChE-/CD81high/TSG101high exosomes. Lastly, microscopic imaging showed no significant Nef detection in exosomal vesicle-like structures in and out 293T. Taken together, these results show that exosomes are unlikely involved in intercellular Nef transfer. In addition, this study reveals existence of two types of exosomes: AChE+/CD81low/TSG101low exosomes and AChE-/CD81high/TSG101high exosomes.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - Yan Fan
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - In-Woo Park
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - Johnny J. He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
- * E-mail:
| |
Collapse
|
9
|
Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host Factors and HIV-1 Replication: Clinical Evidence and Potential Therapeutic Approaches. Front Immunol 2013; 4:343. [PMID: 24167505 PMCID: PMC3807056 DOI: 10.3389/fimmu.2013.00343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/06/2013] [Indexed: 12/17/2022] Open
Abstract
HIV and human defense mechanisms have co-evolved to counteract each other. In the process of infection, HIV takes advantage of cellular machinery and blocks the action of the host restriction factors (RF). A small subset of HIV+ individuals control HIV infection and progression to AIDS in the absence of treatment. These individuals known as long-term non-progressors (LNTPs) exhibit genetic and immunological characteristics that confer upon them an efficient resistance to infection and/or disease progression. The identification of some of these host factors led to the development of therapeutic approaches that attempted to mimic the natural control of HIV infection. Some of these approaches are currently being tested in clinical trials. While there are many genes which carry mutations and polymorphisms associated with non-progression, this review will be specifically focused on HIV host RF including both the main chemokine receptors and chemokines as well as intracellular RF including, APOBEC, TRIM, tetherin, and SAMHD1. The understanding of molecular profiles and mechanisms present in LTNPs should provide new insights to control HIV infection and contribute to the development of novel therapies against AIDS.
Collapse
Affiliation(s)
- Mariana Santa-Marta
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa , Lisboa , Portugal ; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | | | | | | |
Collapse
|
10
|
Münk C, Jensen BEO, Zielonka J, Häussinger D, Kamp C. Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. Viruses 2012; 4:3132-61. [PMID: 23202519 PMCID: PMC3509687 DOI: 10.3390/v4113132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) dynamics reflect an intricate balance within the viruses’ host. The virus relies on host replication factors, but must escape or counter its host’s antiviral restriction factors. The interaction between the HIV-1 protein Vif and many cellular restriction factors from the APOBEC3 protein family is a prominent example of this evolutionary arms race. The viral infectivity factor (Vif) protein largely neutralizes APOBEC3 proteins, which can induce in vivo hypermutations in HIV-1 to the extent of lethal mutagenesis, and ensures the production of viable virus particles. HIV-1 also uses the APOBEC3-Vif interaction to modulate its own mutation rate in harsh or variable environments, and it is a model of adaptation in a coevolutionary setting. Both experimental evidence and the substantiation of the underlying dynamics through coevolutionary models are presented as complementary views of a coevolutionary arms race.
Collapse
Affiliation(s)
- Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.M.); (B.-E.O.J.); (J.Z.); (D.H.)
| | - Björn-Erik O. Jensen
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.M.); (B.-E.O.J.); (J.Z.); (D.H.)
| | - Jörg Zielonka
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.M.); (B.-E.O.J.); (J.Z.); (D.H.)
- Roche Glycart AG, Schlieren 8952, Switzerland
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.M.); (B.-E.O.J.); (J.Z.); (D.H.)
| | - Christel Kamp
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| |
Collapse
|
11
|
Britan-Rosich E, Nowarski R, Kotler M. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif. J Mol Biol 2011; 410:1065-76. [PMID: 21763507 DOI: 10.1016/j.jmb.2011.03.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 01/28/2023]
Abstract
In the absence of human immunodeficiency virus type 1 (HIV-1) Vif protein, the host antiviral deaminase apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) restricts the production of infectious HIV-1 by deamination of dC residues in the negative single-stranded DNA produced by reverse transcription. The Vif protein averts the lethal threat of deamination by precluding the packaging of A3G into assembling virions by mediating proteasomal degradation of A3G. In spite of this robust Vif activity, residual A3G molecules that escape degradation and incorporate into newly assembled virions are potentially deleterious to the virus. We hypothesized that virion-associated Vif inhibits A3G enzymatic activity and therefore prevents lethal mutagenesis of the newly synthesized viral DNA. Here, we show that (i) Vif-proficient HIV-1 particles released from H9 cells contain A3G with lower specific activity compared with Δvif-virus-associated A3G, (ii) encapsidated HIV-1 Vif inhibits the deamination activity of recombinant A3G, and (iii) purified HIV-1 Vif protein and the Vif-derived peptide Vif25-39 inhibit A3G activity in vitro at nanomolar concentrations in an uncompetitive manner. Our results manifest the potentiality of Vif to control the deamination threat in virions or in the pre-integration complexes following entry to target cells. Hence, virion-associated Vif could serve as a last line of defense, protecting the virus against A3G antiviral activity.
Collapse
Affiliation(s)
- Elena Britan-Rosich
- Department of Pathology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
12
|
Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 2011; 85:11220-34. [PMID: 21835787 DOI: 10.1128/jvi.05238-11] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful intracellular pathogens must evade or neutralize the innate immune defenses of their host cells and render the cellular environment permissive for replication. For example, to replicate efficiently in CD4(+) T lymphocytes, human immunodeficiency virus type 1 (HIV-1) encodes a protein called viral infectivity factor (Vif) that promotes pathogenesis by triggering the degradation of the retrovirus restriction factor APOBEC3G. Other APOBEC3 proteins have been implicated in HIV-1 restriction, but the relevant repertoire remains ambiguous. Here we present the first comprehensive analysis of the complete, seven-member human and rhesus APOBEC3 families in HIV-1 restriction. In addition to APOBEC3G, we find that three other human APOBEC3 proteins, APOBEC3D, APOBEC3F, and APOBEC3H, are all potent HIV-1 restriction factors. These four proteins are expressed in CD4(+) T lymphocytes, are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, mutate proviral DNA, and are counteracted by HIV-1 Vif. Furthermore, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H of the rhesus macaque also are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, and they are all neutralized by the simian immunodeficiency virus Vif protein. On the other hand, neither human nor rhesus APOBEC3A, APOBEC3B, nor APOBEC3C had a significant impact on HIV-1 replication. These data strongly implicate a combination of four APOBEC3 proteins--APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H--in HIV-1 restriction.
Collapse
|
13
|
Sistigu A, Bracci L, Valentini M, Proietti E, Bona R, Negri DRM, Ciccaglione AR, Tritarelli E, Nisini R, Equestre M, Costantino A, Marcantonio C, Santini SM, Lapenta C, Donati S, Tataseo P, Miceli M, Cara A, Federico M. Strong CD8+ T cell antigenicity and immunogenicity of large foreign proteins incorporated in HIV-1 VLPs able to induce a Nef-dependent activation/maturation of dendritic cells. Vaccine 2011; 29:3465-75. [PMID: 21382480 DOI: 10.1016/j.vaccine.2011.02.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are excellent tools for vaccines against pathogens and tumors. They can accommodate foreign polypeptides whose incorporation efficiency and immunogenicity however decrease strongly with the increase of their size. We recently described the CD8(+) T cell immune response against a small foreign antigen (i.e., the 98 amino acid long human papilloma virus E7 protein) incorporated in human immunodeficiency virus (HIV)-1 based VLPs as product of fusion with an HIV-1 Nef mutant (Nef(mut)). Here, we extended our previous investigations by testing the antigenic/immunogenic properties of Nef(mut)-based VLPs incorporating much larger heterologous products, i.e., human hepatitis C virus (HCV) NS3 and influenza virus NP proteins, which are composed of 630 and 498 amino acids, respectively. We observed a remarkable cross-presentation of HCV NS3 in dendritic cells challenged with Nef(mut)-NS3 VLPs, as detected using a NS3 specific CD8(+) T cell clone as well as PBMCs from HCV infected patients. On the other hand, when injected in mice, Nef(mut)-NP VLPs elicited strong anti-NP CD8(+) T cell and CTL immune responses. In addition, we revealed the ability of Nef(mut) incorporated in VLPs to activate and mature primary human immature dendritic cells (iDCs). This phenomenon correlated with the activation of Src tyrosine kinase-related intracellular signaling, and can be transmitted from VLP-challenged to bystander iDCs. Overall, these results prove that Nef(mut)-based VLPs represent a rather flexible platform for the design of innovative CD8(+) T cell vaccines.
Collapse
Affiliation(s)
- A Sistigu
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Albin JS, Harris RS. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 2010; 12:e4. [PMID: 20096141 PMCID: PMC2860793 DOI: 10.1017/s1462399409001343] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Restriction factors are natural cellular proteins that defend individual cells from viral infection. These factors include the APOBEC3 family of DNA cytidine deaminases, which restrict the infectivity of HIV-1 by hypermutating viral cDNA and inhibiting reverse transcription and integration. HIV-1 thwarts this restriction activity through its accessory protein virion infectivity factor (Vif), which uses multiple mechanisms to prevent APOBEC3 proteins such as APOBEC3G and APOBEC3F from entering viral particles. Here, we review the basic biology of the interactions between human APOBEC3 proteins and HIV-1 Vif. We also summarise, for the first time, current clinical data on the in vivo effects of APOBEC3 proteins, and survey strategies and progress towards developing therapeutics aimed at the APOBEC3-Vif axis.
Collapse
Affiliation(s)
- John S. Albin
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| |
Collapse
|
15
|
Muratori C, Bona R, Federico M. Lentivirus-based virus-like particles as a new protein delivery tool. Methods Mol Biol 2010; 614:111-124. [PMID: 20225039 DOI: 10.1007/978-1-60761-533-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Virus Like Particles (VLPs) are self-assembling, nonreplicating, nonpathogenic, genomeless particles similar in size and conformation to intact infectious virions. The possibility of engineering VLPs to incorporate heterologous polypeptides/proteins renders VLPs attractive candidates for vaccine strategies, as well as for protein delivery for basic science. Among the wide number of VLP types, our expertise focused on both retro- and lentivirus based VLPs as protein delivery tools. In particular, here we describe a system relying on the finding that some HIV-1 Nef mutants are incorporated at high levels into both Human Immunodeficiency virus (HIV)-1 and Moloney Leukemia Virus (MLV)-based VLPs. Most importantly, these Nef mutants can efficiently act as anchoring proteins upon fusion with heterologous proteins up to 630 amino acids in length. This chapter describes the preparation of prototypic HIV-1 based VLPs incorporating Nef mutant-GFP fusion molecules. Besides having potential utility in the field of basic virology, these VLPs represent a useful reference model for recovering alternative retro- or lentiviral based VLPs for the cell delivery of polypeptides/proteins of interest.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
16
|
Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology 2009; 395:45-55. [DOI: 10.1016/j.virol.2009.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/13/2009] [Accepted: 09/10/2009] [Indexed: 11/23/2022]
|
17
|
Poe JA, Smithgall TE. HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication. J Mol Biol 2009; 394:329-42. [PMID: 19781555 DOI: 10.1016/j.jmb.2009.09.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/15/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
Nef, a human immunodeficiency virus type 1 (HIV-1) accessory factor capable of interaction with a diverse array of host cell signaling molecules, is essential for high-titer HIV replication and AIDS progression. Previous biochemical and structural studies have suggested that Nef may form homodimers and higher-order oligomers in HIV-infected cells, which may be required for both immune and viral receptor downregulation as well as viral replication. Using bimolecular fluorescence complementation, we provide the first direct evidence for Nef dimers within HIV host cells and identify the structural requirements for dimerization in vivo. Bimolecular fluorescence complementation analysis shows that the multiple hydrophobic and electrostatic interactions found within the dimerization interface of the Nef X-ray crystal structure are essential for dimerization in cells. Nef dimers localized to the plasma membrane as well as the trans-Golgi network, two subcellular localizations essential for Nef function. Mutations in the Nef dimerization interface dramatically reduced both Nef-induced CD4 downregulation and HIV replication. Viruses expressing dimerization-defective Nef mutants were disabled to the same extent as HIV that fails to express Nef in terms of replication. These results identify the Nef dimerization region as a potential molecular target for antiretroviral drug discovery.
Collapse
Affiliation(s)
- Jerrod A Poe
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|