1
|
Sakurai-Yageta M, Suzuki Y. Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients 2024; 16:2444. [PMID: 39125325 PMCID: PMC11314543 DOI: 10.3390/nu16152444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Biotin, also known as vitamin B7 or vitamin H, is a water-soluble B-complex vitamin and serves as an essential co-enzyme for five specific carboxylases. Holocarboxylase synthase (HCS) activates biotin and facilitates its covalent attachment to these enzymes, while biotinidase releases free biotin in the biotin cycle. The transport of biotin, primarily from the intestine, is mediated by the sodium-dependent multi-vitamin transporter (SMVT). Severe biotin deficiency leads to multiple carboxylase deficiency. Moreover, biotin is crucial to glucose and lipid utilization in cellular energy production because it modulates the expression of metabolic enzymes via various signaling pathways and transcription factors. Biotin also modulates the production of proinflammatory cytokines in the immune system through similar molecular mechanisms. These regulatory roles in metabolic and immune homeostasis connect biotin to conditions such as diabetes, dermatologic manifestations, and multiple sclerosis. Furthermore, deficiencies in biotin and SMVT are implicated in inflammatory bowel disease, affecting intestinal inflammation, permeability, and flora. Notably, HCS and probably biotin directly influence gene expression through histone modification. In this review, we summarize the current knowledge on the molecular aspects of biotin and associated molecules in diseases related to both acute inflammatory responses and chronic inflammation, and discuss the potential therapeutic applications of biotin.
Collapse
Affiliation(s)
- Mika Sakurai-Yageta
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Miyagi, Japan
| | - Yoichi Suzuki
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Department of Clinical Genetics, Ageo Central General Hospital, Ageo 362-8588, Saitama, Japan
| |
Collapse
|
2
|
Forny P, Wicht A, Rüfenacht V, Cremonesi A, Häberle J. Recovery of enzyme activity in biotinidase deficient individuals during early childhood. J Inherit Metab Dis 2022; 45:605-620. [PMID: 35195902 PMCID: PMC9310736 DOI: 10.1002/jimd.12490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Deficiency of the biotinidase (BTD) enzyme is an inborn error of biotin metabolism caused by biallelic pathogenic variants in the BTD gene. There are two forms, partial and profound BTD deficiency, which both can be successfully treated with pharmacological doses of biotin, justifying the inclusion of this disorder in the newborn screening in numerous countries. We investigated the BTD deficiency cohort (N = 87) in our metabolic center, as it was detected upon newborn screening since 2005, and aimed to better understand the long-term course of BTD enzyme activity and how it may relate to the patients' genetic background. We observed that individuals with partial BTD deficiency display an elevation of BTD enzyme activity with increasing age in 48% of cases-a recovery which allowed adjustment or stop of biotin supplementation in 20% of all individuals. In addition, we were able to recruit 56 patients (64%) for genetic testing, revealing 19 different variants (2 novel), and constituting 22 different genotypes. Genotype-phenotype correlations revealed that the most abundant allele in our cohort p.(Asp444His) was also the most common variant in patients displaying recovery of BTD enzyme activity. Based on our results, we recommend to retest all patients with partial BTD deficiency at the age of 5 years, as this may result in an impact on therapy. Moreover, genetic testing of BTD deficient individuals can allow prediction of the severity of BTD deficiency and of the likelihood of BTD enzyme activity recovery with age.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children’s Research CenterUniversity Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| | - Andrea Wicht
- Division of Metabolism and Children’s Research CenterUniversity Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children’s Research CenterUniversity Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| | - Alessio Cremonesi
- Division of Clinical Biochemistry and Swiss Newborn ScreeningUniversity Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johannes Häberle
- Division of Metabolism and Children’s Research CenterUniversity Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
3
|
León-Del-Río A. Biotin in metabolism, gene expression, and human disease. J Inherit Metab Dis 2019; 42:647-654. [PMID: 30746739 DOI: 10.1002/jimd.12073] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Biotin is a water-soluble vitamin that belongs to the vitamin B complex and which is an essential nutrient of all living organisms from bacteria to man. In eukaryotic cells biotin functions as a prosthetic group of enzymes, collectively known as biotin-dependent carboxylases that catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Enzyme-bound biotin acts as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In recent years, evidence has mounted that biotin also regulates gene expression through a mechanism beyond its role as a prosthetic group of carboxylases. These activities may offer a mechanistic background to a developing literature on the action of biotin in neurological disorders. This review summarizes the role of biotin in activating carboxylases and proposed mechanisms associated with a role in gene expression and in ameliorating neurological disease.
Collapse
Affiliation(s)
- Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama and Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
4
|
Hayashi A, Mikami Y, Miyamoto K, Kamada N, Sato T, Mizuno S, Naganuma M, Teratani T, Aoki R, Fukuda S, Suda W, Hattori M, Amagai M, Ohyama M, Kanai T. Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice. Cell Rep 2018; 20:1513-1524. [PMID: 28813664 DOI: 10.1016/j.celrep.2017.07.057] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 03/03/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Metabolism by the gut microbiota affects host physiology beyond the gastrointestinal tract. Here, we find that antibiotic-induced dysbiosis, in particular, overgrowth of Lactobacillus murinus (L. murinus), impaired gut metabolic function and led to the development of alopecia. While deprivation of dietary biotin per se did not affect skin physiology, its simultaneous treatment with vancomycin resulted in hair loss in specific pathogen-free (SPF) mice. Vancomycin treatment induced the accumulation of L. murinus in the gut, which consumes residual biotin and depletes available biotin in the gut. Consistently, L. murinus induced alopecia when monocolonized in germ-free mice fed a biotin-deficient diet. Supplementation of biotin can reverse established alopecia symptoms in the SPF condition, indicating that L. murinus plays a central role in the induction of hair loss via a biotin-dependent manner. Collectively, our results indicate that luminal metabolic alterations associated with gut dysbiosis and dietary modifications can compromise skin physiology.
Collapse
Affiliation(s)
- Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo 114-0016, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo 114-0016, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Toshiro Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinta Mizuno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryo Aoki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Institute of Health Sciences, Ezaki Glico Co., Ltd., Nishiyodogawa, Osaka 555-8502, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Wataru Suda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; Graduate School of Frontier Sciences, University of Tokyo, Chiba 227-8561, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, University of Tokyo, Chiba 227-8561, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, CREST, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Dermatology, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, CREST, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
5
|
León-Del-Río A, Valadez-Graham V, Gravel RA. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization. Annu Rev Nutr 2017; 37:207-223. [DOI: 10.1146/annurev-nutr-042617-104653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alfonso León-Del-Río
- Programa de Investigación de Cáncer de Mama y Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04500, México
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, México
| | - Roy A. Gravel
- Department of Biochemistry & Molecular Biology, the University of Calgary and the Alberta Children's Hospital Research Institute for Child and Maternal Health, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
6
|
Biotin-dependent functions in adiposity: a study of monozygotic twin pairs. Int J Obes (Lond) 2015; 40:788-95. [PMID: 26601567 DOI: 10.1038/ijo.2015.237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022]
|
7
|
Trujillo-Gonzalez I, Cervantes-Roldan R, Gonzalez-Noriega A, Michalak C, Reyes-Carmona S, Barrios-Garcia T, Meneses-Morales I, Leon-Del-Rio A. Holocarboxylase synthetase acts as a biotin-independent transcriptional repressor interacting with HDAC1, HDAC2 and HDAC7. Mol Genet Metab 2014; 111:321-330. [PMID: 24239178 DOI: 10.1016/j.ymgme.2013.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
In human cells, HCS catalyzes the biotinylation of biotin-dependent carboxylases and mediates the transcriptional control of genes involved in biotin metabolism through the activation of a cGMP-dependent signal transduction pathway. HCS also targets to the cell nucleus in association with lamin-B suggesting additional gene regulatory functions. Studies from our laboratory in Drosophila melanogaster showed that nuclear HCS is associated with heterochromatin bands enriched with the transcriptionally repressive mark histone 3 trimethylated at lysine 9. Further, HCS was shown to be recruited to the core promoter of the transcriptionally inactive hsp70 gene suggesting that it may participate in the repression of gene expression, although the mechanism involved remained elusive. In this work, we expressed HCS as a fusion protein with the DNA-binding domain of GAL4 to evaluate its effect on the transcription of a luciferase reporter gene. We show that HCS possesses transcriptional repressor activity in HepG2 cells. The transcriptional function of HCS was shown by in vitro pull down and in vivo co-immunoprecipitation assays to depend on its interaction with the histone deacetylases HDAC1, HDAC2 and HDAC7. We show further that HCS interaction with HDACs and its function in transcriptional repression is not affected by mutations impairing its biotin-ligase activity. We propose that nuclear HCS mediates events of transcriptional repression through a biotin-independent mechanism that involves its interaction with chromatin-modifying protein complexes that include histone deacetylases.
Collapse
Affiliation(s)
- Isis Trujillo-Gonzalez
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Rafael Cervantes-Roldan
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Alfonso Gonzalez-Noriega
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Colette Michalak
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Sandra Reyes-Carmona
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Tonatiuh Barrios-Garcia
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Ivan Meneses-Morales
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Alfonso Leon-Del-Rio
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico; Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| |
Collapse
|
8
|
Pindolia K, Chen J, Cardwell C, Cui X, Chopp M, Wolf B. Neurological deficits in mice with profound biotinidase deficiency are associated with demylination and axonal degeneration. Neurobiol Dis 2012; 47:428-35. [PMID: 22579707 DOI: 10.1016/j.nbd.2012.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/22/2012] [Accepted: 04/29/2012] [Indexed: 01/01/2023] Open
Abstract
Biotinidase deficiency is an autosomal recessively inherited disorder characterized by neurological and cutaneous abnormalities. We have developed a transgenic knock-out mouse with biotinidase deficiency to better understand aspects of pathophysiology and natural history of the disorder in humans. Neurological deficits observed in symptomatic mice with biotinidase deficiency are similar to those seen in symptomatic children with the disorder. Using a battery of functional neurological assessment tests, the symptomatic mice performed poorly compared to wild-type mice. Demyelination, axonal degeneration, ventriculomegaly, and corpus callosum compression were found in the brains of untreated, symptomatic enzyme-deficient mice. With biotin treatment, the symptomatic mice improved neurologically and the white matter abnormalities resolved. These functional and anatomical findings and their reversal with biotin therapy are similar to those observed in untreated, symptomatic and treated individuals with biotinidase deficiency. The mouse with biotinidase deficiency appears to be an appropriate animal model in which to study the neurological abnormalities and the effects of treatment of the disorder.
Collapse
Affiliation(s)
- Kirit Pindolia
- Department of Medical Genetics, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
9
|
Reyes-Carmona S, Valadéz-Graham V, Aguilar-Fuentes J, Zurita M, León-Del-Río A. Trafficking and chromatin dynamics of holocarboxylase synthetase during development of Drosophila melanogaster. Mol Genet Metab 2011; 103:240-8. [PMID: 21463962 DOI: 10.1016/j.ymgme.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/05/2011] [Accepted: 03/05/2011] [Indexed: 11/26/2022]
Abstract
This work examines the cellular localization of holocarboxylase synthetase (HCS) and its association to chromatin during different stages of development of Drosophila melanogaster. While HCS is well known for its role in the attachment of biotin to biotin-dependent carboxylase, it also regulates the transcription of HCS and carboxylases genes by triggering a cGMP-dependent signal transduction cascade. Further, its presence in the nucleus of cells suggests additional regulatory roles, but the mechanism involved has remained elusive. In this study, we show in D. melanogaster that HCS migrates to the nucleus at the gastrulation stage. In polytene chromosomes, it is associated to heterochromatin bands where it co-localizes with histone 3 trimethylated at lysine 9 (H3K9met3) but not with the euchromatin mark histone 3 acetylated at lysine 9 (H3K9ac). Further, we demonstrate the association of HCS with the hsp70 promoter by immunofluorescence and chromatin immuno-precipitation (ChIP) of associated DNA sequences. We demonstrate the occupancy of HCS to the core promoter region of the transcriptionally inactive hsp70 gene. On heat-shock activation of the hsp70 promoter, HCS is displaced and the promoter region becomes enriched with the TFIIH subunits XPD and XPB and elongating RNA pol II, the latter also demonstrated using ChIP assays. We suggest that HCS may have a role in the repression of gene expression through a mechanism involving its trafficking to the nucleus and interaction with heterochromatic sites coincident with H3K9met3.
Collapse
Affiliation(s)
- Sandra Reyes-Carmona
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF 04510, Mexico.
| | | | | | | | | |
Collapse
|
10
|
Xia B, Yang LQ, Huang HY, Pang L, Hu GH, Liu QC, Yuan JH, Liu JJ, Xia YB, Zhuang ZX. Chromium(VI) causes down regulation of biotinidase in human bronchial epithelial cells by modifications of histone acetylation. Toxicol Lett 2011; 205:140-5. [PMID: 21641978 DOI: 10.1016/j.toxlet.2011.05.1032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 01/19/2023]
Abstract
Hexavalent chromium (Cr(VI)), a commonly used industrial metal, is a well-known mutagen and carcinogen, and occupational exposure can induce a broad spectrum of adverse health effects, including cancers. Although Cr(VI)-induced DNA damage is thought to be the primary mechanism of chromate genotoxicity and mutagenicity, there is an increasing number of reports showing that epigenetic mechanisms of gene regulation might be a central target of Cr(VI) toxicity. Epigenetic changes, such as changes in phosphorylation, altered DNA methylation status, histone acetylation and signaling pathways, have been observed after chromium exposure. Nevertheless, to better demonstrate the roles of epigenetic modifications in Cr(VI)-induced carcinogenesis, more work needs to be carried out. This study is aimed to investigate changes in biotinidase (BTD) and holocarboxylase synthetase (HCS), two major proteins which maintain homeostasis of the newfound epigenetic modification: histone biotinylation, in cells exposed to Cr(VI). The data showed that Cr(VI) decreased BTD expression at the transcriptional level in human bronchial epithelial cells (16HBE). In addition, using the epigenetic modifiers, 5-Aza-2'-deoxycytidine (Aza) and Trichostatin A (TSA), we found that modifications of histone acetylation reversed the inhibition of BTD, suggesting that Cr(VI) may cause down regulation of BTD by modifications of histone acetylation.
Collapse
Affiliation(s)
- Bo Xia
- Department of Toxicology, School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hassan YI, Moriyama H, Zempleni J. The polypeptide Syn67 interacts physically with human holocarboxylase synthetase, but is not a target for biotinylation. Arch Biochem Biophys 2010; 495:35-41. [PMID: 20026029 PMCID: PMC2824026 DOI: 10.1016/j.abb.2009.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysines in carboxylases and histones in two steps. First, HCS catalyzes the synthesis of biotinyl-5'-AMP; second, the biotinyl moiety is ligated to lysine residues. It has been proposed that step two is fairly promiscuous, and that protein biotinylation may occur in the absence of HCS as long as sufficient exogenous biotinyl-5'-AMP is provided. Here, we identified a novel polypeptide (Syn67) with a basic patch of lysines and arginines. Yeast-two-hybrid assays and limited proteolysis assays revealed that both N- and C-termini of HCS interact with Syn67. A potential target lysine in Syn67 was biotinylated by HCS only after arginine-to-glycine substitutions in Syn67 produced a histone-like peptide. We identified a Syn67 docking site near the active pocket of HCS by in silico modeling and site-directed mutagenesis. Biotinylation of proteins by HCS is more specific than previously assumed.
Collapse
Affiliation(s)
- Yousef I. Hassan
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln
| | | | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln
| |
Collapse
|
12
|
Healy S, Perez-Cadahia B, Jia D, McDonald MK, Davie JR, Gravel RA. Biotin is not a natural histone modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:719-33. [PMID: 19770080 DOI: 10.1016/j.bbagrm.2009.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/21/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
In addition to its role as the cofactor of biotin-dependent carboxylases, biotin has been demonstrated to have a role in cellular processes including transcription and gene silencing. Histones have been proposed to be modified by biotin in a site-specific manner, providing a pathway by which biotin acts as a regulatory molecule for gene expression. However, there is uncertainty whether biotin attachment to histones in vitro can be extrapolated to biotin as a native histone modification. We critically examined a number of methods used to detect biotin attachment on histones, including [(3)H]-biotin uptake, Western blot analysis of histones, and mass spectrometry of affinity purified histone fragments with the objective of determining if the in vivo occurrence of histone biotinylation could be conclusively established. We found for each of these methods that, while biotin could be readily detected on native carboxylases or histones biotinylated in vitro, biotin attachment on native histones could not be detected in cell cultures from various sources. We conclude that biotin is absent in native histones to a sensitivity of at least one part per 100,000, suggesting that the regulatory impact of biotin on gene expression must be through alternate mechanisms.
Collapse
Affiliation(s)
- Shannon Healy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | |
Collapse
|