1
|
de Mattos K, Scott-Boyer MP, Droit A, Viger RS, Tremblay JJ. Identification of MEF2A, MEF2C, and MEF2D interactomes in basal and Fsk-stimulated mouse MA-10 Leydig cells. Andrology 2025. [PMID: 40277654 DOI: 10.1111/andr.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Myocyte enhancer factor 2 transcription factors regulate essential transcriptional programs in various cell types. The activity of myocyte enhancer factor 2 factors is modulated through interactions with cofactors, chromatin remodelers, and other regulatory proteins, which are dependent on cell context and physiological state. In steroidogenic Leydig cells, MEF2A, MEF2C, and MEF2D are key regulators of genes involved in steroid hormone synthesis, reproductive function, and oxidative stress defense. However, the specific network of myocyte enhancer factor 2-interacting proteins in Leydig cells remains unknown. OBJECTIVE To identify the interactome of each MEF2 factor present in Leydig cells. MATERIALS AND METHODS TurboID proximity-mediated biotinylation combined with mass spectrometry and bioinformatic analyses were used to identify the protein‒protein interaction networks of MEF2A, MEF2C, and MEF2D in MA-10 Leydig cells under basal and stimulated conditions. RESULTS We identified 109 potential myocyte enhancer factor 2-interacting proteins, including some previously known myocyte enhancer factor 2 partners. The interactome for each myocyte enhancer factor 2 factor is dynamic and exhibits unique and shared interaction networks between basal and stimulated conditions. Further analysis through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment categorized these interactions, revealing involvement in pathways related to cellular metabolism, transcriptional regulation, and steroidogenesis. DISCUSSION AND CONCLUSION These findings suggest that myocyte enhancer factor 2 factors can participate in diverse transcriptional activities, capable of gene activation or repression, depending on different protein‒protein interactions. In addition, the differential interactome for each myocyte enhancer factor 2 factor suggests unique regulatory roles for each factor in modulating Leydig cell function. Overall, this study provides new mechanistic insights into myocyte enhancer factor 2 action in Leydig cells by identifying interacting partners that likely influence their functions.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Marie-Pier Scott-Boyer
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Robert S Viger
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Jacques J Tremblay
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
2
|
Yao B, Zeng J, Shi J, Pang Y, Men J, Li Y, Wang H, Liu J, Hui W, Zhao L, Li C, Peng R, Fan J. Transcriptomic and metabolic profiling reveals the effects of long-term microwave exposure on testicular tissue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118040. [PMID: 40086029 DOI: 10.1016/j.ecoenv.2025.118040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
The effect of electromagnetic exposure on health is becoming increasingly important as it affects many aspects of human life and health. However, the effects in environmental electromagnetic fields on the male reproductive system were still controversial, and the impacts of long-term microwave exposure on testicular tissue remain poorly defined. This study exposed rats to 30 mW/cm2 of microwave radiation (2.856 GHz) for six weeks and revealed that long-term microwave exposure damaged the testis structures, sperm motility, and morphology, affected hormone levels, energy metabolism, and induced oxidative stress. Assays for bulk RNA, metabonomics, single-cell RNA, and transposase-accessible chromatin with high-throughput sequencing were performed to analyze the transcriptional and metabolic atlas of testicular damage after microwave radiation. Differentially expressed genes were enriched in oxidative stress and energy metabolism pathways. Furthermore, ten subgroups were identified with scRNA-seq, including five developmental phases of germ cells, and radiation-associated changes in cell composition, especially stuck in round spermatids, were observed. Radiation significantly upregulated the expression of Atp6v1e2 in round spermatids and enriched the expression of many transcription factors by disturbing the accessibility profile of chromatin. This study provides effective insights into the long-term impacts of microwave radiation on male reproduction.
Collapse
Affiliation(s)
- Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zeng
- Department of Endocrinology, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Disease, Beijing 100853, China
| | - Jingqi Shi
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yueyue Pang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Chemistry and Materials Sciences, Hebei University, Baoding 071002, China
| | - Junqi Men
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanyang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Heran Wang
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wang Hui
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunlin Li
- Department of Endocrinology, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Disease, Beijing 100853, China.
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
3
|
Gonçalves MFF, Lacerda SMDSN, Lara NDLEM, Oliveira CFAD, Figueiredo AFA, Brener MRG, Cavalcante MA, Santos AK, Campolina-Silva GH, Costa VV, Santana ACC, Lopes RA, Szawka RE, Costa GMJ. GATA-1 mutation alters the spermatogonial phase and steroidogenesis in adult mouse testis. Mol Cell Endocrinol 2022; 542:111519. [PMID: 34843900 DOI: 10.1016/j.mce.2021.111519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
GATA-1 is a transcription factor from the GATA family, which features zinc fingers for DNA binding. This protein was initially identified as a crucial regulator of blood cell differentiation, but it is currently known that the Gata-1 gene expression is not limited to this system. Although the testis is also a site of significant GATA-1 expression, its role in testicular cells remains considerably unexplored. In the present study, we evaluated the testicular morphophysiology of adult ΔdblGATA mice with a mutation in the GATA-1 protein. Regarding testicular histology, GATA-1 mutant mice exhibited few changes in the seminiferous tubules, particularly in germ cells. A high proportion of differentiated spermatogonia, an increased number of apoptotic pre-leptotene spermatocytes (Caspase-3-positive), and a high frequency of sperm head defects were observed in ΔdblGATA mice. The main differences were observed in the intertubular compartment, as ΔdblGATA mice showed several morphofunctional changes in Leydig cells. Reduced volume, increased number and down-regulation of steroidogenic enzymes were observed in ΔdblGATA Leydig cells. Moreover, the mutant animal showed lower serum testosterone concentration and high LH levels. These results are consistent with the phenotypic and biometric data of mutant mice, i.e., shorter anogenital index and reduced accessory sexual gland weight. In conclusion, our findings suggest that GATA-1 protein is an important factor for germ cell differentiation as well as for the steroidogenic activity in the testis.
Collapse
Affiliation(s)
- Matheus Felipe Fonseca Gonçalves
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathália de Lima E Martins Lara
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Felipe Alves de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Felipe Almeida Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Rocha Gouvêa Brener
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina Alcântara Cavalcante
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson Kenedy Santos
- Laboratory of Cardiac Signaling, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel Henrique Campolina-Silva
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Clara Campideli Santana
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberta Araújo Lopes
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Escorsim Szawka
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Singh T, Banerjee P, Uditi, Kumari S, Chopra A, Singh N, Qamar I. Expression of Regucalcin, a calcium-binding protein is regulated by hypoxia-inducible factor-1α. Life Sci 2022; 292:120278. [PMID: 35041836 DOI: 10.1016/j.lfs.2021.120278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 01/16/2023]
Abstract
Regucalcin (RGN) regulates intracellular Ca2+ homeostasis and the activity of several proteins involved in intracellular signaling pathways, which highlights its importance in cell biology. Regucalcin has cytoprotective effects reducing intracellular levels of oxidative stress, also playing a crucial role in the control of cell survival and apoptosis. In an effort to assess its gene regulation, we initially identified the expression of Regucalcin in rat lungs treated with hypoxia at various time points. Previously, HIF-1α expression was also reported to be upregulated in hypoxia. Interestingly hypoxic induced Regucalcin expression in a fashion similar to that of HIF-1α expression in rat lungs. Sequence analysis of the Regucalcin promoter region revealed the presence of putative HRE binding motifs. Further analysis of the 1 kb Regucalcin promoter region with 5' deletion and point mutants of HRE binding motif showed that the HRE binding site was critical for high promoter activity. In addition, HIF-1α protein binds directly to the HRE binding motifs within the Regucalcin promoter in-vivo, and regulates Regucalcin gene expression. All together, these findings suggest that Regucalcin is the novel target gene of HIF-1α and that Regucalcin gene expression in hypoxia may be regulated by the control of HIF-1α expression.
Collapse
Affiliation(s)
- Tripti Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Pallabi Banerjee
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Uditi
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India.
| |
Collapse
|
5
|
Yu J, Liu Y, Zhang D, Zhai D, Song L, Cai Z, Yu C. Baicalin inhibits recruitment of GATA1 to the HSD3B2 promoter and reverses hyperandrogenism of PCOS. J Endocrinol 2019; 240:JOE-18-0678.R2. [PMID: 30650063 DOI: 10.1530/joe-18-0678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023]
Abstract
High androgen levels in patients suffering from polycystic ovary syndrome (PCOS) can be effectively reversed if the herb Scutellaria baicalensis is included in traditional Chinese medicine prescriptions. To characterize the effects of baicalin, extracted from S. baicalensis, on androgen biosynthesis in NCI-H295R cells and on hyperandrogenism in PCOS model rats and to elucidate the underlying mechanisms. The optimum concentration and intervention time for baicalin treatment of NCI-H295R cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assays. The functional genes affected by baicalin were studied by gene expression profiling (GEP), and the key genes were identified using a dual luciferase assay, RNA interference technique, and genetic mutations. Besides, hyperandrogenic PCOS model rats were induced and confirmed before and after baicalin intervention. As a result, Baicalin decreased the testosterone concentrations in a dose-and time-dependent manner in NCI-H295R cells. GEP revealed that 3β-hydroxysteroid dehydrogenase type II (HSD3B2) was the key enzyme of androgen biosynthesis, and baicalin inhibited the expression of HSD3B2 by regulating the binding of transcription factor GATA-binding factor 1 (GATA1) to the HSD3B2 promoter. Hyperandrogenic PCOS model rats treated with baicalin significantly reversed the high androgen levels of serum and the abnormal ovarian status, restored the estrous cyclicity, and decreased the expression of HSD3B2 in ovarian. In summary , our data revealed that GATA1 is an important transcription factor activating the HSD3B2 promoter in steroidogenesis, and baicalin potentially be an effective therapeutic agent for hyperandrogenism in PCOS by inhibiting the recruitment of GATA1 to the HSD3B2 promoter in ovarian tissue.
Collapse
Affiliation(s)
- Jin Yu
- J Yu, Department of Gynecology of Traditional Chinese Medicine, Changhai hospital, Naval medical university, Shanghai, China
| | - Yuhuan Liu
- Y Yang, Department of Gynecology and Obstetrics, Changhai hospital, Naval medical university, Shanghai, China
| | - Danying Zhang
- D Zhang, Department of Gynecology of Traditional Chinese Medicine, Changhai hospital, Naval medical university, Shanghai, China
| | - Dongxia Zhai
- D Zhai, Department of Gynecology of Traditional Chinese Medicine, Changhai hospital, Naval medical university, Shanghai, China
| | - Linyi Song
- L Song, Department of Gynecology of Traditional Chinese Medicine, Changhai hospital, Naval medical university, Shanghai, China
| | - Zailong Cai
- Z Cai, Department of Biochemistry and Molecular Biology, Naval medical university, Shanghai, China
| | - Chaoqin Yu
- C Yu, Department of Gynecology of Traditional Chinese Medicine, Changhai hospital, Naval medical university, Shanghai, China
| |
Collapse
|
6
|
Kumar S, Kang H, Park E, Park HS, Lee K. The expression of CKLFSF2B is regulated by GATA1 and CREB in the Leydig cells, which modulates testicular steroidogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1063-1075. [PMID: 30321752 DOI: 10.1016/j.bbagrm.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
Abstract
CKLFSF is a protein family that serves as a functional bridge between chemokines and members of the transmembrane 4 superfamily (TM4SF). In the course of evolution, CKLFSF2 has evolved as two isoforms, namely CKLFSF2A and CKLFSF2B, in mice. CKLFSF2A, also known as CMTM2A and ARR19, is expressed in the testis and is important for testicular steroidogenesis. CKLFSF2B is also known to be highly expressed in the testis. In the prepubertal stage, CKLFSF2B is expressed only in Leydig cells, but it is highly expressed in haploid germ cells and Leydig cells in adult testis. CKLFSF2B is naturally processed inside the cell at its C-terminus to yield smaller proteins compared to its theoretical size of ≈25 kDa. The Cklfsf2b gene is regulated by GATA-1 and CREB protein, binding to their respective binding elements present in the 2-kb upstream promoter sequence. In addition, the overexpression of CKLFSF2B inhibited the activity of the Nur77 promoter, which consequently represses the promoter activity of Nur77-target steroidogenic genes such as P450c17, 3β-HSD, and StAR in MA-10 Leydig cells. Adenovirus-mediated overexpression of CKLFSF2B in primary Leydig cells isolated from adult mice shows a repression of steroidogenic gene expression and consequently testosterone production. Moreover, intratesticular injection of CKLFSF2B-expressing adenovirus in adult mice clearly had a repressive effect compared to the control injected with only GFP-expressing adenovirus. Altogether, these findings suggest that CKLFSF2B might be involved in the development and function of Leydig cells and regulate testicular testosterone production by fine-tuning the expression of steroidogenic genes.
Collapse
Affiliation(s)
- Sudeep Kumar
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hana Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Eunsook Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea; K-herb Research Group, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Keesook Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Darbey A, Smith LB. Deliverable transgenics & gene therapy possibilities for the testes. Mol Cell Endocrinol 2018; 468:81-94. [PMID: 29191697 DOI: 10.1016/j.mce.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Male infertility and hypogonadism are clinically prevalent conditions with a high socioeconomic burden and are both linked to an increased risk in cardiovascular-metabolic diseases and earlier mortality. Therefore, there is an urgent need to better understand the causes and develop new treatments for these conditions that affect millions of men. The accelerating advancement in gene editing and delivery technologies promises improvements in both diagnosis as well as affording the opportunity to develop bespoke treatment options which would both prove beneficial for the millions of individuals afflicted with these reproductive disorders. In this review, we summarise the systems developed and utilised for the delivery of gene therapy and discuss how each of these systems could be applied for the development of a gene therapy system in the testis and how they could be of use for the future diagnosis and repair of common male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
8
|
Penny GM, Cochran RB, Pihlajoki M, Kyrönlahti A, Schrade A, Häkkinen M, Toppari J, Heikinheimo M, Wilson DB. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors. Reproduction 2017; 154:455-467. [PMID: 28710293 PMCID: PMC5589507 DOI: 10.1530/rep-17-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6, two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4flox/flox ; Gata6flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes (Hsd3b1, Cyp17a1 and Hsd17b3) was reduced, whereas expression of another Leydig cell marker, Insl3, was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2.
Collapse
Affiliation(s)
- Gervette M Penny
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Rebecca B Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Marjut Pihlajoki
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anja Schrade
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Merja Häkkinen
- University of Eastern FinlandSchool of Pharmacy, Kuopio, Finland
| | - Jorma Toppari
- Department of PhysiologyInstitute of Biomedicine, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Department of Developmental BiologyWashington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells. J Comp Physiol B 2016; 187:613-623. [PMID: 27915366 DOI: 10.1007/s00360-016-1052-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 01/20/2023]
Abstract
The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.
Collapse
|
10
|
Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015; 103:3-10. [PMID: 26254606 DOI: 10.1016/j.steroids.2015.08.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Steroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. Consequently, the process of steroid hormone biosynthesis is finely regulated. In the testis, the main steroidogenic cells are the Leydig cells. There are two distinct populations of Leydig cells that arise during development: fetal and adult Leydig cells. Fetal Leydig cells are responsible for masculinizing the male urogenital tract and inducing testis descent. These cells atrophy shortly after birth and do not contribute to the adult Leydig cell population. Adult Leydig cells derive from undifferentiated precursors present after birth and become fully steroidogenic at puberty. The differentiation of both Leydig cell populations is controlled by locally produced paracrine factors and by endocrine hormones. In fully differentially and steroidogenically active Leydig cells, androgen production and hormone-responsiveness involve various signaling pathways and downstream transcription factors. This review article focuses on recent developments regarding the origin and function of Leydig cells, the regulation of their differentiation by signaling molecules, hormones, and structural changes, the signaling pathways, kinases, and transcription factors involved in their differentiation and in mediating LH-responsiveness, as well as the fine-tuning mechanisms that ensure adequate production steroid hormones.
Collapse
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec G1V 4G2, Canada; Centre for Research in Biology of Reproduction, Department of Obstetrics, Gynaecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada.
| |
Collapse
|
11
|
Baburski AZ, Sokanovic SJ, Janjic MM, Stojkov-Mimic NJ, Bjelic MM, Andric SA, Kostic TS. Melatonin replacement restores the circadian behavior in adult rat Leydig cells after pinealectomy. Mol Cell Endocrinol 2015; 413:26-35. [PMID: 26116827 DOI: 10.1016/j.mce.2015.05.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022]
Abstract
Melatonin actions on oscillators in reproductive organs are poorly understood. Here we analyzed melatonin effects on rhythmic expression of clock and steroidogenesis-related genes in adult rat Leydig cells (LCs). The effect of melatonin was tested both in vivo using pinealectomized and melatonin-substituted rats and in vitro on isolated LCs. Data revealed 24-h-rhythmic expression of clock genes (Bmal1, Per1,2,3, Rev-erba,b, Rorb), steroidogenic genes (Star, Cyp11a1, Cyp17a1), and genes of steroidogenic regulators (positive-Nur77, negative-Arr19). Pinealectomy increased 24-h-oscillations of serum testosterone and LC's cAMP levels, expression of Insl3, Per1, Star/StAR, Hsd3b1/2, Nur77, decreased Arr19 and canceled Per2 oscillatory expression pattern. At hypothalamic-pituitary level, pinealectomy increased mesor of Gnrh, Lhb and rhythm robustness of Mntr1a expression. All parameters disturbed were restored by melatonin-replacement. In vitro studies did not confirm direct melatonin effects on neither clock nor steroidogenic genes. Accordingly, melatonin influence 24-h-rhythmic LC-function likely through hypothalamic-pituitary axis and consequently cAMP-signaling in LCs.
Collapse
Affiliation(s)
- Aleksandar Z Baburski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Srdjan J Sokanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Marija M Janjic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Natasa J Stojkov-Mimic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Maja M Bjelic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
12
|
Qamar I, Ahmad MF, Narayanasamy A. A time-course study of long term over-expression of ARR19 in mice. Sci Rep 2015; 5:13014. [PMID: 26260329 PMCID: PMC4531322 DOI: 10.1038/srep13014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/13/2015] [Indexed: 11/22/2022] Open
Abstract
A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate.
Collapse
Affiliation(s)
- Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida-201308, India
| | - Mohammad Faiz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Arul Narayanasamy
- Department of Life Science, Research Center for Cell Homeostasis, Ewha Womens University, Seoul 120-750, Republic of Korea
| |
Collapse
|
13
|
Bjelic MM, Stojkov NJ, Radovic SM, Baburski AZ, Janjic MM, Kostic TS, Andric SA. Prolonged in vivo administration of testosterone-enanthate, the widely used and abused anabolic androgenic steroid, disturbs prolactin and cAMP signaling in Leydig cells of adult rats. J Steroid Biochem Mol Biol 2015; 149:58-69. [PMID: 25603467 DOI: 10.1016/j.jsbmb.2015.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/20/2014] [Accepted: 01/14/2015] [Indexed: 12/14/2022]
Abstract
This study was designed to systematically analyze and define the effects of 1-day, 2-weeks, 10-weeks intramuscular administration of testosterone-enanthate, widely used and abused anabolic androgenic steroid (AAS), on main regulators of steroidogenesis and steroidogenic genes expression in testosterone-producing Leydig cells of adult rats. The results showed that prolonged (10-weeks) intramuscular administration of testosterone-enanthate, in clinically relevant dose, significantly increased prolactin, but decreased Prlr2 and Gnrhr in pituitary of adult rat. The levels of testosterone, Insl3, cAMP and mitochondrial membrane potential of Leydig cells were significantly reduced. This was followed by decreased expression of some steroidogenic enzymes and regulatory proteins such as Lhcgr, Prlr1/2, Tspo, Star, Cyp11a1, Cyp17a1, Dax1. Oppositely, Hsd3b1/2, Hsd3b5, Hsd17b4, Ar, Arr19 increased. In the same cells, transcriptional milieu of cAMP signaling elements was disturbed with remarkable up-regulation of PRKA (the main regulator of steroidogenesis). Increased prolactin together with stimulated transcription of Jak2/Jak3 could account for increased Hsd3b1/2 and Hsd3b5 in Leydig cells following 10-weeks in vivo treatment with testosterone-enanthate. In vitro studies revealed that testosterone is capable to increase level of Prlr1, Prlr2, Hsd3b1/2, Hsd3b5 in Leydig cells. Accordingly, testosterone-induced changes in prolactin receptor signaling together with up-regulation of PRKA, Hsd3b1/2, Hsd3b5, Ar in Leydig cells, could be the possible mechanism that contribute to the establishment of a new adaptive response to maintain homeostasis and prevent loss of steroidogenic function. Presented data provide new molecular insights into the relationship between disturbed testosterone homeostasis and mammalian reproduction and are important in terms of wide use and abuse of AASs and human reproductive health.
Collapse
Affiliation(s)
- Maja M Bjelic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Natasa J Stojkov
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sava M Radovic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Z Baburski
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Marija M Janjic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
14
|
Bjelic MM, Stojkov NJ, Baburski AZ, Sokanovic SJ, Mihajlovic AI, Janjic MM, Kostic TS, Andric SA. Molecular adaptations of testosterone-producing Leydig cells during systemic in vivo blockade of the androgen receptor. Mol Cell Endocrinol 2014; 396:10-25. [PMID: 25153259 DOI: 10.1016/j.mce.2014.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022]
Abstract
This study systematically evaluates the effects of androgen receptor (AR) blockade on molecular events in Leydig cells. Results showed that intramuscular administration of testosterone-enanthate, at clinically relevant dose, decreased testosterone in interstitial fluid and Leydig cells from adult rats. AR-blocker (Androcur) prevented this effect and testosterone-reduced Leydig cells steroidogenic capacity/activity. Testosterone-reduced expression of some steroidogenic enzymes/proteins (Tspo,StAR,Hsd3b1/2) and transcription factors (Nur77,Gata4,Dax1) was completely abrogated, while decreased expression of Star,Cyp11a1,Cyp17a1,Hsd17b4,Creb1a was partially prevented. In the same cells, increased expression of Hsd3b5/HSD3B and Ar/AR was abolished. Androcur-treatment abolished testosterone-reduced cAMP, coupled with a changed expressional milieu of cAMP signaling elements. Results from in vitro experiments suggest that some of these effects are testosterone-AR dependent, while others could be due to disturbed LH and/or other signals. Presented data provide new molecular insight into Leydig cells function and are important in terms of human reproductive health and the wide-spread use of Androcur as well as use/abuse of testosterone-enanthate.
Collapse
Affiliation(s)
- Maja M Bjelic
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Natasa J Stojkov
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Z Baburski
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Srdjan J Sokanovic
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar I Mihajlovic
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Marija M Janjic
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
15
|
Sadasivam M, Ramatchandirin B, Ayyanar A, Prahalathan C. Bacterial lipopolysaccharide differently modulates steroidogenic enzymes gene expressions in the brain and testis in rats. Neurosci Res 2014; 83:81-8. [PMID: 24594480 DOI: 10.1016/j.neures.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 12/01/2022]
Abstract
Bacterial lipopolysaccharide (LPS) is a major component of the cell wall of gram negative bacteria contributing to the pathogenesis of bacterial infection, in particular in those diseases affecting central nervous system and reproductive tissues. The present work is an attempt to study the regulation of steroidogenic enzymes gene expression in the brain and testis in LPS induced rats. Adult male albino rats were administered LPS (5mg/kg BW) to induce acute inflammation. LPS administration induced severe oxidative damage in the brain and testicular tissue which was evident from decreased activities of enzymic antioxidants and increased lipid peroxidation levels. The mRNA expression of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) and androgen receptor corepressor-19kDa (ARR19) in the brain and testis were determined. The mRNA expression of 3β-HSD and 17β-HSD was increased in the brain with significant decrease in the testis at 24h and 48h in LPS treated animals. The results also demonstrated an interesting finding that LPS treatment completely represses ARR19 in the brain, while not in the testis. These findings show ARR19 might play a crucial role in regulation of neuronal and testicular steroidogenesis in inflammatory diseases.
Collapse
Affiliation(s)
- Mohanraj Sadasivam
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Ananth Ayyanar
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | |
Collapse
|
16
|
Lucas TFG, Lazari MFM, Porto CS. Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Mol Cell Endocrinol 2014; 382:84-96. [PMID: 24056172 DOI: 10.1016/j.mce.2013.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/02/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate the role of each estrogen receptors on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Activation of ESR1 by 17β-estradiol (E2) and ESR1-selective agonist PPT increased CCND1 expression, and this effect was dependent on NF-kB activation. E2 and the ESR2-selective agonist DPN, but not PPT, increased, in a PI3K and CREB-dependent manner, the expression of CDKN1B and the transcription factors GATA-1 and DMRT1. Analyzing the expression of ESR1 and ESR2 in different stages of development of Sertoli cells, we observed that the ESR1/ESR2 ratio decreased with age, and this ratio seems to be important to determine the end of cell proliferation and the start of cell differentiation. In Sertoli cells from 15-day-old rats, the ESR1/ESR2 ratio favors the effect of ESR1 and the activation of this receptor increased [Methyl-(3)H]thymidine incorporation. We propose that in Sertoli cells from 15-day-old rats E2 modulates Sertoli cell proliferation through ESR1/NF-kB-mediated increase of CCND1, and cell cycle exit and differentiation through ESR2/CREB-mediated increase of CDKN1B, GATA-1 and DMRT1. The present study reinforces the important role of estrogen for normal testis development.
Collapse
Affiliation(s)
- Thaís F G Lucas
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Maria Fatima M Lazari
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
17
|
Furu K, Klungland A. Tzfp represses the androgen receptor in mouse testis. PLoS One 2013; 8:e62314. [PMID: 23634227 PMCID: PMC3636255 DOI: 10.1371/journal.pone.0062314] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/20/2013] [Indexed: 02/06/2023] Open
Abstract
The testis zinc finger protein (Tzfp), also known as Repressor of GATA, belongs to the BTB/POZ zinc finger family of transcription factors and is thought to play a role in spermatogenesis due to its remarkably high expression in testis. Despite many attempts to find the in vivo role of the protein, the molecular function is still largely unknown. Here, we address this issue using a novel mouse model with a disrupted Tzfp gene. Homozygous Tzfp null mice are born at reduced frequency but appear viable and fertile. Sertoli cells in testes lacking Tzfp display an increase in Androgen Receptor (AR) signaling, and several genes in the testis, including Gata1, Aie1 and Fanc, show increased expression. Our results indicate that Tzfp function as a transcriptional regulator and that loss of the protein leads to alterations in AR signaling and reduced number of apoptotic cells in the testicular tubules.
Collapse
Affiliation(s)
- Kari Furu
- Centre for Molecular Biology and Neuroscience, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Klungland
- Centre for Molecular Biology and Neuroscience, Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
18
|
Song CH, Lee HJ, Park E, Lee K. The chicken ovalbumin upstream promoter-transcription factor II negatively regulates the transactivation of androgen receptor in prostate cancer cells. PLoS One 2012; 7:e49026. [PMID: 23145053 PMCID: PMC3492188 DOI: 10.1371/journal.pone.0049026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/03/2012] [Indexed: 01/23/2023] Open
Abstract
Androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II) has been suggested to play a role in the development of cancers. In the present study, we explored a putative role of COUP-TF II in prostate cancers by investigating its effect on cell proliferation and a cross-talk between COUP-TF II and AR. Overexpression of COUP-TF II results in the inhibition of androgen-dependent proliferation of prostate cancer cells. Further studies show that COUP-TF II functions as a corepressor of AR. It represses AR transactivation on target promoters containing the androgen response element (ARE) in a dose-dependent manner. In addition, COUP-TF II interacts physically with AR in vitro and in vivo. It binds to both the DNA binding domain (DBD) and the ligand-binding domain (LBD) of AR and disrupts the N/C terminal interaction of AR. Furthermore, COUP-TF II competes with coactivators such as ARA70, SRC-1, and GRIP1 to modulate AR transactivation as well as inhibiting the recruitment of AR to its ARE-containing target promoter. Taken together, our findings suggest that COUP-TF II is a novel corepressor of AR, and provide an insight into the role of COUP-TF II in prostate cancers.
Collapse
Affiliation(s)
- Chin-Hee Song
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun Joo Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Eunsook Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Keesook Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Panigrahi SK, Vasileva A, Wolgemuth DJ. Sp1 transcription factor and GATA1 cis-acting elements modulate testis-specific expression of mouse cyclin A1. PLoS One 2012; 7:e47862. [PMID: 23112860 PMCID: PMC3480434 DOI: 10.1371/journal.pone.0047862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/18/2012] [Indexed: 01/16/2023] Open
Abstract
Cyclin A1 is a male germ cell-specific cell cycle regulator that is essential for spermatogenesis. It is unique among the cyclins by virtue of its highly restricted expression in vivo, being present in pachytene and diplotene spermatocytes and not in earlier or later stages of spermatogenesis. To begin to understand the molecular mechanisms responsible for this narrow window of expression of the mouse cyclin A1 (Ccna1) gene, we carried out a detailed analysis of its promoter. We defined a 170-bp region within the promoter and showed that it is involved in repression of Ccna1 in cultured cells. Within this region we identified known cis-acting transcription factor binding sequences, including an Sp1-binding site and two GATA1-binding sites. Neither Sp1 nor GATA1 is expressed in pachytene spermatocytes and later stages of germ cell differentiation. Sp1 is readily detected at earlier stages of spermatogenesis. Site-directed mutagenesis demonstrated that neither factor alone was sufficient to significantly repress expression driven by the Ccna1 promoter, while concurrent binding of Sp1, and most likely GATA1 and possibly additional factors was inhibitory. Occupancy of Sp1 on the Ccna1 promoter and influence of GATA1-dependent cis-acting elements was confirmed by ChIP analysis in cell lines and most importantly, in spermatogonia. In contrast with many other testis-specific genes, the CpG island methylation status of the Ccna1 promoter was similar among various tissues examined, irrespective of whether Ccna1 was transcriptionally active, suggesting that this regulatory mechanism is not involved in the restricted expression of Ccna1.
Collapse
Affiliation(s)
- Sunil K. Panigrahi
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Ana Vasileva
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Debra J. Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
- Institute of Human Nutrition, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Stojkov NJ, Janjic MM, Bjelic MM, Mihajlovic AI, Kostic TS, Andric SA. Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells. Am J Physiol Endocrinol Metab 2012; 302:E1239-51. [PMID: 22374756 DOI: 10.1152/ajpendo.00554.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was designed to evaluate the effect of acute (2 h daily) and repeated (2 h daily for 2 or 10 consecutive days) immobilization stress (IMO) on: 1) the steroidogenic machinery homeostasis; 2) cAMP signaling; and the expression of receptors for main markers of 3) adrenergic and 4) glucocorticoid signaling in Leydig cells of adult rats. The results showed that acute IMO inhibited steroidogenic machinery in Leydig cells by downregulation of Scarb1 (scavenger receptor class B), Cyp11a1 (cholesterol side-chain cleavage enzyme), Cyp17a1 (17α-hydroxylase/17,20 lyase), and Hsd17b3 (17β-hydroxysteroid dehydrogenase) expression. In addition to acute IMO effects, repeated IMO increased transcription of Star (steroidogenic acute regulatory protein) and Arr19 (androgen receptor corepressor 19 kDa) in Leydig cells. In the same cells, the transcription of adenylyl cyclases (Adcy7, Adcy9, Adcy10) and cAMP-specific phosphodiesterases (Pde4a, Pde4b, Pde4d, Pde7a, Pde8a) was stimulated, whereas the expression of the genes encoding protein kinase A subunits were unaffected. Ten times repeated IMO increased the levels of all adrenergic receptors and β-adrenergic receptor kinase (Adrbk1) in Leydig cells. The transcription analysis was supported by cAMP/testosterone production. In this signaling scenario, partial recovery of testosterone production in medium/content was detected. The physiological significance of the present results was proven by ex vivo application of epinephrine, which increased cAMP/testosterone production by Leydig cells from control rats in greater fashion than from stressed. IMO did not affect the expression of transcripts for Crhr1/Crhr2 (corticotropin releasing hormone receptors), Acthr (adrenocorticotropin releasing hormone receptor), Gr (glucocorticoid receptor), and Hsd11b1 [hydroxysteroid (11-β) dehydrogenase 1], while all types of IMO stimulated the expression of Hsd11b2, the unidirectional oxidase with high affinity to inactivate glucocorticoids. Thus, presented data provide new molecular/transcriptional base for "fight/adaptation" of Leydig cells and new insights into the role of cAMP, epinephrine, and glucocorticoid signaling in recovery of stress-impaired Leydig cell steroidogenesis.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Androgens/blood
- Animals
- Cholesterol Side-Chain Cleavage Enzyme/genetics
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Corticosterone/blood
- Cyclic AMP/metabolism
- Leydig Cells/physiology
- Luteinizing Hormone/blood
- Male
- Rats
- Rats, Wistar
- Receptors, Adrenergic/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Restraint, Physical
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Signal Transduction/physiology
- Steroid 17-alpha-Hydroxylase/genetics
- Steroid 17-alpha-Hydroxylase/metabolism
- Steroids/blood
- Stress, Physiological/physiology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Natasa J Stojkov
- Reproductive Endocrinology and Signaling Group, Dept. of Biology and Ecology, Faculty of Sciences at Univ. of Novi Sad, Dositeja Obradovica Square 2, 21000 Novi Sad, Serbia
| | | | | | | | | | | |
Collapse
|
21
|
Kostic TS, Stojkov NJ, Bjelic MM, Mihajlovic AI, Janjic MM, Andric SA. Pharmacological Doses of Testosterone Upregulated Androgen Receptor and 3-Beta-Hydroxysteroid Dehydrogenase/Delta-5-Delta-4 Isomerase and Impaired Leydig Cells Steroidogenesis in Adult Rats. Toxicol Sci 2011; 121:397-407. [DOI: 10.1093/toxsci/kfr063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Qamar I, Gong EY, Kim Y, Song CH, Lee HJ, Chun SY, Lee K. Anti-steroidogenic factor ARR19 inhibits testicular steroidogenesis through the suppression of Nur77 transactivation. J Biol Chem 2010; 285:22360-9. [PMID: 20472563 DOI: 10.1074/jbc.m109.059949] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ARR19 (androgen receptor corepressor-19 kDa), a leucine-rich protein whose expression is down-regulated by luteinizing hormone and cAMP, is differentially expressed during the development of Leydig cells and inhibits testicular steroidogenesis by reducing the expression of steroidogenic enzymes. However, the molecular events behind the suppression of testicular steroidogenesis are unknown. In the present study, we demonstrate that ARR19 inhibits the transactivation of orphan nuclear receptor Nur77, which is one of the major transcription factors that regulate the expression of steroidogenic enzyme genes in Leydig cells. ARR19 physically interacts with Nur77 and suppresses Nur77-induced promoter activity of steroidogenic enzyme genes including StAR, P450c17, and 3beta-HSD in Leydig cells. Transient transfection and chromatin immunoprecipitation assays revealed that ARR19-mediated reduced expression of steroidogenic enzyme genes was likely due to the interference of SRC-1 recruitment to Nur77 protein on the promoter of steroidogenic enzyme genes. These findings suggest that ARR19 acts as a novel coregulator of Nur77, in turn regulating Nur77-induced testicular steroidogenesis, and may play an important role in the development and function of testicular Leydig cells.
Collapse
Affiliation(s)
- Imteyaz Qamar
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|