1
|
Kagohashi Y, Sasaki M, May AI, Kawamata T, Ohsumi Y. The mechanism of Atg15-mediated membrane disruption in autophagy. J Cell Biol 2023; 222:e202306120. [PMID: 37917025 PMCID: PMC10622257 DOI: 10.1083/jcb.202306120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Autophagy is a lysosomal/vacuolar delivery system that degrades cytoplasmic material. During autophagy, autophagosomes deliver cellular components to the vacuole, resulting in the release of a cargo-containing autophagic body (AB) into the vacuole. AB membranes must be disrupted for degradation of cargo to occur. The lipase Atg15 and vacuolar proteases Pep4 and Prb1 are known to be necessary for this disruption and cargo degradation, but the mechanistic underpinnings remain unclear. In this study, we establish a system to detect lipase activity in the vacuole and show that Atg15 is the sole vacuolar phospholipase. Pep4 and Prb1 are required for the activation of Atg15 lipase function, which occurs following delivery of Atg15 to the vacuole by the MVB pathway. In vitro experiments reveal that Atg15 is a phospholipase B of broad substrate specificity that is likely implicated in the disruption of a range of membranes. Further, we use isolated ABs to demonstrate that Atg15 alone is able to disrupt AB membranes.
Collapse
Affiliation(s)
- Yoko Kagohashi
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- POLA Chemical Industries, Inc., Yokohama, Japan
| | - Michiko Sasaki
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Alexander I. May
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tomoko Kawamata
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshinori Ohsumi
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
3
|
Mouchlis VD, Dennis EA. Membrane Association Allosterically Regulates Phospholipase A 2 Enzymes and Their Specificity. Acc Chem Res 2022; 55:3303-3311. [PMID: 36315840 PMCID: PMC9730854 DOI: 10.1021/acs.accounts.2c00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/19/2023]
Abstract
Water-soluble proteins as well as membrane-bound proteins associate with membrane surfaces and bind specific lipid molecules in specific sites on the protein. Membrane surfaces include the traditional bilayer membranes of cells and subcellular organelles formed by phospholipids. Monolayer membranes include the outer monolayer phospholipid surface of intracellular lipid droplets of triglycerides and various lipoproteins including HDL, LDL, VLDL, and chylomicrons. These lipoproteins circulate in our blood and lymph systems and contain triglycerides, cholesterol, cholesterol esters, and proteins in their interior, and these are sometimes interspersed on their surfaces. Similar lipid-water interfaces also occur in mixed micelles of phospholipids and bile acids in our digestive system, which may also include internalized triglycerides and cholesterol esters. Diacyl phospholipids constitute the defining molecules of biological membranes. Phospholipase A1 (PLA1) hydrolyzes phospholipid acyl chains at the sn-1 position of membrane phospholipids, phospholipase A2 (PLA2) hydrolyzes acyl chains at the sn-2 position, phospholipase C (PLC) hydrolyzes the glycerol-phosphodiester bond, and phospholipase D (PLD) hydrolyzes the polar group-phosphodiester bond. Of the phospholipases, the PLA2s have been the most well studied at the mechanistic level. The PLA2 superfamily consists of 16 groups and numerous subgroups, and each is generally described as one of 6 types. The most well studied of the PLA2s include extensive genetic and mutational studies, complete lipidomics specificity characterization, and crystallographic structures. This Account will focus principally on results from deuterium exchange mass spectrometric (DXMS) studies of PLA2 interactions with membranes and extensive molecular dynamics (MD) simulations of their interactions with membranes and specific phospholipids bound in their catalytic and allosteric sites. These enzymes either are membrane-bound or are water-soluble and associate with membranes before extracting their phospholipid substrate molecule into their active site to carry out their enzymatic hydrolytic reaction. We present evidence that when a PLA2 associates with a membrane, the membrane association can result in a conformational change in the enzyme whereby the membrane association with an allosteric site on the enzyme stabilizes the enzyme in an active conformation on the membrane. We sometimes refer to this transition from a "closed" conformation in aqueous solution to an "open" conformation when associated with a membrane. The enzyme can then extract a single phospholipid substrate into its active site, and catalysis occurs. We have also employed DXMS and MD simulations to characterize how PLA2s interact with specific inhibitors that could lead to potential therapeutics. The PLA2s constitute a paradigm for how membranes interact allosterically with proteins, causing conformational changes and activation of the proteins to enable them to extract and bind a specific phospholipid from a membrane for catalysis, which is probably generalizable to intracellular and extracellular transport and phospholipid exchange processes as well as other specific biological functions. We will focus on the four main types of PLA2, namely, the secreted (sPLA2), cytosolic (cPLA2), calcium-independent (iPLA2), and lipoprotein-associated PLA2 (Lp-PLA2) also known as platelet-activating factor acetyl hydrolase (PAF-AH). Studies on a well-studied specific example of each of the four major types of the PLA2 superfamily demonstrate clearly that protein subsites can show precise specificity for one of the phospholipid hydrophobic acyl chains, often the one at the sn-2 position, including exquisite sensitivity to the number and position of double bonds.
Collapse
Affiliation(s)
- Varnavas D. Mouchlis
- Department of Chemistry and Biochemistry
and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601 United States
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry
and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601 United States
| |
Collapse
|
4
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
5
|
Dennis EA. Allosteric regulation by membranes and hydrophobic subsites in phospholipase A 2 enzymes determine their substrate specificity. J Biol Chem 2022; 298:101873. [PMID: 35358512 PMCID: PMC9079178 DOI: 10.1016/j.jbc.2022.101873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Lipids play critical roles in several major chronic diseases of our times, including those that involve inflammatory sequelae such as metabolic syndrome including obesity, insulin sensitivity, and cardiovascular diseases. However, defining the substrate specificity of enzymes of lipid metabolism is a challenging task. For example, phospholipase A2 (PLA2) enzymes constitute a superfamily of degradative, biosynthetic, and signaling enzymes that all act stereospecifically to hydrolyze and release the fatty acids of membrane phospholipids. This review focuses on how membranes interact allosterically with enzymes to regulate cell signaling and metabolic pathways leading to inflammation and other diseases. Our group has developed “substrate lipidomics” to quantify the substrate phospholipid specificity of each PLA2 and coupled this with molecular dynamics simulations to reveal that enzyme specificity is linked to specific hydrophobic binding subsites for membrane phospholipid substrates. We have also defined unexpected headgroup and acyl chain specificity for each of the major human PLA2 enzymes, which explains the observed specificity at a structural level. Finally, we discovered that a unique hydrophobic binding site—and not each enzyme’s catalytic residues or polar headgroup binding site—predominantly determines enzyme specificity. We also discuss how PLA2s release specific fatty acids after allosteric enzyme association with membranes and extraction of the phospholipid substrate, which can be blocked by stereospecific inhibitors. After decades of work, we can now correlate PLA2 specificity and inhibition potency with molecular structure and physiological function.
Collapse
Affiliation(s)
- Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California, USA.
| |
Collapse
|
6
|
DeVito LM, Dennis EA, Kahn BB, Shulman GI, Witztum JL, Sadhu S, Nickels J, Spite M, Smyth S, Spiegel S. Bioactive lipids and metabolic syndrome-a symposium report. Ann N Y Acad Sci 2022; 1511:87-106. [PMID: 35218041 DOI: 10.1111/nyas.14752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
Recent research has shed light on the cellular and molecular functions of bioactive lipids that go far beyond what was known about their role as dietary lipids. Bioactive lipids regulate inflammation and its resolution as signaling molecules. Genetic studies have identified key factors that can increase the risk of cardiovascular diseases and metabolic syndrome through their effects on lipogenesis. Lipid scientists have explored how these signaling pathways affect lipid metabolism in the liver, adipose tissue, and macrophages by utilizing a variety of techniques in both humans and animal models, including novel lipidomics approaches and molecular dynamics models. Dissecting out these lipid pathways can help identify mechanisms that can be targeted to prevent or treat cardiometabolic conditions. Continued investigation of the multitude of functions mediated by bioactive lipids may reveal additional components of these pathways that can provide a greater understanding of metabolic homeostasis.
Collapse
Affiliation(s)
| | | | - Barbara B Kahn
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Joseph Nickels
- Genesis Biotechnology Group, Hamilton Township, New Jersey
| | - Matthew Spite
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarah Spiegel
- Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
7
|
Lipoprotein-associated phospholipase A 2: A paradigm for allosteric regulation by membranes. Proc Natl Acad Sci U S A 2022; 119:2102953118. [PMID: 34996868 PMCID: PMC8764669 DOI: 10.1073/pnas.2102953118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Lp-PLA2 is a physiologically important human enzyme and an inflammatory biomarker for assessing risk factors associated with cardiovascular diseases. It is associated with low- and high-density lipoproteins in human plasma and acts on the outside of the phospholipid monolayer that coats these particles, in stark contrast to traditional PLA2 enzymes that act on bilayer membranes. This study addresses the allosteric activation of Lp-PLA2 by phospholipid monolayers and membranes, its precise selectivity and specificity for particular oxidized and short acyl-chain phospholipid substrates not previously possible. Of particular importance, this work identifies and confirms by site-directed mutagenesis a phospholipid head-group binding pocket distinct from known drug inhibitor binding pockets that informs us about Lp-PLA2’s mechanism of action and creates opportunities for additional therapeutic approaches. Lipoprotein-associated phospholipase A2 (Lp-PLA2) associates with low- and high-density lipoproteins in human plasma and specifically hydrolyzes circulating oxidized phospholipids involved in oxidative stress. The association of this enzyme with the lipoprotein’s phospholipid monolayer to access its substrate is the most crucial first step in its catalytic cycle. The current study demonstrates unequivocally that a significant movement of a major helical peptide region occurs upon membrane binding, resulting in a large conformational change upon Lp-PLA2 binding to a phospholipid surface. This allosteric regulation of an enzyme’s activity by a large membrane-like interface inducing a conformational change in the catalytic site defines a unique dimension of allosterism. The mechanism by which this enzyme associates with phospholipid interfaces to select and extract a single phospholipid substrate molecule and carry out catalysis is key to understanding its physiological functioning. A lipidomics platform was employed to determine the precise substrate specificity of human recombinant Lp-PLA2 and mutants. This study uniquely elucidates the association mechanism of this enzyme with membranes and its resulting conformational change as well as the extraction and binding of specific oxidized and short acyl-chain phospholipid substrates. Deuterium exchange mass spectrometry coupled with molecular dynamics simulations was used to define the precise specificity of the subsite for the oxidized fatty acid at the sn-2 position of the phospholipid backbone. Despite the existence of several crystal structures of this enzyme cocrystallized with inhibitors, little was understood about Lp-PLA2‘s specificity toward oxidized phospholipids.
Collapse
|
8
|
Tsai WC, Gilbert NC, Ohler A, Armstrong M, Perry S, Kalyanaraman C, Yasgar A, Rai G, Simeonov A, Jadhav A, Standley M, Lee HW, Crews P, Iavarone AT, Jacobson MP, Neau DB, Offenbacher AR, Newcomer M, Holman TR. Kinetic and structural investigations of novel inhibitors of human epithelial 15-lipoxygenase-2. Bioorg Med Chem 2021; 46:116349. [PMID: 34500187 DOI: 10.1016/j.bmc.2021.116349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ± 0.05 μM for MLS000327069, 0.53 ± 0.04 μM for MLS000327186 and 0.87 ± 0.06 μM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nathan C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Amanda Ohler
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Michelle Armstrong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Steven Perry
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94158, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Melissa Standley
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Anthony T Iavarone
- Department of Chemistry and California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94158, United States
| | - David B Neau
- Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Marcia Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
9
|
Stariha JTB, Hoffmann RM, Hamelin DJ, Burke JE. Probing Protein-Membrane Interactions and Dynamics Using Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS). Methods Mol Biol 2021; 2263:465-485. [PMID: 33877613 DOI: 10.1007/978-1-0716-1197-5_22] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular membranes are a central hub for initiation and execution of many signaling processes. Integral to these processes being accomplished appropriately is the highly controlled recruitment and assembly of proteins at membrane surfaces. The study of the molecular mechanisms that mediate protein-membrane interactions can be facilitated by utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS is a robust analytical technique that allows for the measurement of the exchange rate of backbone amide hydrogens with solvent to make inferences about protein structure and conformation. This chapter discusses the use of HDX-MS as a tool to study the conformational changes that occur within peripheral membrane proteins upon association with membrane. Particular reference will be made to the analysis of the protein kinase Akt and its activation upon binding phosphatidylinositol (3,4,5) tris-phosphate (PIP3)-containing membranes to illustrate specific methodological principles.
Collapse
Affiliation(s)
- Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - David J Hamelin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada. .,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Zhang S, Gong W, Han Z, Liu Y, Li C. Insight into Shared Properties and Differential Dynamics and Specificity of Secretory Phospholipase A 2 Family Members. J Phys Chem B 2021; 125:3353-3363. [PMID: 33780247 DOI: 10.1021/acs.jpcb.1c01315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding generic mechanisms of functions shared by the secretory phospholipase A2 (sPLA2) family involved in the lipid metabolism and cell signaling and the molecular basis of function specificity for family members is an intriguing but challenging problem for biologists. Here, we explore the issue through extensive analyses using a combination of structure-based methods and bioinformatics tools on130 sPLA2 family members. The principal component analysis of the structure ensemble reveals that the enzyme has an open-close motion which helps widen the substrate binding channel, facilitating its binding to phospholipid. Performing elastic network model and sequence analyses found that the residues critical for family functions, such as cysteine and catalytic residues, are highly conserved and undergo minimal movements, which is evolutionarily essential as their perturbation would impact the function, while the four residue regions involved in the association with the calcium ion/membrane are lowly conserved and of high mobility and large variations in low-to-intermediate frequency modes, which reflects the specificity of members. The analyses from perturbation response scanning also reveal that the above four regions with high sensitivity to an external perturbation are member-specific, suggesting their different roles in allosteric modulation, while the minimal sensitive residues are the shared characteristics across family members, which play an important role in maintaining structural stability as the folding core. This study is helpful for understanding how sequences, structures, and dynamics of sPLA2 family members evolve to ensure their common and specific functions and can provide a guide for accurate design of proteins with finely tuned activities.
Collapse
Affiliation(s)
- Shan Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yang Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Tessmer MH, DeCero SA, Del Alamo D, Riegert MO, Meiler J, Frank DW, Feix JB. Characterization of the ExoU activation mechanism using EPR and integrative modeling. Sci Rep 2020; 10:19700. [PMID: 33184362 PMCID: PMC7665212 DOI: 10.1038/s41598-020-76023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
ExoU, a type III secreted phospholipase effector of Pseudomonas aeruginosa, serves as a prototype to model large, dynamic, membrane-associated proteins. ExoU is synergistically activated by interactions with membrane lipids and ubiquitin. To dissect the activation mechanism, structural homology was used to identify an unstructured loop of approximately 20 residues in the ExoU amino acid sequence. Mutational analyses indicate the importance of specific loop amino acid residues in mediating catalytic activity. Engineered disulfide cross-links show that loop movement is required for activation. Site directed spin labeling EPR and DEER (double electron-electron resonance) studies of apo and holo states demonstrate local conformational changes at specific sites within the loop and a conformational shift of the loop during activation. These data are consistent with the formation of a substrate-binding pocket providing access to the catalytic site. DEER distance distributions were used as constraints in RosettaDEER to construct ensemble models of the loop in both apo and holo states, significantly extending the range for modeling a conformationally dynamic loop.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Samuel A DeCero
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Diego Del Alamo
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Molly O Riegert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig SAC, Germany
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Sharifpour S, Fakhraee S, Behjatmanesh-Ardakani R. Insights into the mechanism of inhibition of phospholipase A2 by resveratrol: An extensive molecular dynamics simulation and binding free energy calculation. J Mol Graph Model 2020; 100:107649. [PMID: 32739638 DOI: 10.1016/j.jmgm.2020.107649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 10/23/2022]
Abstract
Phospholipase A2 (PLA2) is one of the enzymes involved in the development of cardiovascular diseases, vascular inflammation, risk of heart attacks, and strokes. This enzyme is responsible for catalyzing the hydrolytic cleavage of ester bonds of phospholipids in the biological pathway of inflammation. To prevent the undesired hydrolysis of phospholipids, the catalytic activity of PLA2 needs to be blocked. Resveratrol is a plant-derived polyphenol inhibitor, proven to have anti-inflammatory properties. However, there is still substantial ambiguity about its inhibitory function. The present study uncovers a detailed molecular mechanism behind the resveratrol action in inhibition of PLA2, by applying and comparing two 200-ns molecular dynamics simulations. The results of structural analyses revealed that the binding of resveratrol to PLA2 reduces the content of β-sheets and increases a 5-helix to PLA2 structure, producing more folding and stability in protein. In the active site, the resveratrol is placed between the N-terminal α-helix and the newly formed 5-helix through the hydrophobic interactions with ILE19 and LEU3 residues, as well as the hydrogen bond interactions. These interactions play the role of a network at the entrance of the enzyme active site and prevent the penetration of water molecules into the PLA2 cavity. A high occupancy hydrogen bonding has been identified between SER23 of the protein and hydroxyl group of resveratrol. Furthermore, the estimation of binding free energy verified the binding affinity of resveratrol is thermodynamically sufficient to be stably bounded to PLA2. It also proved that the van der Waals interactions, particularly hydrophobic interactions, have the most significant role in PLA2-resveratrol binding and stability. Overall, our results provide useful information on the stepwise mechanism of the inhibition of PLA2 enzyme by resveratrol, as a target for improving the pharmacological applications.
Collapse
Affiliation(s)
- Sajedeh Sharifpour
- Department of Chemistry, Payame Noor University, 19395-3697, Tehran, Iran
| | - Sara Fakhraee
- Department of Chemistry, Payame Noor University, 19395-3697, Tehran, Iran.
| | | |
Collapse
|
13
|
Harayama T, Shimizu T. Roles of polyunsaturated fatty acids, from mediators to membranes. J Lipid Res 2020; 61:1150-1160. [PMID: 32487545 PMCID: PMC7397749 DOI: 10.1194/jlr.r120000800] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
PUFAs, such as AA and DHA, are recognized as important biomolecules, but understanding their precise roles and modes of action remains challenging. PUFAs are precursors for a plethora of signaling lipids, for which knowledge about synthetic pathways and receptors has accumulated. However, due to their extreme diversity and the ambiguity concerning the identity of their cognate receptors, the roles of PUFA-derived signaling lipids require more investigation. In addition, PUFA functions cannot be explained just as lipid mediator precursors because they are also critical for the regulation of membrane biophysical properties. The presence of PUFAs in membrane lipids also affects the functions of transmembrane proteins and peripheral membrane proteins. Although the roles of PUFAs as membrane lipid building blocks were difficult to analyze, the discovery of lysophospholipid acyltransferases (LPLATs), which are critical for their incorporation, advanced our understanding. Recent studies unveiled how LPLATs affect PUFA levels in membrane lipids, and their genetic manipulation became an excellent strategy to study the roles of PUFA-containing lipids. In this review, we will provide an overview of metabolic pathways regulating PUFAs as lipid mediator precursors and membrane components and update recent progress about their functions. Some issues to be solved for future research will also be discussed.
Collapse
Affiliation(s)
- Takeshi Harayama
- Department of Biochemistry and National Centre of Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan and Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Kopcho N, Chang G, Komives EA. Dynamics of ABC Transporter P-glycoprotein in Three Conformational States. Sci Rep 2019; 9:15092. [PMID: 31641149 PMCID: PMC6805939 DOI: 10.1038/s41598-019-50578-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to obtain a comprehensive view of transporter dynamics (85.8% sequence coverage) occurring throughout the multidrug efflux transporter P-glycoprotein (P-gp) in three distinct conformational states: predominantly inward-facing apo P-gp, pre-hydrolytic (E552Q/E1197Q) P-gp bound to Mg+2-ATP, and outward-facing P-gp bound to Mg+2-ADP-VO4−3. Nucleotide affinity was measured with bio-layer interferometry (BLI), which yielded kinetics data that fit a two Mg+2-ATP binding-site model. This model has one high affinity site (3.2 ± 0.3 µM) and one low affinity site (209 ± 25 µM). Comparison of deuterium incorporation profiles revealed asymmetry between the changes undergone at the critical interfaces where nucleotide binding domains (NBDs) contact intracellular helices (ICHs). In the pre-hydrolytic state, both interfaces between ICHs and NBDs decreased exchange to similar extents relative to inward-facing P-gp. In the outward-facing state, the ICH-NBD1 interface showed decreased exchange, while the ICH-NBD2 interface showed less of an effect. The extracellular loops (ECLs) showed reduced deuterium uptake in the pre-hydrolytic state, consistent with an occluded conformation. While in the outward-facing state, increased ECL exchange corresponding to EC domain opening was observed. These findings point toward asymmetry between both NBDs, and they suggest that pre-hydrolytic P-gp occupies an occluded conformation.
Collapse
Affiliation(s)
- Noah Kopcho
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA
| | - Geoffrey Chang
- School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, AC, 92093-0754, USA.,Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, AC, 92093-0754, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA.
| |
Collapse
|
15
|
Zhou J, Gu X, Fan X, Zhou Y, Wang H, Si N, Yang J, Bian B, Zhao H. Anti-inflammatory and Regulatory Effects of Huanglian Jiedu Decoction on Lipid Homeostasis and the TLR4/MyD88 Signaling Pathway in LPS-Induced Zebrafish. Front Physiol 2019; 10:1241. [PMID: 31616320 PMCID: PMC6775191 DOI: 10.3389/fphys.2019.01241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Huanglian Jiedu decoction (HLJDD) has been used in the clinical treatment of inflammatory conditions. To clarify the mechanism of its comprehensive anti-inflammatory activities, the correlation between lipid homeostasis and the TLR4/MyD88 signaling pathway in zebrafish was established in the present study. In the lipopolysaccharide (LPS)-induced inflammation in zebrafish model, RT-PCR assays of five inflammatory cytokines and six targeted proteins were measured. Lipidomics analysis was conducted to identify potential lipid markers. HLJDD displayed strong efficacies, with a 61% anti-inflammatory rate at a concentration of 50 μg/mL. The activation of TLR4/MyD88 played an essential role in the inflammatory process. All protein indexes in the HLJDD group exhibited a tendency to reverse back to normal levels. Moreover, 79 potential pathological lipid biomarkers were identified. Compared with the model group, 61 therapeutic lipid biomarkers were detected in HLJDD group. Most perturbations of lipids were ameliorated by HLJDD, mainly through the glycerophospholipid metabolic pathway. In the visual network study, the corresponding lipoproteins such as PLA2, SGMS, and SMDP were observed as important intermediates between lipid homeostasis and the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Abhithaj J, Arun KG, Sharanya CS, Haridas M, Jayadevi Variyar E. Isozymes inhibited by active site blocking: versatility of calcium indifferent hesperidin binding to phospholipase A 2 and its significance. J Recept Signal Transduct Res 2019; 39:60-66. [PMID: 31084404 DOI: 10.1080/10799893.2019.1606239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
sPLA2 is released under inflammatory conditions from neutrophils, basophils and T-cells. They cleave the cellular phospholipids leading to the release of arachidonic acid and there by provide intermediates for biosynthesis of inflammatory mediators. The focus of this study is on the interaction of hesperidin, a natural flavonoid with Group IB, IIA, and V and X isozymes of sPLA2. Affinity of hesperidin towards PLA2 isozymes was analyzed through enzymatic studies and molecular modeling. The experiments showed that hesperidin competitively inhibited PLA2 with IC50 of 5.1 µM. Molecular modeling studies revealed the association of hesperidin with the docking scores -6.90, -9.53, -5.63 and -8.29 kcal for isozymes Group IB, IIA, V and X of PLA2 respectively. Their binding energy values were calculated as -20.25, -21.63, -21.66 and -33.43 kcal for the Group IB, IIA, V and X respectively. Structural model for Group V was made by homology modeling since no structural coordinates were available. Molecular dynamics studies were carried out to evaluate the structural stability of protein ligand complex. The analyses showed that hesperidin blocked the entry of the substrate to the active site of PLA2 and it was indifferent to the differences of the isozymes. Hence, hesperidin might serve as lead for designing highly specific anti-inflammatory drugs directed to the PLA2 isozyme specific to various diseases, with IC50 value of therapeutic significance.
Collapse
Affiliation(s)
- J Abhithaj
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - K G Arun
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - C S Sharanya
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - M Haridas
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - E Jayadevi Variyar
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| |
Collapse
|
17
|
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, Brown RE. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A 2α. eLife 2019; 8:e44760. [PMID: 31050338 PMCID: PMC6550875 DOI: 10.7554/elife.44760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/03/2019] [Indexed: 01/19/2023] Open
Abstract
Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report the structure of the cPLA2α C2-domain (at 2.2 Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2α activity. The DHPC-binding mode of the cPLA2α C2-domain, which differs from phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of the lipid-binding mechanisms mediated by C2-domains.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
- Graduate School of Biological SciencesNara Institute of Science and Technology (NAIST)TakayamaJapan
| | - Yong-Guang Gao
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
| | - Ngoc T Vu
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
| | - Lucy Malinina
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Dhirendra K Simanshu
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
- Research ServiceJames A. Haley Veterans HospitalTampaUnited States
- The Moffitt Cancer CenterTampaUnited States
| | - Dinshaw J Patel
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | | |
Collapse
|
18
|
Abstract
Since I started doing scientific research, I've been fascinated by the interplay of protein structure and dynamics and how they together mediate protein function. A particular area of interest has been in understanding the mechanistic basis of how lipid-signaling enzymes function on membrane surfaces. In this award lecture article, I will describe my laboratory's studies on the structure and dynamics of lipid-signaling enzymes on membrane surfaces. This is important, as many lipid-signaling enzymes are regulated through dynamic regulatory mechanisms that control their enzymatic activity. This article will discuss my continued enthusiasm in using a synergistic application of hydrogen-deuterium exchange MS (HDX-MS) with other structural biology techniques to probe the mechanistic basis for how membrane-localized signaling enzymes are regulated and how these approaches can be used to understand how they are misregulated in disease. I will discuss specific examples of how we have used HDX-MS to study phosphoinositide kinases and the protein kinase Akt. An important focus will be on a description of how HDX-MS can be used as a powerful tool to optimize the design of constructs for X-ray crystallography and EM. The use of a diverse toolbox of biophysical methods has revealed novel insight into the complex and varied regulatory networks that control the function of lipid-signaling enzymes and enabled unique insight into the mechanics of membrane recruitment.
Collapse
Affiliation(s)
- John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
19
|
Phospholipase A 2 catalysis and lipid mediator lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:766-771. [PMID: 30905345 DOI: 10.1016/j.bbalip.2018.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023]
Abstract
Phospholipase A2 (PLA2) enzymes are the upstream regulators of the eicosanoid pathway liberating free arachidonic acid from the sn-2 position of membrane phospholipids. Free intracellular arachidonic acid serves as a substrate for the eicosanoid biosynthetic enzymes including cyclooxygenases, lipoxygenases, and cytochrome P450s that lead to inflammation. The Group IVA cytosolic (cPLA2), Group VIA calcium-independent (iPLA2), and Group V secreted (sPLA2) are three well-characterized human enzymes that have been implicated in eicosanoid formation. In this review, we will introduce and summarize the regulation of catalytic activity and cellular localization, structural characteristics, interfacial activation and kinetics, substrate specificity, inhibitor binding and interactions, and the downstream implications for eicosanoid biosynthesis of these three important PLA2 enzymes.
Collapse
|
20
|
Mouchlis VD, Chen Y, McCammon JA, Dennis EA. Membrane Allostery and Unique Hydrophobic Sites Promote Enzyme Substrate Specificity. J Am Chem Soc 2018; 140:3285-3291. [PMID: 29342349 PMCID: PMC5846079 DOI: 10.1021/jacs.7b12045] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
demonstrate that lipidomics coupled with molecular dynamics
reveal unique phospholipase A2 specificity toward membrane
phospholipid substrates. We discovered unexpected headgroup and acyl-chain
specificity for three major human phospholipases A2. The
differences between each enzyme’s specificity, coupled with
molecular dynamics-based structural and binding studies, revealed
unique binding sites and interfacial surface binding moieties for
each enzyme that explain the observed specificity at a hitherto inaccessible
structural level. Surprisingly, we discovered that a unique hydrophobic
binding site for the cleaved fatty acid dominates each enzyme’s
specificity rather than its catalytic residues and polar headgroup
binding site. Molecular dynamics simulations revealed the optimal
phospholipid binding mode leading to a detailed understanding of the
preference of cytosolic phospholipase A2 for cleavage of
proinflammatory arachidonic acid, calcium-independent phospholipase
A2, which is involved in membrane remodeling for cleavage
of linoleic acid and for antibacterial secreted phospholipase A2 favoring linoleic acid, saturated fatty acids, and phosphatidylglycerol.
Collapse
Affiliation(s)
- Varnavas D Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| | - Yuan Chen
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| | - Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine , University of California , San Diego, La Jolla , California 92093-0601 , United States
| |
Collapse
|
21
|
Malley KR, Koroleva O, Miller I, Sanishvili R, Jenkins CM, Gross RW, Korolev S. The structure of iPLA 2β reveals dimeric active sites and suggests mechanisms of regulation and localization. Nat Commun 2018; 9:765. [PMID: 29472584 PMCID: PMC5823874 DOI: 10.1038/s41467-018-03193-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/26/2018] [Indexed: 11/17/2022] Open
Abstract
Calcium-independent phospholipase A2β (iPLA2β) regulates important physiological processes including inflammation, calcium homeostasis and apoptosis. It is genetically linked to neurodegenerative disorders including Parkinson’s disease. Despite its known enzymatic activity, the mechanisms underlying iPLA2β-induced pathologic phenotypes remain poorly understood. Here, we present a crystal structure of iPLA2β that significantly revises existing mechanistic models. The catalytic domains form a tight dimer. They are surrounded by ankyrin repeat domains that adopt an outwardly flared orientation, poised to interact with membrane proteins. The closely integrated active sites are positioned for cooperative activation and internal transacylation. The structure and additional solution studies suggest that both catalytic domains can be bound and allosterically inhibited by a single calmodulin. These features suggest mechanisms of iPLA2β cellular localization and activity regulation, providing a basis for inhibitor development. Furthermore, the structure provides a framework to investigate the role of neurodegenerative mutations and the function of iPLA2β in the brain. Calcium-independent phospholipase A2β (iPLA2β) is involved in many physiological and pathological processes but the underlying mechanisms are largely unknown. Here, the authors present the structure of dimeric iPLA2β, providing insights into the regulation of its activity and cellular localization.
Collapse
Affiliation(s)
- Konstantin R Malley
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Olga Koroleva
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Ian Miller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Ruslan Sanishvili
- GM/CA@APS, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8020, Saint Louis, MO, 63110, USA
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8020, Saint Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Chemistry, Washington University, Saint Louis, MO, 63130, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
22
|
Vasquez AM, Mouchlis VD, Dennis EA. Review of four major distinct types of human phospholipase A 2. Adv Biol Regul 2018; 67:212-218. [PMID: 29248300 PMCID: PMC5807221 DOI: 10.1016/j.jbior.2017.10.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
The phospholipase A2 superfamily of enzymes plays a significant role in the development and progression of numerous inflammatory diseases. Through their catalytic action on membrane phospholipids, phospholipases are the upstream regulators of the eicosanoid pathway releasing free fatty acids for cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes which produce various well-known inflammatory mediators including leukotrienes, thromboxanes and prostaglandins. Elucidating the association of phospholipases A2 with the membrane, the extraction and binding of phospholipid substrates, and their interactions with small-molecule inhibitors is crucial for the development of new anti-inflammatory therapeutics. Studying phospholipases has been challenging because they act on the surface of cellular membranes and micelles. Multidisciplinary approaches including hydrogen/deuterium exchange mass spectrometry, molecular dynamics simulations, and other computer-aided drug design techniques have been successfully employed by our laboratory to study interactions of phospholipases with membranes, phospholipid substrates and inhibitors. This review summarizes the application of these techniques to study four human recombinant phospholipases A2.
Collapse
Affiliation(s)
- Alexis M Vasquez
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, United States
| | - Varnavas D Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, United States.
| | - Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, United States.
| |
Collapse
|
23
|
Chandra B, Maity BK, Das A, Maiti S. Fluorescence quenching by lipid encased nanoparticles shows that amyloid-β has a preferred orientation in the membrane. Chem Commun (Camb) 2018; 54:7750-7753. [DOI: 10.1039/c8cc02108b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Short range plasmonic fields around a nanoparticle can modulate fluorescence or Raman processes.
Collapse
Affiliation(s)
| | | | - Anirban Das
- Tata Institute of Fundamental Research
- Homi Bhabha Road
- Mumbai
- India
| | - Sudipta Maiti
- Tata Institute of Fundamental Research
- Homi Bhabha Road
- Mumbai
- India
| |
Collapse
|
24
|
Masson GR, Jenkins ML, Burke JE. An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discov 2017; 12:981-994. [PMID: 28770632 DOI: 10.1080/17460441.2017.1363734] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful methodology to study protein dynamics, protein folding, protein-protein interactions, and protein small molecule interactions. The development of novel methodologies and technical advancements in mass spectrometers has greatly expanded the accessibility and acceptance of this technique within both academia and industry. Areas covered: This review examines the theoretical basis of how amide exchange occurs, how different mass spectrometer approaches can be used for HDX-MS experiments, as well as the use of HDX-MS in drug development, specifically focusing on how HDX-MS is used to characterize bio-therapeutics, and its use in examining protein-protein and protein small molecule interactions. Expert opinion: HDX-MS has been widely accepted within the pharmaceutical industry for the characterization of bio-therapeutics as well as in the mapping of antibody drug epitopes. However, there is room for this technique to be more widely used in the drug discovery process. This is particularly true in the use of HDX-MS as a complement to other high-resolution structural approaches, as well as in the development of small molecule therapeutics that can target both active-site and allosteric binding sites.
Collapse
Affiliation(s)
- Glenn R Masson
- a Protein and Nucleic Acid Chemistry Division , MRC Laboratory of Molecular Biology , Cambridge , UK
| | - Meredith L Jenkins
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| | - John E Burke
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| |
Collapse
|
25
|
Ren X, Zhang M, Chen L, Zhang W, Huang Y, Luo H, Li L, He H. The anti-inflammatory effects of Yunnan Baiyao are involved in regulation of the phospholipase A2/arachidonic acid metabolites pathways in acute inflammation rat model. Mol Med Rep 2017; 16:4045-4053. [PMID: 28765972 PMCID: PMC5647098 DOI: 10.3892/mmr.2017.7104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
The traditional Chinese medicine Yunnan Baiyao (YNB) has been reported to possess anti-inflammatory properties, however its mechanism of action remains unclear. It was previously reported that YNB ameliorated depression of arachidonic acid (AA) levels in a rat model of collagen-induced arthritis. In the current study, the capacity of YNB to ameliorate inflammation was compared in carrageenan-induced and AA-induced acute inflammation of the rat paw with celecoxib and mizolastine, respectively (n=24 per group). The capacity of YNB to affect the phospholipase A2 (PLA2)/AA pathway (using reverse transcription-quantitative polymerase chain reaction) and release of inflammatory lipid mediators (by ELISA) were investigated. Celecoxib ameliorated carrageenan-induced paw edema, and mizolastine ameliorated AA-induced rat paw edema. YNB alleviated paw edema and inhibited inflammatory cell infiltration in the two models. YNB inhibited production of 5-LOX AA metabolite leukotriene B4 (LTB4), and suppressed expression of 5-LOX, cytosolic PLA2 (cPLA2), 5-LOX-activating protein, and LTB4 receptor mRNA in the AA-induced inflammation model (P<0.05). YNB Inhibited the production of the COX-2 AA metabolite prostaglandin E2 (PGE2) and suppressed expression of COX-2, cPLA2, PGE2 mRNA in the carrageenan-induced inflammation mode (P<0.05). Taken together, the data suggest that modulation of COX and LOX pathways in AA metabolism represent a novel anti-inflammatory mechanism of YNB.
Collapse
Affiliation(s)
- Xiaobin Ren
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Mingzhu Zhang
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Lingxiang Chen
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Wanli Zhang
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Yu Huang
- Department of Oral Medicine, The First Hospital of Qujing, Qujing, Yunnan 655000, P.R. China
| | - Huazhen Luo
- Department of Oral Medicine, The First Hospital of Kunming, Kunming, Yunnan 650011, P.R. China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongbing He
- Department of Periodontology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
26
|
Tessmer MH, Anderson DM, Buchaklian A, Frank DW, Feix JB. Cooperative Substrate-Cofactor Interactions and Membrane Localization of the Bacterial Phospholipase A 2 (PLA 2) Enzyme, ExoU. J Biol Chem 2017; 292:3411-3419. [PMID: 28069812 DOI: 10.1074/jbc.m116.760074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
The ExoU type III secretion enzyme is a potent phospholipase A2 secreted by the Gram-negative opportunistic pathogen, Pseudomonas aeruginosa Activation of phospholipase activity is induced by protein-protein interactions with ubiquitin in the cytosol of a targeted eukaryotic cell, leading to destruction of host cell membranes. Previous work in our laboratory suggested that conformational changes within a C-terminal domain of the toxin might be involved in the activation mechanism. In this study, we use site-directed spin-labeling electron paramagnetic resonance spectroscopy to investigate conformational changes in a C-terminal four-helical bundle region of ExoU as it interacts with lipid substrates and ubiquitin, and to examine the localization of this domain with respect to the lipid bilayer. In the absence of ubiquitin or substrate liposomes, the overall structure of the C-terminal domain is in good agreement with crystallographic models derived from ExoU in complex with its chaperone, SpcU. Significant conformational changes are observed throughout the domain in the presence of ubiquitin and liposomes combined that are not observed with either liposomes or ubiquitin alone. In the presence of ubiquitin, two interhelical loops of the C-terminal four-helix bundle appear to penetrate the membrane bilayer, stabilizing ExoU-membrane association. Thus, ubiquitin and the substrate lipid bilayer act synergistically to induce a conformational rearrangement in the C-terminal domain of ExoU.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | - David M Anderson
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | | | - Dara W Frank
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | - Jimmy B Feix
- Center for Infectious Disease Research; Department of Biophysics; National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
27
|
Vadas O, Jenkins ML, Dornan GL, Burke JE. Using Hydrogen-Deuterium Exchange Mass Spectrometry to Examine Protein-Membrane Interactions. Methods Enzymol 2016; 583:143-172. [PMID: 28063489 DOI: 10.1016/bs.mie.2016.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many fundamental cellular processes are controlled via assembly of a network of proteins at membrane surfaces. The proper recruitment of proteins to membranes can be controlled by a wide variety of mechanisms, including protein lipidation, protein-protein interactions, posttranslational modifications, and binding to specific lipid species present in membranes. There are, however, only a limited number of analytical techniques that can study the assembly of protein-membrane complexes at the molecular level. A relatively new addition to the set of techniques available to study these protein-membrane systems is the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS experiments measure protein conformational dynamics in their native state, based on the rate of exchange of amide hydrogens with solvent. This review discusses the use of HDX-MS as a tool to identify the interfaces of proteins with membranes and membrane-associated proteins, as well as define conformational changes elicited by membrane recruitment. Specific examples will focus on the use of HDX-MS to examine how large macromolecular protein complexes are recruited and activated on membranes, and how both posttranslational modifications and cancer-linked oncogenic mutations affect these processes.
Collapse
Affiliation(s)
- O Vadas
- Pharmaceutical Sciences Section, University of Geneva, Geneva, Switzerland
| | | | - G L Dornan
- University of Victoria, Victoria BC, Canada
| | - J E Burke
- University of Victoria, Victoria BC, Canada.
| |
Collapse
|
28
|
Barbour SE, Ramanadham S. Analyses of Calcium-Independent Phospholipase A 2beta (iPLA 2β) in Biological Systems. Methods Enzymol 2016; 583:119-141. [PMID: 28063488 DOI: 10.1016/bs.mie.2016.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The Ca2+-independent phospholipases A2 (iPLA2s) are part of a diverse family of PLA2s, manifest activity in the absence of Ca2+, are ubiquitous, and participate in a variety of biological processes. Among the iPLA2s, the cytosolic iPLA2β has received considerable attention and ongoing studies from various laboratories suggest that dysregulation of iPLA2β can have a profound impact on the onset and/or progression of many diseases (e.g., cardiovascular, neurological, metabolic, autoimmune). Therefore, appropriate approaches are warranted to gain a better understanding of the role of iPLA2β in vivo and its contribution to pathophysiology. Given that iPLA2β is very labile, its basal expression is low in a number of cell systems, and that crystal structure of iPLA2β is not yet available, careful and efficient protocols are needed to appropriately assess iPLA2β biochemistry, dynamics, and membrane association. Here, step-by-step details are provided to (a) measure iPLA2β-specific activity in cell lines or tissue preparations (using a simple radiolabel-based assay) and assess the impact of stimuli and inhibitors on resting- and disease-state iPLA2β activity, (b) purify the iPLA2β to near homogeneity (via sequential chromatography) from cell line or tissue preparations, enabling concentration of the enzyme for subsequent analyses (e.g., proteomics), and (c) employ hydrogen/deuterium exchange mass spectrometry analyses to probe both the structure of iPLA2β and dynamics of its association with the membranes, substrates, and inhibitors.
Collapse
Affiliation(s)
- S E Barbour
- University of Georgia at Athens, Athens, GA, United States
| | - S Ramanadham
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
29
|
Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). Biochem Soc Trans 2016; 43:773-86. [PMID: 26517882 DOI: 10.1042/bst20150065] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks).
Collapse
|
30
|
Dennis EA. Liberating Chiral Lipid Mediators, Inflammatory Enzymes, and LIPID MAPS from Biological Grease. J Biol Chem 2016; 291:24431-24448. [PMID: 27555328 DOI: 10.1074/jbc.x116.723791] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In 1970, it was well accepted that the central role of lipids was in energy storage and metabolism, and it was assumed that amphipathic lipids simply served a passive structural role as the backbone of biological membranes. As a result, the scientific community was focused on nucleic acids, proteins, and carbohydrates as information-containing molecules. It took considerable effort until scientists accepted that lipids also "encode" specific and unique biological information and play a central role in cell signaling. Along with this realization came the recognition that the enzymes that act on lipid substrates residing in or on membranes and micelles must also have important signaling roles, spurring curiosity into their potentially unique modes of action differing from those acting on water-soluble substrates. This led to the creation of the concept of "surface dilution kinetics" for describing the mechanism of enzymes acting on lipid substrates, as well as the demonstration that lipid enzymes such as phospholipase A2 (PLA2) contain allosteric activator sites for specific phospholipids as well as for membranes. As our understanding of phospholipases advanced, so did the understanding that many of the lipids released by these enzymes are chiral information-containing signaling molecules; for example, PLA2 regulates the generation of precursors for the biosynthesis of eicosanoids and other bioactive lipid mediators of inflammation and resolution underlying disease progression. The creation of the LIPID MAPS initiative in 2003 and the ensuing development of the lipidomics field have revealed that lipid metabolites are central to human metabolism. Today lipids are recognized as key mediators of health and disease as we enter a new era of biomarkers and personalized medicine. This article is my personal "reflection" on these scientific advances.
Collapse
Affiliation(s)
- Edward A Dennis
- From the Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093-0601.
| |
Collapse
|
31
|
Wang H, Klein MG, Snell G, Lane W, Zou H, Levin I, Li K, Sang BC. Structure of Human GIVD Cytosolic Phospholipase A2 Reveals Insights into Substrate Recognition. J Mol Biol 2016; 428:2769-79. [PMID: 27220631 DOI: 10.1016/j.jmb.2016.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022]
Abstract
Cytosolic phospholipases A2 (cPLA2s) consist of a family of calcium-sensitive enzymes that function to generate lipid second messengers through hydrolysis of membrane-associated glycerophospholipids. The GIVD cPLA2 (cPLA2δ) is a potential drug target for developing a selective therapeutic agent for the treatment of psoriasis. Here, we present two X-ray structures of human cPLA2δ, capturing an apo state, and in complex with a substrate-like inhibitor. Comparison of the apo and inhibitor-bound structures reveals conformational changes in a flexible cap that allows the substrate to access the relatively buried active site, providing new insight into the mechanism for substrate recognition. The cPLA2δ structure reveals an unexpected second C2 domain that was previously unrecognized from sequence alignments, placing cPLA2δ into the class of membrane-associated proteins that contain a tandem pair of C2 domains. Furthermore, our structures elucidate novel inter-domain interactions and define three potential calcium-binding sites that are likely important for regulation and activation of enzymatic activity. These findings provide novel insights into the molecular mechanisms governing cPLA2's function in signal transduction.
Collapse
Affiliation(s)
- Hui Wang
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA.
| | - Michael G Klein
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA.
| | - Gyorgy Snell
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA
| | - Weston Lane
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA
| | - Hua Zou
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA
| | - Irena Levin
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA
| | - Ke Li
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA
| | - Bi-Ching Sang
- Department of Structural Biology, Takeda California, San Diego, CA 92121, USA
| |
Collapse
|
32
|
Computer-aided drug design guided by hydrogen/deuterium exchange mass spectrometry: A powerful combination for the development of potent and selective inhibitors of Group VIA calcium-independent phospholipase A 2. Bioorg Med Chem 2016; 24:4801-4811. [PMID: 27320659 DOI: 10.1016/j.bmc.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
Potent and selective inhibitors for phospholipases A2 (PLA2) are useful for studying their intracellular functions. PLA2 enzymes liberate arachidonic acid from phospholipids activating eicosanoid pathways that involve cyclooxygenase (COX) and lipoxygenase (LOX) leading to inflammation. Anti-inflammatory drugs target COX and LOX; thus, PLA2 can also be targeted to diminish inflammation at an earlier stage in the process. This paper describes the employment of enzymatic assays, hydrogen/deuterium exchange mass spectrometry (DXMS) and computational chemistry to develop PLA2 inhibitors. Beta-thioether trifluoromethylketones (TFKs) were screened against human GVIA calcium-independent, GIVA cytosolic and GV secreted PLA2s. These compounds exhibited inhibition toward Group VIA calcium-independent PLA2 (GVIA iPLA2), with the most potent and selective inhibitor 3 (OTFP) obtaining an XI(50) of 0.0002 mole fraction (IC50 of 110nM). DXMS binding experiments in the presence of OTFP revealed the peptide regions of GVIA iPLA2 that interact with the inhibitor. Molecular docking and dynamics simulations in the presence of a membrane were guided by the DXMS data in order to identify the binding mode of OTFP. Clustering analysis showed the binding mode of OTFP that occupied 70% of the binding modes occurring during the simulation. The resulted 3D complex was used for docking studies and a structure-activity relationship (SAR) was established. This paper describes a novel multidisciplinary approach in which a 3D complex of GVIA iPLA2 with an inhibitor is reported and validated by experimental data. The SAR showed that the sulfur atom is vital for the potency of beta-thioether analogues, while the hydrophobic chain is important for selectivity. This work constitutes the foundation for further design, synthesis and inhibition studies in order to develop new beta-thioether analogues that are potent and selective for GVIA iPLA2 exclusively.
Collapse
|
33
|
Membrane and inhibitor interactions of intracellular phospholipases A2. Adv Biol Regul 2015; 61:17-24. [PMID: 26774606 DOI: 10.1016/j.jbior.2015.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023]
Abstract
Studying phospholipases A2 (PLA2s) is a challenging task since they act on membrane-like aggregated substrates and not on monomeric phospholipids. Multidisciplinary approaches that include hydrogen/deuterium exchange mass spectrometry (DXMS) and computational techniques have been employed with great success in order to address important questions about the mode of interactions of PLA2 enzymes with membranes, phospholipid substrates and inhibitors. Understanding the interactions of PLA2s is crucial since these enzymes are the upstream regulators of the eicosanoid pathway liberating free arachidonic acid (AA) and other polyunsaturated fatty acids (PUFA). The liberation of AA by PLA2 enzymes sets off a cascade of molecular events that involves downstream regulators such as cyclooxygenase (COX) and lipoxygenase (LOX) metabolites leading to inflammation. Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) work by inhibiting COX, while Zileuton inhibits LOX and both rely on PLA2 enzymes to provide them with AA. That means PLA2 enzymes can potentially also be targeted to diminish inflammation at an earlier point in the process. In this review we describe extensive efforts reported in the past to define the interactions of PLA2 enzymes with membranes, substrate phospholipids and inhibitors using DXMS, molecular docking, and molecular dynamics (MD) simulations.
Collapse
|
34
|
Structural analysis of the interleukin-8/glycosaminoglycan interactions by amide hydrogen/deuterium exchange mass spectrometry. Methods 2015; 89:45-53. [DOI: 10.1016/j.ymeth.2015.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022] Open
|
35
|
Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gβγ-dependent regulator of PI3Kγ enzymatic activity. Biochem J 2015; 469:59-69. [PMID: 26173259 DOI: 10.1042/bj20150099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Class IB phosphoinositide 3-kinases γ (PI3Kγ) are second-messenger-generating enzymes downstream of signalling cascades triggered by G-protein-coupled receptors (GPCRs). PI3Kγ variants have one catalytic p110γ subunit that can form two different heterodimers by binding to one of a pair of non-catalytic subunits, p87 or p101. Growing experimental data argue for a different regulation of p87-p110γ and p101-p110γ allowing integration into distinct signalling pathways. Pharmacological tools enabling distinct modulation of the two variants are missing. The ability of an anti-p110γ monoclonal antibody [mAb(A)p110γ] to block PI3Kγ enzymatic activity attracted us to characterize this tool in detail using purified proteins. In order to get insight into the antibody-p110γ interface, hydrogen-deuterium exchange coupled to MS (HDX-MS) measurements were performed demonstrating binding of the monoclonal antibody to the C2 domain in p110γ, which was accompanied by conformational changes in the helical domain harbouring the Gβγ-binding site. We then studied the modulation of phospholipid vesicles association of PI3Kγ by the antibody. p87-p110γ showed a significantly reduced Gβγ-mediated phospholipid recruitment as compared with p101-p110γ. Concomitantly, in the presence of mAb(A)p110γ, Gβγ did not bind to p87-p110γ. These data correlated with the ability of the antibody to block Gβγ-stimulated lipid kinase activity of p87-p110γ 30-fold more potently than p101-p110γ. Our data argue for differential regulatory functions of the non-catalytic subunits and a specific Gβγ-dependent regulation of p101 in PI3Kγ activation. In this scenario, we consider the antibody as a valuable tool to dissect the distinct roles of the two PI3Kγ variants downstream of GPCRs.
Collapse
|
36
|
Xie C, Li X, Wu J, Liang Z, Deng F, Xie W, Zhu M, Zhu J, Zhu W, Geng S, Zhong C. Anti-inflammatory Activity of Magnesium Isoglycyrrhizinate Through Inhibition of Phospholipase A2/Arachidonic Acid Pathway. Inflammation 2015; 38:1639-1648. [PMID: 25691139 DOI: 10.1007/s10753-015-0140-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycyrrhiza glabra (licorice) has been known to possess various pharmacological properties including anti-inflammatory, antioxidants, antiviral, and hepatoprotective activities. Magnesium isoglycyrrhizinate (MgIG), a magnesium salt of 18-α glycyrrhizic acid stereoisomer, is clinically used for the treatment of inflammatory liver diseases. However, the mechanism by which MgIG exerts its anti-inflammatory effects remains unknown. In the present study, we investigated the inhibitory potential of MgIG in phospholipase A2 (PLA2)/arachidonic acid (AA) pathway and release of the pathway-generated inflammatory lipid mediators in RAW264.7 macrophages. Results revealed that MgIG suppressed LPS-induced activation of PLA2 and production of AA metabolites such as prostaglandin E2 (PGE2), prostacyclin (PGI2), thromboxane 2 (TXB2), and leukotrienes (LTB4) in macrophages. Furthermore, LPS-induced AA-metabolizing enzymes including COX-2, COX-1, 5-LOX, TXB synthase, and PGI2 synthase were significantly inhibited by MgIG. Taken together, our data suggest that modulation of cyclooxygenase (COXs) and 5-lipoxygenase (LOX) pathways in AA metabolism could be a novel mechanism for the anti-inflammatory effects of MgIG.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 818 East Tianyuan Rd, Jiangning, Nanjing, 211166, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dennis EA. Introduction to Thematic Review Series: Phospholipases: Central Role in Lipid Signaling and Disease. J Lipid Res 2015; 56:1245-7. [PMID: 26031662 PMCID: PMC4479329 DOI: 10.1194/jlr.e061101] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601
| |
Collapse
|
38
|
Batchu KC, Hokynar K, Jeltsch M, Mattonet K, Somerharju P. Substrate efflux propensity is the key determinant of Ca2+-independent phospholipase A-β (iPLAβ)-mediated glycerophospholipid hydrolysis. J Biol Chem 2015; 290:10093-103. [PMID: 25713085 DOI: 10.1074/jbc.m115.642835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca(2+)-independent PLA-β (iPLAβ) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAβ as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAβ-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated.
Collapse
Affiliation(s)
| | - Kati Hokynar
- From the Departments of Biochemistry and Developmental Biology and
| | - Michael Jeltsch
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kenny Mattonet
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
39
|
Mouchlis VD, Bucher D, McCammon JA, Dennis EA. Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates. Proc Natl Acad Sci U S A 2015; 112:E516-25. [PMID: 25624474 PMCID: PMC4330758 DOI: 10.1073/pnas.1424651112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein-lipid interactions and membrane functioning. Phospholipase A2 (PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying protein-lipid interactions. Our study focuses on understanding the catalytic cycle of two different human PLA2s: the cytosolic Group IVA cPLA2 and calcium-independent Group VIA iPLA2. Computer-aided techniques guided by deuterium exchange mass spectrometry data, were used to create structural complexes of each enzyme with a single phospholipid substrate molecule, whereas the substrate extraction process was studied using steered molecular dynamics simulations. Molecular dynamic simulations of the enzyme-substrate-membrane systems revealed important information about the mechanisms by which these enzymes associate with the membrane and then extract and bind their phospholipid substrate. Our data support the hypothesis that the membrane acts as an allosteric ligand that binds at the allosteric site of the enzyme's interfacial surface, shifting its conformation from a closed (inactive) state in water to an open (active) state at the membrane interface.
Collapse
Affiliation(s)
| | | | - J Andrew McCammon
- Departments of Pharmacology and Chemistry and Biochemistry, and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0601
| | - Edward A Dennis
- Departments of Pharmacology and Chemistry and Biochemistry, and
| |
Collapse
|
40
|
Engen JR, Wales TE. Analytical Aspects of Hydrogen Exchange Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:127-48. [PMID: 26048552 PMCID: PMC4989240 DOI: 10.1146/annurev-anchem-062011-143113] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article reviews the analytical aspects of measuring hydrogen exchange by mass spectrometry (HX MS). We describe the nature of analytical selectivity in hydrogen exchange, then review the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in HX MS depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that can be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115;
| | | |
Collapse
|
41
|
Abstract
Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins, especially those accomplished with the proteins in phospholipid bilayer environments where they function.
Collapse
|
42
|
Niegowski D, Kleinschmidt T, Olsson U, Ahmad S, Rinaldo-Matthis A, Haeggström JZ. Crystal structures of leukotriene C4 synthase in complex with product analogs: implications for the enzyme mechanism. J Biol Chem 2013; 289:5199-207. [PMID: 24366866 PMCID: PMC3931076 DOI: 10.1074/jbc.m113.534628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Leukotriene (LT) C4 synthase (LTC4S) catalyzes the conjugation of the fatty acid LTA4 with the tripeptide GSH to produce LTC4, the parent compound of the cysteinyl leukotrienes, important mediators of asthma. Here we mutated Trp-116 in human LTC4S, a residue proposed to play a key role in substrate binding, into an Ala or Phe. Biochemical and structural characterization of these mutants along with crystal structures of the wild type and mutated enzymes in complex with three product analogs, viz. S-hexyl-, 4-phenyl-butyl-, and 2-hydroxy-4-phenyl-butyl-glutathione, provide new insights to binding of substrates and product, identify a new conformation of the GSH moiety at the active site, and suggest a route for product release, aided by Trp-116.
Collapse
Affiliation(s)
- Damian Niegowski
- From the Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-107 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Bucher D, Hsu YH, Mouchlis VD, Dennis EA, McCammon JA. Insertion of the Ca²⁺-independent phospholipase A₂ into a phospholipid bilayer via coarse-grained and atomistic molecular dynamics simulations. PLoS Comput Biol 2013; 9:e1003156. [PMID: 23935474 PMCID: PMC3723492 DOI: 10.1371/journal.pcbi.1003156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/11/2013] [Indexed: 01/19/2023] Open
Abstract
Group VI Ca²⁺-independent phospholipase A₂ (iPLA₂) is a water-soluble enzyme that is active when associated with phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently available for the iPLA₂ or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG) and all-atom (AA) molecular dynamics (MD) simulations to build structural models of iPLA₂ in association with a phospholipid bilayer. CG-MD simulations of the membrane insertion process were employed to provide a starting point for an atomistic description. Six AA-MD simulations were then conducted for 60 ns, starting from different initial CG structures, to refine the membrane complex. The resulting structures are shown to be consistent with each other and with deuterium exchange mass spectrometry (DXMS) experiments, suggesting that our approach is suitable for the modeling of iPLA₂ at the membrane surface. The models show that an anchoring region (residues 710-724) forms an amphipathic helix that is stabilized by the membrane. In future studies, the proposed iPLA₂ models should provide a structural basis for understanding the mechanisms of lipid extraction and drug-inhibition. In addition, the dual-resolution approach discussed here should provide the means for the future exploration of the impact of lipid diversity and sequence mutations on the activity of iPLA₂ and related enzymes.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
44
|
Magrioti V, Nikolaou A, Smyrniotou A, Shah I, Constantinou-Kokotou V, Dennis EA, Kokotos G. New potent and selective polyfluoroalkyl ketone inhibitors of GVIA calcium-independent phospholipase A2. Bioorg Med Chem 2013; 21:5823-9. [PMID: 23916152 DOI: 10.1016/j.bmc.2013.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
Group VIA calcium-independent phospholipase A2 (GVIA iPLA2) has recently emerged as an important pharmaceutical target. Selective and potent GVIA iPLA2 inhibitors can be used to study its role in various neurological disorders. In the current work, we explore the significance of the introduction of a substituent in previously reported potent GVIA iPLA2 inhibitors. 1,1,1,2,2-Pentafluoro-7-(4-methoxyphenyl)heptan-3-one (GK187) is the most potent and selective GVIA iPLA2 inhibitor ever reported with a XI(50) value of 0.0001, and with no significant inhibition against GIVA cPLA2 or GV sPLA2. We also compare the inhibition of two difluoromethyl ketones on GVIA iPLA2, GIVA cPLA2, and GV sPLA2.
Collapse
Affiliation(s)
- Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Greece
| | | | | | | | | | | | | |
Collapse
|